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Preface 

In the realm of statistical inference, we often find ourselves navigating the delicate 
balance between assumptions and reality. While classical statistics typically rests 
upon the premise of known population distributions with unknown parameters, the 
truth of many situations diverges sharply from these assumptions. Take, for instance, 
the ubiquitous standard regression models where Gaussian distribution of error 
terms is presumed. Yet, there are myriad scenarios where such assumptions fail to 
hold, casting doubts on the validity of our inferences. 

It is precisely in these challenging contexts that the realm of nonparametric 
statistics emerges as a beacon of possibility. Rather than tethering ourselves to 
predefined distributional forms, nonparametric statistics bravely ventures into the 
terrain where the true distribution of the population remains enigmatic. It is within 
this landscape that our edited volume, “Flexible Nonparametric Curve Estimation,” 
finds its purpose. 

The heart of this book lies in the endeavor to estimate crucial functions or 
curves when the distributions of populations evade our grasp. These curves find 
relevance across a spectrum of disciplines, from medicine to engineering, and 
economics to environmental sciences. Each chapter within this compendium is 
dedicated to presenting a novel nonparametric estimation approach for a specific 
function, coupled with an exploration of its significance in various contexts. 

Organized into 12 chapters, this volume embarks on a journey through a spectrum 
of methodologies and applications. From the revisiting of convolution processes 
to the exploration of Bayesian nonparametrics, each chapter offers a unique lens 
through which to view the complexities of real-world data analysis. 

Each chapter is meticulously crafted to not only propose innovative estimation 
techniques but also to delve into the theoretical underpinnings and practical 
implications of the methodologies. Through numerical studies and inclusion of 
code, the authors endeavor to empower readers to replicate and extend their findings, 
fostering a spirit of exploration and advancement. 

This volume is intended to serve as a valuable resource for researchers immersed 
in the multifaceted world of data analysis across diverse domains. Whether delv-
ing into medical sciences, econometrics, environmental sciences, or beyond, the
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vi Preface

methodologies presented herein offer a flexible toolkit for navigating the complex-
ities of real-world data. Furthermore, this book holds promise as a companion text 
for postgraduate students in statistical fields, offering both theoretical insights and 
practical guidance in the realm of nonparametric curve estimation. 

We extend our gratitude to the contributing authors for their dedication and 
expertise, which have enriched this volume immeasurably. It is our hope that this 
book will inspire further exploration, innovation, and collaboration in the ever-
evolving landscape of statistical inference. 

Sydney, NSW, Australia Hassan Doosti
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Tilted Nonparametric Regression 
Function Estimation 

Farzaneh Boroumand, Mohammad T. Shakeri, Nino Kordzakhia, 
Mahdi Salehi, and Hassan Doosti 

Abstract This paper provides the theory about the convergence rate of the tilted 
version of linear smoother. We study tilted linear smoother, a class of nonparametric 
regression function estimators, which is obtained by minimizing the distance to 
an infinite order flat-top trapezoidal kernel estimator. We prove that the proposed 
estimator achieves a high level of accuracy. Moreover, it preserves the attractive 
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properties of the infinite order flat-top kernel estimator. We also present an extensive 
numerical study for analysing the performance of two members of the tilted linear 
smoother class named tilted Nadaraya-Watson and tilted local linear for finite 
samples. The simulation study shows that tilted Nadaraya-Watson and tilted local 
linear perform better than their classical analogs, under some specified conditions, 
in terms of Median Integrated Squared Error (MISE). Next, the performance of 
these estimators as well as the conventional estimators are illustrated by curve fitting 
to COVID-19 data for 12 countries and a dose-response data set. Finally, the R 
codes for obtaining various regression estimators mentioned above are given as an 
appendix. 

Keywords Tilted estimators · Nonparametric regression function estimation · 
Rate of convergence · Infinite order flat top kernels · COVID-19 curve fitting 

1 Introduction 

Let the regression model be 

.Yi = r(Xi) + ϵi, 1 ≤ i ≤ n, (1) 

where .(Y1, X1), (Y2, X2), . . . , (Yn,Xn), are the data pairs, the design variable . X ∼
fX, X and . ϵ are independent, . ϵi’s are independent and identically distributed (iid) 
errors with zero mean .E(ϵ) = 0 and variance .E(ϵ2) = σ 2. The regression function 
r and . fX are unknown. In this paper, we will focus on a nonparametric approach 
to estimate r . The main subject of this study is a class of nonparametric estimators 
called linear smoother. An estimator . ̆r of r , is said to be a linear smoother if it can 
be written in a form of linear function of weighted Y sample. Let the weight-vector 
be 

. l(x) = (l1(x), . . . , ln(x))T .

Then the linear smoother . ̆r can be written as 

.r̆n(x) = l(x)T Y =
Σn

i=1
li (x)Yi, (2) 

where .
Σn

i=1li (x) = 1, see Buja et al. (1989). Nadaraya-Watson estimator and local 
linear estimator are two prevailing members of this class of estimators. The weight 
functions for Nadaraya-Watson smoother, see Nadaraya (1964), Watson (1964), are 

.li,NW (x) = K(
Xi−x

h
)

Σn
j=1K(

Xj −x

h
)
, i = 1, . . . , n. (3)
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For the standard local linear smoother the weight functions are defined as follows, 

.li,ll(x) = bi(x)Σn
j=1 bj (x)

, i = 1, . . . , n, (4) 

. bi(x) = K(
Xi − x

h
)(Sn,2 (x) − (Xi − x)Sn,1 (x)), i = 1, . . . , n,

. Sn,j (x) =
Σn

i=1
K(

Xi − x

h
)(Xi − x)j , j = 1, 2.

where K is a kernel function. The kernel function depends on the bandwidth, or 
smoothing, parameter h and assigns weights to the observations according to the 
distance to the target point x. The small values of h cause the neighboring points 
of x to have the larger influence on the estimate leading to curvature changes in 
the estimated curve. The larger values of h imply that the distanced data points will 
have the same effect as the neighboring points on the local fit, resulting in a smoother 
estimate. Thus finding an optimal h is the essential task in the estimation procedure, 
see Wasserman (2006). One of the ways finding the optimal h is by minimising the 
leave-one-out cross validation score function, (Wasserman, 2006). The leave-one-
out cross validation score is defined by 

.CV = R̂(h) = 1

n

nΣ

i=1

(Yi − r̆(−i)(Xi))
2, (5) 

where .r̆(−i)(Xi) is obtained from (2) by omitting the ith pair .(Xi, Yi). In this  
work, we will present the tilted versions of linear smoother. A tilting technique 
applied to an empirical distribution, leads to replacing .1/n data weights from 
uniform distribution by .pi, 1 ≤ i ≤ n, from general multinomial distribution 
over data. Hall and Yao (2003) studied asymptotic properties of the tilted regression 
estimator with autoregressive errors using generalized empirical likelihood method, 
which typically involves solving a non-linear and high dimensional optimization 
problem. Grenander (1956) introduced a tilted method to impose restrictions 
on the density estimates. There are two approaches to estimating of the tilting 
parameters: Empirical likelihood and Distance Measure based approaches. The 
empirical likelihood-based method is a semi-parametric method which provides 
a convenience of adding a parametric model through estimating equations. Owen 
(1988) proposed an empirical likelihood to be used as an alternative to the likelihood 
ratio tests, and derived its asymptotic distribution. Chen (1997), Zhang (1998), 
Schick and Wefelmeyer (2009), Müller et al. (2005) further developed the empirical 
likelihood-based method for estimating the tilting parameters. Chen (1997) applied 
the empirical likelihood method to estimate the tilting parameters . pi, 1 ≤ i ≤ n,

under the constraints on the shape of distribution. In his kernel-based estimator, 
.n−1 was replaced by the weights obtained from the empirical likelihood method.
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In Chen (1997) it was proved that the proposed estimator has a smaller variance 
than the conventional kernel estimators. Schick and Wefelmeyer (2009), also used 
the similar approach obtaining the consistent tilted estimator with higher efficiency 
than that of conventional estimators in the autoregression framework. In contrast 
in the Distance Measure approach, the tilted estimators are defined by minimizing 
distances, conditional to various types of constraints. Hall and Presnell (1999), Hall 
and Huang (2001), Carroll et al. (2011), Doosti and Hall (2016), Doosti et al. (2018) 
used the setup-specific Distance Measure approaches for estimating the tilting 
parameters. Carroll et al. (2011), proposed a new approach for density function 
estimation, and regression function estimation as well as hypothesis testing under 
shape constraints in the model with measurement errors. A tilting method used in 
Carroll et al. (2011) led to curve estimators under some constraints. Doosti and Hall 
(2016) introduced a new higher order nonparametric density estimator, using tilting 
method, where they used .L2-metric between the proposed estimator and a consistent 
‘Sinc’ kernel based estimator. Doosti et al. (2018), have introduced a new way of 
choosing the bandwidth and estimating the tilted parameters based on the cross-
validation function. In Doosti et al. (2018), it was shown that the proposed density 
function estimator had improved efficiency and was more cost-effective than the 
conventional kernel-based estimators studied in this paper. 

In this work, we propose a new tilted version of a linear smoother which is 
obtained by minimising the distance to a comparator estimator. The comparator 
estimator is selected to be an infinite order flat-top kernel estimator. This class of 
estimators is characterized by a Fourier transform, which is flat near the origin and 
infinitely differentiable elsewhere, see McMurry and Politis (2008). We prove that 
the tilted estimators achieve a high level of accuracy, yet preserving the attractive 
properties of an infinite-order flat-top kernel estimator. 

The rest of this paper contains the additional four sections and Appendix. In 
the Sect. 2, we provide the notation, definitions and preliminary results. The Sect. 2 
also includes the definition of an infinite-order estimator, as a comparator estimator. 
Section 3 contains the main results formulated in Theorems 1–3. We present a 
simulation study in the Sect. 4. The real data applications are provided in the Sect. 5. 
The proof of the main theorem is accommodated in the Appendix. 

2 Notation and Preliminary Results 

Definition 1 A general infinite order flat-top kernel K is defined 

.K(x) = 1

2π

⌡ ∞

−∞
λ(s)e−isxds, (6) 

where λ(s) is the Fourier transform of kernel K , and c >  0 is a fixed constant.
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. λ(s) =
[
1, | s |≤ c

g(| s |), | s |> c
,

and g is not unique and it should be chosen to make λ(s), λ2(s), and sλ(s) integrable 
(McMurry & Politis, 2004). 

2.1 Infinite Order Flat-Top Kernel Regression Estimator 

McMurry and Politis (2004) proposed Infinite order flat-top kernel regression 
estimator as follows; we used this estimator as the comparator estimator in Sect. 3, 

.ř =
Σn

i=1

K(
Xi−x

h
)

Σn
j=1K(

Xj −x

h
)
Yi, (7) 

where K is an infinite order flat-top kernel from (6) such as trapezoidal kernel with 
the following definition 

. K(x) = 2(cos(x/2) − cos(x))

πx2
,

this K satisfying Definition 1 since the Fourier transform of K(x) is 

. λ(s) =

⎧
⎪⎪⎨

⎪⎪⎩

1 | s |≤ 1/2,

2(1− | s |) 1/2 <| s |≤ 1,

0 | s |> 1.

2.2 Tilted Linear Smoother 

We define tilted linear smoother as follows 

.r̂n(x|h, p) =
Σn

i=1
npili(xi)Yi, (8) 

where . pi’s are tilting parameters, .pi ≥ 0 and .
Σn

i pi = 1. The bandwidth 
parameter h and the vector of tilting parameters .p = (p1, · · · , pn), are  to  be  
estimated. In Sect. 4, we evaluate the performance of two member of this class 
of estimators including tilted versions of Nadaraya-Watson (2) and standard local 
linear estimators (3) in finite samples.
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3 Main Results 

Let .r̂n(.|θ) be the tilted linear smoother from (8) for the regression function . r , where 
.θ = (h, p) is a vector of unknown parameters. Further . ̌r from (7) will be used as 
a comparator estimator of r , . ̌r can be any estimator with an optimal convergence 
rate (McMurry & Politis, 2008). We will estimate . θ by minimising the .L2-distance 
between .r̂n(.|θ) and . ̌r preserving the convergence rate of . ̌r , provided the following 
assumptions hold 

(a) . ||ř − r|| = Op(δn)

(b) There exists . θ̃ such that .r̂n(.|θ̃ ) and . ̌r possess the same convergence rates, i.e. 
.||r̂n(.|θ̃ ) − r|| = Op(δn), 

where .δn ≥ 0 converges to 0 as n tends to . ∞, e.g.  .δn = n−c for some .c ∈ (0, 1/2). 
A further discussion on the assumptions (a)–(b) can be found in Doosti and Hall 
(2016). 

We define . θ̂ as the solution to the optimisation problem as 

.θ̂ = argmin
θ

||r̂n(.|θ) − ř|| (9) 

subject to the constraints for the bandwidth parameter .h > 0 and vector p 
introduced in Sect. 2.2. 

In Theorem 1, we show that the convergence rate of .r̂n(.|θ̂ ) and . ̌r is .Op(δn). 

Theorem 1 If the assumptions (a)–(b) hold then for any . θ̂ which fulfills (9) we have 

. ||r̂n(.|θ̂ ) − r|| = Op(δn).

Proof Due to assumption (a), there exists . θ̃ such that 

. ||r̂n(.|θ̃ ) − ř|| ≤ ||r̂n(.|θ̃ ) − r|| + ||r − ř|| = Op(δn),

in which the first equation is a result of the triangle inequality, and specifically from 
the fact that 

.||r − ř|| = Op(δn); (10) 

see Assumption (a). If . θ̃ is as in assumption (b) then 

.||r̂n(.|θ̂ ) − ř|| ≤ ||r̂n(.|θ̃ ) − ř|| = Op(δn). (11) 

Together, results (10) and (11) imply Theorem 1. 

Theorem 1 implies that the convergence rate of .r̂n(.|θ̂ ) estimator coincides with 
that of . ̌r with the bandwidth parameter h replaced by its ‘plug-in’ type estimate 
similar to that from McMurry and Politis (2004, 2008).
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The regression function .r ∈ C, where . C is a class of regression functions, if 

. lim
C→∞ lim sup

n→∞
sup
r∈C

[P {||r̂n(.|θ̃ ) − r|| ≥ Cδn} + P {||ř − r|| ≥ Cδn}] = 0, (12) 

subject to existence of . θ̃ . 

Theorem 2 If (12) holds for regression functions from . C then 

. lim
C→∞ lim sup

n→∞
sup
r∈C

P {||r̂n(.|θ̂ ) − r|| ≥ Cδn} = 0. (13) 

Theorem 2 states that .r̂n(.|θ̂ ) and . ̌r converge to r uniformly in . C. 
Let .X1, X2, . . . , Xn be iid random variables with probability density function 

(pdf) .f (x) and .ĝ(x) be its kernel based density function estimator 

. ĝ(x) = 1

nh

nΣ

i=1

K(
x − Xi

h
)

and .g(x) = Ef ĝ(x). 
Suppose that (c)–(d) hold for . φK and . φq , Fourier transforms for K and .q = r ·g, 

respectively, 

(c) .φK(t)−1 = 1 + Σk
j=1 cj t

2j , .c1, . . . , ck are real numbers; 

(d) . 
⌡ |φq(t)||t |2kdt < ∞;

(e) For constants .C1, . . . , C5 > 0, and .j = 1, . . . , k the derivatives .q(2j) exist, 
.|q(2j)(x)| ≤ C1 and .

⌡ |q(2j)(x)| ≤ C1, and either 

(1) .|q(2j)(x)/r · f (x)| ≤ C1 for all x, or  
(2) .|q(2j)(x)/r · f (x)| ≤ C1(1 + |x|)C2 for all x and . P(|X| ≥ x) ≤

C3 exp(−C4x
C5), x > 0. 

(f) Under assumption (e)–(1), .δn → 0 as .n → ∞, so that .n1/2δn → ∞ , and under 
assumption (e)–(2), .n1/2log(n)−C2/4C5δn → ∞, where . C2 and . C5 are defined 
in (e)–(2). 

Assumption (c)–(f) are ordinary and reasonable assumptions. These assumptions 
were considered in tilted density function estimation by Doosti and Hall (2016). We 
need these assumption to find the rate of convergence of tilted linear smoother in 
Theorem 3. It is anticipated that .||r̂n(.|θ̂ ) − r|| = Op(δn), where . δn converges to 0 
slower than .n−1/2 as shown in Theorem 3. Next we formulate the assumption using 
the first term of the expression in the left hand side of (12) 

. lim
C→∞ lim sup

n→∞
sup
r∈C

Pr(||ř − r|| > Cδn) = 0. (14) 

Theorem 3 Let (c)–(f) be valid and . θ̂ be defined in (9).
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I. If in addition .||ř − r|| = Op(δn) then . ||r̂n(.|θ̂ ) − r|| = Op(δn).

II. If the assumptions in (e) hold uniformly for .q ∈ C and obtain (14) then (13) is 
valid. 

Both Theorems 1 and 3 provide rate of convergence for tilted linear smoother. 
Theorem 3 instead of the assumption (b), requires the assumptions (c)–(f). The proof 
of Theorem 3 is given in the Appendix. 

4 Simulation Study 

We present the results of simulation study of the performance of tilted estimators in 
various settings. In the simulation study, estimators NW p4 (p10) and LL p4 (p10) 
refer to tilted Nadaraya-Watson and tilted local linear estimators with 4 (10) distinct 
values of .p1, · · · , pn, respectively. Data were generated using exponential and sin 
regression functions with normal and uniform design distributions. Four samples of 
sizes .n = (60, 100, 200, 1000) were sampled from the population with regression 
errors which had standard deviations .σ = (0.3, 0.5, 0.7, 1, 1.5, 2). In the setting for 
each set of . σ and n, we generated 500 data sets. 

We used ‘constrOptim’ in R for solving the optimization problem in (9) subject 
to the conditions in Sect. 2.2. This function is suitable for minimising a function 
subject to linear inequality constraints using an adaptive barrier algorithm (R Core 
Team, 2020). The Median Integrated Squared Error (MISE) was estimated using the 
Monte Carlo method. 

The leave-one-out cross validation score from (5) was employed to choose the 
optimal bandwidths for NW and LL estimators, (Wasserman, 2006). For an infinite 
order flat-top kernel estimator (IO), bandwidth was selected using the rule of thumb 
introduced by McMurry and Politis (2004) as part of ‘iosmooth’ (McMurry & 
Politis, 2017). The bandwidth parameters for tilted estimators were estimated using 
our suggested procedure. To study the design bias two different design density were 
selected. For the exponential regression function .r1(x) = x + 4exp(−2x2)/

√
2π , 

the design densities were taken to be uniform on .[−2, 2] and .N(0, 1). The Integrated 
Squared Error (ISE) was calculated over the interval .[−2, 2]. The sin regression 
function .r2(x) = sin(4πx) was paired with the uniform design density on .[0, 1]. 
The ISE has been calculated over .[0, 1] and .[0.15, 0.85], the latter is chosen for 
addressing boundary effect. 

In this simulation study for carrying out the MISE analysis, we had 500 repli-
cations done using Monte Carlo method. For MISE evaluation at each combination 
of an estimator, a function, a standard deviation and for a fixed sample size we had 
to solve the optimization problem. For the numerical implementation, we used the 
parallel computing technique in R facilitated through ‘snow’ (Tierney et al., 2018), 
‘doParallel’ (Microsoft Corporation & Weston, 2019), and ‘foreach’ (Microsoft 
& Weston, 2020) packages. We did our parallel computations is Gadi, the NCI’s 
supercomputer, Australia.
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Table 1 MISE for Infinite Order (IO) estimator with the trapezoidal kernel, Nadaraya-Watson 
(NW) estimator, standard local linear (LL) estimator, tilted NW estimator with 4 (NW p4) and 10 
(NW p10) weighting nodes, tilted LL estimator with 4 (LL p4) and 10 (LL p10) weighting nodes, 
Exponential regression function and normal design density function. In each row the minimum 
MISE is highlighted in bold 

n .σ IO NW LL NW p4 NW p10 LL p4 LL p10 

60 0.3 0.2070 0.0861 .0.0742 0.1422 0.1676 0.1194 0.1566 

0.5 0.2771 0.1630 .0.1486 0.2152 0.2294 0.1930 0.2203 

0.7 0.3755 0.2710 .0.2432 0.3039 0.3275 0.3009 0.3223 

1 0.5888 0.4626 .0.4110 0.5055 0.5597 0.5042 0.5261 

1.5 1.1451 0.9115 .0.8514 0.9576 1.0860 0.9590 1.0620 

2 1.9295 1.5667 .1.4383 1.6168 1.7774 1.6119 1.7292 

100 0.3 0.0814 0.0571 .0.0462 0.0609 0.06478 0.05156 0.0595 

0.5 0.1382 0.1044 .0.0893 0.1131 0.1168 0.1055 0.1107 

0.7 0.2233 0.1649 .0.1454 0.1879 0.1903 0.1744 0.1846 

1 0.3955 0.2842 .0.2534 0.3343 0.3616 0.3166 0.3480 

1.5 0.8122 0.5757 .0.5228 0.6764 0.7340 0.6802 0.7217 

2 1.4227 0.9750 .0.8954 1.1569 1.3134 1.1310 1.2404 

200 0.3 0.04982 0.02886 .0.0267 0.03518 0.0435 0.0293 0.0377 

0.5 0.0740 0.0632 0.0553 0.0589 0.0640 .0.0552 0.05780 

0.7 0.1071 0.1092 .0.0857 0.0907 0.0936 0.08777 0.0867 

1 0.1743 0.2046 .0.1407 0.1526 0.1568 0.1528 0.1527 

1.5 0.3395 0.43460 .0.2751 0.3022 0.3232 0.3007 0.3165 

2 0.5732 0.7590 .0.4676 0.5068 0.5470 0.4991 0.5310 

1000 0.3 0.02481 .0.0078 0.0121 0.0127 0.0222 0.0101 0.0187 

0.5 0.0293 0.0173 0.0197 0.0194 0.0251 .0.0166 0.0225 

0.7 0.0353 0.0287 0.0288 0.02748 0.0304 .0.0247 0.0277 

1 0.0502 0.0494 0.0466 0.0443 0.0435 .0.0420 0.04245 

1.5 0.0825 0.08977 0.0812 0.0799 0.0776 0.0814 . 0.0752
2 0.1279 0.1442 0.1254 0.1292 .0.1243 0.1299 0.1246 

In Table 1, we provide the MISEs for the proposed estimators, the compara-
tor estimator, and the conventional estimators. Data were generated using . r1(x)

regression function along with normal design density and normal distribution for 
the error term. It is evident that for moderate sample size (n=200 and . σ=0.5) 
the tilted estimators outperformed other estimators. Moreover, for large sample 
size (n=1000), as standard deviation of error terms increases, the MISEs of tilted 
estimators are lower than other competitors. Generally, NW p10 (LL p10) was 
inferior to NW p4 (LL p4). This leads the tilted linear smoother with fewer distinct 
values of .p1, · · · , pn performs better, in terms of MISE. 

In Table 2, we provide the MISEs for simulated data using the exponential 
regression function .r1(x) With the uniform design density and the random normal 
error term. Overall, for fixed sample size (n=60, 100, 200), as the standard deviation 
increases, the tilted estimators outperform others. Although, for large sample sizes,
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Table 2 MISE for Infinite Order (IO) estimator with the trapezoidal kernel, Nadaraya-Watson 
(NW) estimator, standard local linear (LL) estimator, tilted NW estimator with 4 (NW p4) and 10 
(NW p10) weighting nodes, tilted LL estimator with 4 (LL p4) and 10 (LL p10) weighting nodes, 
exponential regression function and uniform design density. In each row the minimum MISE is 
highlighted in bold 

n .σ IO NW LL NW p4 NW p10 LL p4 LL p10 

60 0.3 0.1559 .0.0663 0.0566 0.1308 0.1529 0.1237 0.1470 

0.5 0.1980 .0.1398 0.1362 0.1724 0.1953 0.1690 0.1901 

0.7 0.2515 .0.2152 0.2098 0.2316 0.2492 0.2406 0.2433 

1 0.3588 0.3697 0.3599 .0.3418 0.3650 0.3691 0.3608 

1.5 0.6530 0.6281 0.6821 .0.6197 0.6520 0.6676 0.6692 

2 1.0524 0.9892 2.2171 .0.9871 1.0597 1.0287 1.0287 

100 0.3 0.1195 0.0442 .0.0360 0.1034 0.1191 0.0982 0.1156 

0.5 0.1432 0.0914 .0.0809 0.1253 0.1426 0.1218 0.1372 

0.7 0.1781 0.1443 .0.1376 0.1607 0.1766 0.1581 0.1695 

1 0.2490 0.2324 0.2438 0.2305 0.2469 0.2497 0.2460 

1.5 0.4165 0.4366 0.5221 .0.4041 0.4144 0.4373 0.4198 

2 0.6487 0.6780 0.8402 .0.6107 0.6371 0.6619 0.6401 

200 0.3 0.0991 0.0232 .0.0209 0.0891 0.0997 0.0833 0.0972 

0.5 0.1089 0.0470 .0.0441 0.0993 0.1086 0.0944 0.1063 

0.7 0.1256 0.0822 .0.0757 0.1172 0.1253 0.1107 0.1228 

1 0.1577 .0.1299 0.1351 0.1533 0.1589 0.1554 0.1590 

1.5 0.2401 0.2542 0.3349 .0.2386 0.2416 0.2587 0.2426 

2 0.3568 0.3878 0.4218 .0.3464 0.3534 0.3938 0.3573 

1000 0.3 0.0801 0.0058 .0.0056 0.0776 0.0800 0.0724 0.0797 

0.5 0.0823 .0.0125 0.01286 0.0790 0.0825 0.0718 0.0819 

0.7 0.0853 0.0207 .0.0206 0.0801 0.0845 0.07170 0.0843 

1 0.0922 .0.0356 0.0359 0.0830 0.0917 0.0728 0.0895 

1.5 0.1080 0.0716 .0.0670 0.0972 0.1074 0.0911 0.1041 

2 0.1294 0.1286 .0.1056 0.1209 0.1308 0.1235 0.1271 

the conventional estimators tend to perform better than tilted estimators. For smaller 
sample sizes and the moderate standard deviation levels, the tilted NW estimator 
remains superior to the conventional estimators at some extent. 

Table 3 presents the MISEs for the simulated data using sin function with 
uniform design density and normal random errors. For fixed sample size and 
moderate standard deviations 0.5 and 0.7, the tilted estimators perform better than 
conventional estimators. For sample size n=1000 with and increasing standard 
deviation, the tilted estimators demonstrate better performance over others. 

For studying boundary effect the results provided in Tables 3 and 4 were 
evaluated under the identical experimental specifications except the MISEs in 
Table 4 were evaluated over [0.15,0.85]. According to the results when the sample 
size and standard deviation increased, the tilted estimators demonstrated improved 
performance.
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Table 3 MISE for Infinite Order (IO) estimator with the trapezoidal kernel, Nadaraya-Watson 
(NW) estimator, standard local linear (LL) estimator, tilted NW estimator with 4 (NW p4) and 10 
(NW p10) weighting nodes, tilted LL estimator with 4 (LL p4) and 10 (LL p10) weighting nodes, 
sin regression function, uniform design density, edges included. In each row the minimum MISE 
is highlighted in bold 

n .σ IO NW LL NW p4 NW p10 LL p4 LL p10 

60 0.3 0.04034 0.0286 0.0234 0.0315 0.0331 .0.0228 0.0264 

0.5 0.0663 0.0638 0.0570 0.0585 0.0597 .0.0507 0.0534 

0.7 0.1085 .0.0840 0.1329 0.0971 0.0969 0.0897 0.090 

1 0.1958 0.1703 .0.1424 0.1731 0.1749 0.1714 0.1692 

1.5 0.4036 .0.2410 0.2652 0.3616 0.3718 0.3600 0.3604 

2 0.7003 .0.3739 0.3958 0.6198 0.6463 0.6203 0.6307 

100 0.3 0.0222 0.0166 .0.0129 0.0193 0.0197 0.0130 0.0152 

0.5 0.0371 0.0326 0.0286 0.0348 0.0349 .0.0282 0.0308 

0.7 0.0595 0.0533 .0.0498 0.0560 0.0554 0.0506 0.0517 

1 0.1054 0.0936 .0.0868 0.1008 0.1004 0.0989 0.09720 

1.5 0.2183 .0.1541 0.1728 0.2078 0.2072 0.2067 0.2032 

2 0.3784 .0.2869 0.2985 0.3520 0.3580 0.3573 0.3549 

200 0.3 0.0123 0.0093 0.0070 0.0112 0.0114 .0.0067 0.0080 

0.5 0.0191 0.0190 0.0161 0.0195 0.0194 .0.0143 0.0150 

0.7 0.0299 0.0306 0.0273 0.0308 0.0296 .0.0251 0.0260 

1 0.0522 0.0492 0.0494 0.0533 0.0517 0.0484 . 0.0471
1.5 0.1073 .0.0885 0.1043 0.1046 0.1048 0.1044 0.1011 

2 0.1830 .0.1334 0.1432 0.1770 0.1789 0.1812 0.1752 

1000 0.3 0.0056 0.0023 0.0019 0.0046 0.0051 .0.0018 0.0027 

0.5 0.0070 0.0049 0.0042 0.0065 0.0066 .0.0034 0.0043 

0.7 0.0089 0.0082 0.0071 0.0091 0.0091 .0.0056 0.0064 

1 0.0132 0.0145 0.0127 0.01402 0.01346 .0.0101 0.0108 

1.5 0.0234 0.0254 0.0241 0.0250 0.0242 .0.0214 0.0212 

2 0.0376 0.0424 0.0386 0.0404 0.0388 0.0369 . 0.0358

It is a known fact that the performance of NW estimator deteriorates near 
edges, (Martinez & Martinez, 2007). This effect is often referred to as a boundary 
problem. The results presented in Tables 3 and 4, illustrate that the for scenarios 
.(n = 60, σ = 0.5), .(n = 200, σ = 0.7) and . (n = 1000, σ = {1, 1.5, 2})
the tilted NW estimator outperformed its classical counterpart. From the boxplot in 
Fig. 1 it is evident that the tilted estimators have smaller median ISEs. The extreme 
values of the ISEs for the tilted estimators are smaller than these of the conventional 
estimators. Similarity between the ISE distributions and their spreads of the IO and 
tilted estimators can also be seen in Fig. 1. 

Simulation results can be summarized as follows 

• Generally NW p10 (LL p10) was inferior to NW p4 (LL p4). This leads the 
tilted linear smoother with fewer distinct values of .p1, · · · , pn performs better, 
in terms of MISE.
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Table 4 MISE for Infinite Order (IO) estimator with the trapezoidal kernel, Nadaraya-Watson 
(NW) estimator, standard local linear (LL) estimator, tilted NW estimator with 4 (NW p4) and 10 
(NW p10) weighting nodes, tilted LL estimator with 4 (LL p4) and 10 (LL p10) weighting nodes, 
sin regression function, uniform design density, edges excluded. In each row the minimum MISE 
is highlighted in bold 

n .σ IO NW LL NW p4 NW p10 LL p4 LL p10 

60 0.3 0.0261 0.0182 0.0143 0.0201 0.0213 .0.0142 0.0184 

0.5 0.0461 0.0421 0.0327 0.03747 0.0394 .0.0319 0.0365 

0.7 0.0740 .0.0498 0.0791 0.0628 0.0638 0.05783 0.0618 

1 0.1315 0.1130 .0.0796 0.1189 0.1209 0.1095 0.1184 

1.5 0.2736 .0.1461 0.1468 0.2519 0.2610 0.2420 0.2513 

2 0.4747 0.2646 .0.2208 0.4271 0.4508 0.4215 0.4406 

100 0.3 0.0132 0.0101 .0.0078 0.0108 0.0109 0.0082 0.0096 

0.5 0.0233 0.0194 .0.0168 0.0201 0.0207 0.0173 0.0197 

0.7 0.0380 0.0307 .0.0285 0.0340 0.0346 0.0308 0.0331 

1 0.0688 0.0562 .0.0493 0.0626 0.0641 0.0587 0.0626 

1.5 0.1459 .0.0912 0.0943 0.1319 0.1365 0.1270 0.1349 

2 0.2536 0.1750 .0.1584 0.2304 0.2391 0.2228 0.2362 

200 0.3 0.0063 0.0054 0.0044 0.0054 0.0054 .0.0040 0.0049 

0.5 0.0112 0.0121 0.0095 0.0100 0.0102 .0.0084 0.0097 

0.7 0.0183 0.01733 0.0164 0.0162 0.0166 .0.0149 0.0164 

1 0.0330 0.0296 0.0300 0.0298 0.0307 .0.0288 0.0302 

1.5 0.0679 .0.0531 0.0627 0.0636 0.0653 0.0610 0.0645 

2 0.1160 .0.0816 0.0834 0.1116 0.1125 0.1094 0.1132 

1000 0.3 0.0013 0.0014 0.0012 0.0011 0.0011 .0.0009 0.0010 

0.5 0.0022 0.0028 0.0026 0.0019 0.0018 .0.0017 0.0018 

0.7 0.0035 0.0045 0.0044 0.0032 0.0033 .0.0029 0.0031 

1 0.0064 0.0089 0.0077 0.0060 0.0062 .0.0057 0.0060 

1.5 0.0136 0.0152 0.0144 0.0126 0.0131 .0.0123 0.0130 

2 0.0236 0.0247 0.0229 0.0219 0.0229 .0.0218 0.0225 

• In all the scenarios, tilted estimators are superior to the comparator estimator, IO, 
which means with the same convergence rate in theoretical sense, the proposed 
estimators perform better than the comparator in terms of MISE. 

• For .r1(x) and .X ∼ N(0, 1) for large sample sizes (n=200, and 1000) and 
for small standard deviation of error term (. σ= 0.5, and 0.7), tilted LL p4 
outperformed other estimators. 

• For .r1(x) and .X ∼ U(−2, 2) for fixed sample size, as the standard deviation 
increases, the tilted estimators outperform their analogs. 

• For .r2(x) and .X ∼ U(0, 1), edge included, for fixed sample size and for small 
standard deviation of error term (. σ=0.5, and 0.7), LL p4 demonstrate better 
performance over others.
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Fig. 1 Boxplots of Integrated Square Errors (ISE) for Infinite Order (IO) estimator with the 
trapezoidal kernel, Nadaraya-Watson (NW) estimator, standard local linear (LL) estimator, tilted 
NW estimator with 4 (NW p4) and 10 (NW p10) weighting nodes, tilted LL estimator with 4 (LL 
p4) and 10 (LL p10) weighting nodes, sin regression function, edges excluded, .n = 1000 and 
. σ = 0.7

• For .r2(x) and .X ∼ U(0, 1), for scenarios .(n = 60, σ = 0.5), . (n = 200, σ =
0.7) and .(n = 1000, σ = {1, 1.5, 2}) the tilted NW p4 estimator outperformed 
NW estimator in boundaries. In the other words, the tilted NW p4 estimator 
addresses the boundaries problem in some conditions. 

To sum up, the simulation results illustrate that under some conditions the tilted 
estimators (tilted NW and tilted LL) are superior to conventional estimators (NW 
and LL) while in all the scenarios the tilted estimators perform better than the 
comparator (IO). 

5 Real Data 

In this section, we study the performance of tilted estimators in the real data 
environment. 

5.1 COVID-19 Data 

The tilted NW estimator along with two other kernel-based estimators are being 
used for a curve fitting to the COVID-19 data. We shall apply the tilted NW 
estimator approach to daily confirmed new cases and number of daily death for 12
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countries including Iran, Australia, Italy, Belgium, Germany, Spain, Brazil, United 
Kingdom, Canada, Chile, South Africa and United States of America, from 23 
February 2020 to 28 October 2020, downloaded from https://www.ecdc.europa.eu. 
The logarithmic transformation has been applied, and when the number of deaths 
or new confirmed cases were zero we altered these observations by a positive 
value eliminating the associated singularity issue. The optimal bandwidth for each 
Nadaraya-Watson estimator was found through minimization of relevant cross-
validation function, (Wasserman, 2006), at the same time we kept the bandwidth 
fixed for an infinite order flat-top kernel estimator which was found using Mcmurry 
and Politis rule of thumb, (McMurry & Politis, 2004). Along with the tilted 
Nadaraya-Watson estimator, we applied the Nadaraya-Watson, and Infinite Order 
flat-top kernel estimators. The tilted Nadaraya-Watson estimator performed the best 
in terms of the Mean Square Errors (MSE). Tables 5 and 6 provide the MSE for each 
estimator for the confirmed new cases and number of deaths. In terms of minimising 
the MSEs, the tilted Nadaraya-Watson estimator ranked first, followed by Infinite 

Table 5 COVID-19 daily 
confirmed Cases: MSE for 
Nadaraya-Watson (NW), 
Infinite Order (IO), and tilted 
(NW p4) estimators. In each 
row the minimum MSE is 
highlighted in bold 

Country IO NW NW p4 

Iran 324 326 . 305
Australia 5.48 5.41 . 5.01
Italy 445 1590 . 372
Belgium 2357 3071 . 2232
Germany 641 1029 . 594
Spain 41,621 41,754 . 41,241
Brazil 108,590 108,246 . 107,781
United Kingdom 1789 2083 . 1737
Canada 175 183 . 173
Chile 6040 6685 . 5991
South Africa 1158 1403 . 1133
United States of America 43,910 46,512 . 41,694

Table 6 COVID-19 death: 
MSE for Nadaraya-Watson 
(NW), Infinite Order (IO), 
and tilted (NW p4) 
estimators. In each row the 
minimum MSE is highlighted 
in bold 

Country IO NW NW p4 

Iran 1.36 1.39 . 1.32
Australia 0.0225 0.0223 . 0.0222
Italy 1.97 3.66 . 1.89
Belgium 0.0699 0.3077 . 0.0690
Germany 0.71 0.82 . 0.68
Spain 37.74 37.92 . 36.77
Brazil 63.99 64.21 . 63.86
United Kingdom 13.57 14.50 . 13.01
Canada 0.40 0.47 . 0.39
Chile 9.10 9.73 . 8.95
South Africa 3.32 3.50 . 3.22
United States of America 201.39 205.98 .197.76


 22241 2360 a 22241 2360 a
 
https://www.ecdc.europa.eu
https://www.ecdc.europa.eu
https://www.ecdc.europa.eu
https://www.ecdc.europa.eu
https://www.ecdc.europa.eu
https://www.ecdc.europa.eu/en/publications-data/download-todays-data-geographic-distribution-covid-19-cases-worldwide
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Fig. 2 Daily confirmed cases 
for 12 countries including 
Iran, Australia, Italy, 
Belgium, Germany, Spain, 
Brazil, United Kingdom, 
Canada, Chile, South Africa 
and United States of America 

Order flat-top kernel and Nadaraya-Watson estimators. Figures 2 and 3 show curve 
fit to the daily confirmed cases and daily deaths respectively. Tables 5 and 6 provide 
MSE of all estimators. 

5.2 Dose-Response Data 

The dose-response data refers to a study of phenylephrine effects on rat corpus 
cavernosum strips. This data first appeared in Boroumand et al. (2016) where the 
dose-response curves to phenylephrine (0.1–300 . μM) were obtained by applying the 
robust four-parameter logistic (4PL) regression. Here we have used a tilted smoother 
approach to dose-response curve fitting. In terms of Mean Square Errors (MSEs) the 
tilted local linear estimators performed better than local linear, infinite order flat-top
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Fig. 3 Daily deaths for 12 
countries including Iran, 
Australia, Italy, Belgium, 
Germany, Spain, Brazil, 
United Kingdom, Canada, 
Chile, South Africa and 
United States of America 

kernel estimators including the robust 4PL model. The fitted dose-response curves 
using the tilted local linear, local linear, infinite order flat-top kernel estimator, and 
4PL model are plotted in Fig. 4. The corresponding MSEs are listed in the caption 
of Fig. 4. 

The original dose-response data contained the outliers and the standard 4PL 
model had a poor fit. Due to this we compared the performance of the tilted estimator 
with the robust 4PL model. The tilted local linear estimator outperformed the robust 
4PL model in terms of MSE.
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Fig. 4 Dose-response curves: MSE for tilted local linear, local linear, infinite order flat-top kernel 
estimator and 4PL model are 95.1023, 95.3267, 95.53077 and 110.7539, respectively 
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Appendix 

Proof of Theorem 3 

In this section we provide proof of Theorem 3 for tilted Nadaraya-Watson estimator 
as a member of the class of tilted linear smoother from (8). The proof for any tilted 
linear smoother could be obtained analogously. 

Proof Let .pi = 1
n
π(Xi)where .π ≥ 0 and is a smooth function, .

Σn
i=1 pi = 1 which 

is equivalent .
⌡

π(X)fX(x)dx = 1 for continuous X. For simplicity, we replace 
.fX(x) by f then 

.

nΣ

i=1

pi = 1

n

nΣ

i=1

π(Xi)

= Eπ(X) + Op(n−1/2)

=
⌡

π(X)f dx + Op(n−1/2)

= 1 + Op(n−1/2),
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thus for normalising . pis so that .
Σ

i pi = 1 we need to multiply the estimator (8) by 
.1 + Op(n−1/2). The factor .Op(n−1/2) is negligibly small. We choose . π such that 
.r̂n(x|h, p) in (8) is unbiased estimator for r , i.e 

. Er̂(x|h, p) = r.

(15) 

From (15) we have 

. Er̂(x)ĝ(x) = 1

h

nΣ

i=1

EpiYiK(
x − Xi

h
)

= 1

nh

nΣ

i=1

EE{Yiπ(Xi)K(
x − Xi

h
)|Xi}

= 1

h

⌡ ∞

−∞
r(t)π(t)K(

x − t

h
)fX(t)dt, (16) 

where 

. ĝ(x) = 1

nh

nΣ

i=1

K(
x − Xi

h
)

and .g(x) = Eĝ(x). It can be shown that the left-hand side of (16) is converging to 
. r(x)g(x).

We have 

. r(x)g(x) = 1

h

⌡ ∞

−∞
r(t ')π(t ')K(

x − t '

h
)fX(t ')dt ',

multiplying both sides by .e−itx and integrating over x, we deduce 

. Фrg(t) = 1

h

⌡ ∞

−∞

⌡
e−itxrπf (t ')K(

x − t '

h
)dx'dt ',

by changing variable .
x−t '

h
= u, we have  

.Фrg(t) =
⌡ ∞

−∞
e−itxrπf (t ')Фk(t)dt '

= Фk(t)Фrπf (t).
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. Фrπf = Фrg(t)

Фk(t)
,

πrf = 1

2π

⌡ ∞

−∞
e−itx Фrg(t)

Фk(t)
,

π(X) = 1

2πrf

⌡ ∞

−∞
e−itx Фrg(t)

Фk(t)
dt, (17) 

if kernel K holds the assumption (c) and .q = r · g meet the assumption (d), then 

.π = 1 +
nΣ

j=1

Cj (−h2)j
rg(2j)

rf
, (18) 

with . π from (17), then . ̂rn in unbiased. Next we show that . π satisfies .0 < π(X) < 1. 
If the assumption (e) relaxed then there exist . C6 and .h0 ≥ 0, for all h, . 0 ≤ h ≤

h0, .π > 0 and .supπ ≤ C6 < ∞ then for unbiased . ̂rn

. 

⌡
var{r̂n(x|h, p)}dx ≤ 1

nh2

⌡
E{π2(X)K2(

x − X

h
)}dx,

≤ 1

nh
(supπ)2

⌡
K2dx,

= O{nh−1}. (19) 

So MSE can be written as 

. MSE{r̂n(x|h, p)} =
⌡

E{r̂n(x|h, p) − r}2dx,

= O{nh−1}.

We recall that 

(f) Under the assumption (e)–(1), .δn → 0 as .n → ∞, so that .n1/2δn → ∞ , and 
under assumption (e)–(2), .n1/2log(n)−C2/4C5δn → ∞, where . C2 and . C5 are 
defined in (e)–(2). 

Then under the assumption (e)–(1) and (f), we have that .n1/2δn → ∞ thus . n−1 =
o(δ2n). Consequently, there exists .h(n) ↓ 0 as .n → ∞ such that . (nh)−1 = O(δ2n),

for some large . n, .h < h0 since .0 ≤ h ≤ h0. Next, by replacing .O(δ2n) in the right-
hand side of (19), we have a new form of (19) which is true for specific choice of . π

defined at (17), and considering .θ̃ = (h, p) in the case of (8): 

. lim
C→∞ lim sup

n→∞
P {||r̂n(.|θ̃ ) − r|| ≥ Cδn} = 0. (20)
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For this version of .pi = n−1π(Xi), .
Σ

i pi = 1 does not satisfy. However, this issue 
can be fixed by normalisation similar to that done in the first paragraph of the proof. 

Property (20) implies part . I of Theorem 3 and part . II can be concluded under 
uniformity of (20) over . C. 

Under assumption (e)–(2) and (A.4), .|rg(2j)(x)/rf | ≤ C1(1 + |x|)C2 for . 1 ≤
j ≤ k, defining .C6 = max(|C1|, . . . , |Ck|), we have for . 0 ≤ h ≤ 1

. |π(X) − 1| = |
nΣ

j=1

Cj (−h2)j
rg(2j)

rf
|,

≤ C1C6K(1 + |x|)C2h2,

so, if .λ1n → ∞ and .λ
C2
1nh2 → 0, then 

. sup |π(X) − 1| → 0 (21) 

it means that whenever .|X| ≤ λ1n, .0 < π(X) < 1. 
In the first paragraph of the proof, we showed that .π(X) ≥ 0. Then we found an 

upper bound for .π(X) in (21) when .X ∈ [−λ1n, λ1n]. Now, we want to show that 
the probability of X being out of this interval is almost zero which means for all X, 
.0 < π(X) < 1. 

Assumption (e)–(2) implies that 

.P(|X| ≥ λ1n) ≤ C3exp(−C4λ
C5
1n ). (22) 

Using (f), .n−1/2(log n)C2/2C5δn → ∞, or equivalently, . δ2n = λ2nn
−1(log n)C2/2C5

→ ∞, where .λ2n exists. We choose h so that .(nh)−1 = O(δ2n); or for simplicity, 

.(nh−1) = δ2n, then .h = λ−1
2n (log n)−C2/2C5 ; let  .λ1n = {λ2−η

2n (log n)C5/C2}1/C2 , 
where .η ∈ (0, 2), so  

. exp(−C4λ
C5
1n ) = exp(−C4λ

(2−η)C5/C2
2n log n),

= O(n−C),

for all .C > 0. Therefore by (22), 

. P(|X| ≥ λ1n) = O(n−C),

for all .C > 0.
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R Codes 

This section provides the main R codes written for obtaining Tables 1, 2, and 3. 

# The true curve 
Trufunc <- function(x) x + 4 * exp(-2 * xˆ2) / sqrt(2 * pi) 

# Infinite order estimator 
kernelTrap <- function(x) ifelse(x == 0, 1.5 / pi, (cos(x) - cos(2 * x)) / (pi * xˆ2)) 
l <- function(x, h, X) kernelTrap((X - x) / h) / sum(kernelTrap((X - x) / h)) 
rn_Iorder <- function(x, h, X, Y) sum(l(x, h, X) * Y) 
rn_Iorder <- Vectorize(rn_Iorder, "x") 

# Nadaraya Watson estimator 
l_nw <- function(x, X, h) dnorm((X - x) / h) / length(X) / mean(dnorm((X - x) / h)) 
l_nw <- Vectorize(l_nw, "x") 
rn_nw <- function(x, Y, X, h) sum(l_nw(x, X, h) * Y) 
rn_nw <- Vectorize(rn_nw, "x") 

# Tilted Nadaraya Watson estimator 
l_Tnwp <- function(x, X, h, p) dnorm((X - x) / h) * p / mean(dnorm((X - x) / h)) 
l_Tnwp <- Vectorize(l_Tnwp, "x") 
rn_Tnwp <- function(x, Y, X, h, p) { 
Y1 <- sort(Y) 
X1 <- X[order(Y)] 
sum((l_Tnwp(x, X1, h, p)) * Y1) 

} 
rn_Tnwp <- Vectorize(rn_Tnwp, "x") 

MS_nw <- function(x, h, p, X, Y) (rn_Iorder(x, h_kt, X, Y) - (rn_Tnwp(x, Y, X, h, p)))ˆ2 
MS_nw <- Vectorize(MS_nw, "x") 

targetfunc_nw <- function(theta, X, Y) { 
Y1 <- sort(Y) 
X1 <- X[order(Y)] 
n <- length(Y) 
k <- length(theta) 
h <- theta[k] 
pk <- k / n - sum(theta[-k]) 
p <- rep(c(theta[-k], pk), each = n / k) 
integrate(MS_nw, a, b, h =  h, p =  p, X =  X1, Y =  Y1)$value 

} 

# Local Linear estimator 
s1 <- function(x, h, X) sum(dnorm((X - x) / h) * (X - x)) 
s2 <- function(x, h, X) sum(dnorm((X - x) / h) * (X - x)ˆ2) 
bl <- function(x, h, X) dnorm((X - x) / h) * (s2(x, h, X) - (X - x) * s1(x, h, X)) 
l_ll <- function(x, X, h) bl(x, h, X) / sum(bl(x, h, X)) 
rn_ll <- function(x, Y, X, h) sum(l_ll(x, X, h) * Y) 
rn_ll <- Vectorize(rn_ll, "x") 

# Tilted Local Linear estimator 
sp1 <- function(x, h, X, p) sum(p * dnorm((X - x) / h) * (X - x)) 
sp2 <- function(x, h, X, p) sum(p * dnorm((X - x) / h) * (X - x)ˆ2) 
bp <- function(x, h, X, p) { 
p * dnorm((X - x) / h) * (sp2(x, h, X, p) - (X - x) * 
sp1(x, h, X, p)) 

} 
l_Tllp <- function(x, X, h, p) bp(x, h, X, p) / sum(bp(x, h, X, p)) 
rn_Tllp <- function(x, Y, X, h, p) { 
Y1 <- sort(Y) 
X1 <- X[order(Y)] 
sum(l_Tllp(x, X1, h, p) * Y1) 

} 
rn_Tllp <- Vectorize(rn_Tllp, "x") 

MS_ll <- function(x, h, p, X, Y) (rn_Iorder(x, h_kt, X, Y) - rn_Tllp(x, Y, X, h, p))ˆ2 
MS_ll <- Vectorize(MS_ll, "x") 
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targetfunc_ll <- function(theta, X, Y) { 
n <- length(Y) 
k <- length(theta) 
h <- theta[k] 
pk <- k / n - sum(theta[-k]) 
p <- rep(c(theta[-k], pk), each = n / k) 
integrate(MS_ll, a, b, h =  h, p =  p, X =  X[order(Y)], Y =  sort(Y))$value 

} 

# Obtaining optimum values of pi's and bandwidths for tilted estimators 
tilting <- function(k, X, Y, h0, type = "nw") {  
n <- length(Y) 
ui <- rbind(diag(k), n / k * c(rep(-1, k - 1), 0)) 
ci <- c(rep(0, k), -1) 
tf <- if (type == "nw") targetfunc_nw else if (type == "ll") targetfunc_ll 
theta_opt <- as.double( 
try( 
constrOptim( 
c(rep(1 / n, k - 1), h0), 
tf, 
gr = NULL, ui = ui, ci = ci, Y =  Y, X =  X 

)$par, 
silent = T 

) 
) 
pk <- k / n - sum(theta_opt[-k]) 
p <- rep(c(theta_opt[-k], pk), each = n / k) 
return(p_opt = p, h_opt = theta_opt[k]) 

} 

# Computing integrated square errors (ISEs) for various estimators 

mainfunction <- function(X, Y, h_kt, h_nw, h_ll) { 
n <- length(Y) 
ISE_Iorder <- try( 
integrate(function(x) (Trufunc(x) - (rn_Iorder(x, h_kt, X, Y)))ˆ2, a, b)$value, 
silent = T 

) 
ISE_nw <- try( 
integrate(function(x) (Trufunc(x) - (rn_nw(x, Y, X, h_nw)))ˆ2, a,  b)$value, 
silent = T 

) 
ISE_ll <- try( 
integrate(function(x) (Trufunc(x) - (rn_ll(x, Y, X, h_ll)))ˆ2, a,  b)$value, 
silent = T 

) 
Tnwp4_tilted <- tilting(k =  4, X =  X, Y =  Y, h_nw, type = "nw") 
ISE_Tnwp4 <- try( 
integrate( 
function(x) (Trufunc(x) - rn_Tnwp(x, Y, X, Tnwp4_tilted$h_opt, Tnwp4_tilted$p_opt))ˆ2, 
a, b 

)$value, 
silent = T 

) 
Tnwp10_tilted <- tilting(k =  10, X =  X, Y =  Y, h_nw, type = "nw") 
ISE_Tnwp10 <- try( 
integrate( 
function(x) (Trufunc(x) - rn_Tnwp(x, Y, X, Tnwp10_tilted$h_opt, Tnwp10_tilted$p_opt))ˆ2, 
a, b 

)$value, 
silent = T 

) 
Tllp4_tilted <- tilting(k =  4, X =  X, Y =  Y, h_ll, type = "ll") 
ISE_Tllp4 <- try( 
integrate( 
function(x) (Trufunc(x) - rn_Tllp(x, Y, X, Tllp4_tilted$h_opt, Tllp4_tilted$p_opt))ˆ2, 
a, b 

)$value, 
silent = T 


