DRUG DELIVERY SYSTEMS USING OUANTUM COMPUTING

Edited By

Rishabha Malviya Sonali Sundram Dhanalekshmi Unnikrishnan Meenakshi

Drug Delivery Systems Using Quantum Computing

Scrivener Publishing

100 Cummings Center, Suite 541J Beverly, MA 01915-6106

Publishers at Scrivener Martin Scrivener (martin@scrivenerpublishing.com) Phillip Carmical (pcarmical@scrivenerpublishing.com)

Drug Delivery Systems Using Quantum Computing

Edited by

Rishabha Malviya

School of Medical and Allied Sciences, Galgotias University, India

Sonali Sundram

School of Medical and Allied Sciences, Galgotias University, India

and

Dhanalekshmi Unnikrishnan Meenakshi

College of Pharmacy, National University of Science and Technology, Muscat, Sultanate of Oman

This edition first published 2024 by John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA and Scrivener Publishing LLC, 100 Cummings Center, Suite 541J, Beverly, MA 01915, USA © 2024 Scrivener Publishing LLC

For more information about Scrivener publications please visit www.scrivenerpublishing.com.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, except as permitted by law. Advice on how to obtain permission to reuse material from this title is available at http://www.wiley.com/go/permissions.

Wiley Global Headquarters

111 River Street, Hoboken, NJ 07030, USA

For details of our global editorial offices, customer services, and more information about Wiley products visit us at www.wiley.com.

Limit of Liability/Disclaimer of Warranty

While the publisher and authors have used their best efforts in preparing this work, they make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives, written sales materials, or promotional statements for this work. The fact that an organization, website, or product is referred to in this work as a citation and/or potential source of further information does not mean that the publisher and authors endorse the information or services the organization, website, or product may provide or recommendations it may make. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for your situation. You should consult with a specialist where appropriate. Neither the publisher nor authors shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages. Further, readers should be aware that websites listed in this work may have changed or disappeared between when this work was written and when it is read.

Library of Congress Cataloging-in-Publication Data

ISBN 978-1-394-15914-7

Cover image: Pixabay.Com Cover design by Russell Richardson

Set in size of 11pt and Minion Pro by Manila Typesetting Company, Makati, Philippines

Printed in the USA

10 9 8 7 6 5 4 3 2 1

Dear healthcare professionals, We are dedicating this book to you. Our love for the profession shall live forever.

Contents

Forewor	:d		xxi
Preface			xxiii
Acknow	ledgm	ents	xxv
1 Quat in D Dhan Arul 1.1 1.2	ntum (rug Di naleksh Praka Introd Algori 1.2.1 1.2.2 1.2.3 1.2.4	Computational Concepts and Approaches scovery, Development and Delivery <i>mi Unnikrishnan Meenakshi, Suresh Manic Kesavan,</i> <i>sh Francis and Shah Alam Khan</i> luction ithms and QC in Pharma Algorithms Supervised Learning Unsupervised Learning Multi-Task Neural Networks	1 2 4 4 5 6
1.3	1.2.4 1.2.5 Potent 1.3.1 1.3.2 1.3.3 1.3.4 1.3.5	Graph Convolution tial of QC in Drug Discovery Target Recognition and Validation Production and Validation of Hits Lead Optimization Clinical Trials	6 6 8 8 8 8 8 9
1.4 1.5	QC ar QC in 1.5.1 1.5.2 1.5.3 1.5.4	and Drug Delivery Drug Delivery Modalities Computational Approach Towards Nano Particulate Drug Delivery Computational Approach for Bone Drug Delivery Computational Approach for Polymeric Drug Delivery Computational Approach for Microsphere Drug	9 12 14 14 15
		Delivery	15

		1.5.5	Computational Approach for Dendrimer-Based	
			Drug Delivery	16
		1.5.6	Computational Approach for Carbon	
			Nanotube-Based Drug Delivery	17
	1.6	QC A	pplications in Pharma Industry	18
	1.7	Chall	enges or Prospects	20
	1.8	Conc	lusion	21
		Refer	ences	21
2	Qua	antum-	Enabled Drug Discovery Process	27
	Abh	ishek I	Rao, Deepika Kumari, Satyendra Singh,	
	Ket	an Kun	nar and Vijay Kumar Prajapati	
	2.1	Intro	duction	28
	2.2	Usual	Challenges in Drug Designing and Discovery	29
		2.2.1	Commercial Challenge	31
		2.2.2	Modification or Transitional Challenges	31
		2.2.3	Unexplored Areas Under Classical Computational	
			Techniques	32
	2.3	Medi	cinal Chemistry Through Quantum Mechanics	32
		2.3.1	Underappreciation of Chemical Interactions	
			in Protein–Ligand Complexes	33
		2.3.2	Non-Classical Hydrogen Bonding	33
		2.3.3	$\pi - \pi$ Stacking	34
		2.3.4	Hydrophobic Bond Interactions	34
		2.3.5	Coordination from Water	35
		2.3.6	Explicit Water	35
		2.3.7	Implicit Water	35
	2.4	Intera	action Analysis	36
		2.4.1	Fragment Interaction Energy	36
		2.4.2	Binding Free Energy	36
		2.4.3	Fragment Molecular Orbital (FMO) Process	
			and Analysis	37
	2.5	Geon	netric Optimization	39
		2.5.1	Analyzing Gradients	39
	2.6	GAM	ESS: A Computational Technique for Biochemical	
		Simu	lations	40
		2.6.1	Introduction to Biochemical Simulations	40
		2.6.2	Parametrizing Quantum Mechanics Method	
			for Simulations	41
		2.6.3	Quantum Mechanics and Molecular Mechanics	
			Associated with GAMESS	41

		2.6.4	Introduction to QuanPol	44
		2.6.5	QuanPol: Covalent Boundary Treatment	45
		2.6.6	GO and Harmonic Vibration Frequency	46
		2.6.7	Molecular Dynamics Simulation	46
		2.6.8	Free Energy Perturbation (Deviation of Energy)	
			Simulation	46
			2.6.8.1 QuanPol Process Umbrella Sampling	47
			2.6.8.2 QuanPol Process Thermodynamic	
			Integration (TI)	47
		2.6.9	Setting Up Valuation and Calculation	48
		2.6.10) Molecular Modeling and Visualization Software	48
	2.7	Conc	lusion	51
		Refer	ences	52
3	Qua	antum	Computing and Its Promise in Drug Discovery	57
	Rak	hi Misi	hra, Prem Shankar Mishra, Rupa Mazumder,	
	Avij	iit Maz	umder and Shruti Varshney	
	3.1	Intro	duction	58
		3.1.1	Need for Quantum Computing	60
	3.2	Quan	tum Computing's Types, Applications, Generality,	
		and P	Power	61
		3.2.1	Quantum Annealer	61
		3.2.2	Analog Quantum	62
		3.2.3	Universal Quantum	63
	3.3	Drug	Discovery and Quantum Computing	64
		3.3.1	A Brief History of Drug Discovery	64
		3.3.2	Modern Drug Discovery	65
	3.4	Role	of Quantum Computing in Drug Discovery	65
	3.5	Quan	tum Computing Methodology in Drug Discovery	66
		3.5.1	Target Identification and Validation	67
		3.5.2	Hit Generation and Validation	68
		3.5.3	Lead Optimization	68
		3.5.4	Data Linkage and Generation	69
		3.5.5	Clinical Trials	69
		3.5.6	Molecular Formations	69
	3.6	Exam	ples of Companies Using Quantum Theory	
		to Ac	celerate Drug Discovery	71
		3.6.1	Aqemia	72
		3.6.2	Hatnium Labs	72
		3.6.3	Kuano	73

x Contents

		3.6.4	Menten	AI	73
		3.6.5	Pharma	celera	74
		3.6.6	PharmC	CADD	74
		3.6.7	Polaris (Quantum Biotech	75
		3.6.8	Protein	Qure	75
		3.6.9	Riverlar	ne	76
		3.6.10	Roivant	Discovery	76
		3.6.11	XtalPi		77
		3.6.12	Zapata	Computing	77
	3.7	Adva	ntages of	Quantum Computing	78
	3.8	Appli	cations of	f Quantum Computing in Drug Discovery	
		and I	Developm	ent	79
		3.8.1	A Futur	e View of QC and Drug Discovery	80
		3.8.2	Current	Developments in QC and Drug Discovery	80
	3.9	Conc	lusion		82
		Refer	ences		83
4	Exp	loring	Nano-Ba	sed Therapeutics by Quantum	
-	Cor	nputat	ional Mo	deling	93
	Pon	duri Te	ia Kuma	r. Roja Rani Budha. G. Raghavendra Kumar.	
	B . N	Jagama	, ini and G	S.N. Koteswara Rao	
	4.1	Intro	duction to	Nano-Based Therapeutics	94
	4.2	Intro	duction to	Quantum Computational Modeling	
		with]	Respect to	Nano-Based Therapeutics	99
		4.2.1	Particle	-Based Models	99
		4.2.2	Continu	ium-Based Models	103
	4.3	Explo	ration of	Nano-Based Therapeutics	105
	4.4	Desig	n and De	velopment of Nano-Based Therapeutics	109
		4.4.1	Predicti	on of Solubility	109
		4.4.2	Predicti	on of Permeability	110
		4.4.3	Selectio	n of Components and Optimization	
			of Form	ulation of Nano-Based Therapeutics	113
			4.4.3.1	Prediction of Therapeutic Loading	114
		4.4.4	Predicti	on of Therapeutic Release or Leakage	115
		4.4.5	Predicti	on of the Pharmacokinetic Profile	
			of Nano	-Based Therapeutics	116
			4.4.5.1	Prediction of Absorption	117
			4.4.5.2	Prediction of Distribution (Protein	
				Corona Formation)	117
			4.4.5.3	Prediction of Metabolism	119
			4.4.5.4	Prediction of Excretion	119

		4.4.6	Understanding Protein Corona Formation	120
		4.4.7	Understanding the Interaction of Nanosized	
			Carrying Objects with Bio-Membranes	122
		4.4.8	Prediction of the Pharmacodynamic Profile	
			of Nano-Based Therapeutics	123
		4.4.9	Prediction of Adverse Drug Reactions and	
			Nanotoxicity	124
		4.4.10	Design of Target-Oriented Nano-Based	
			Therapeutics	125
	4.5	Concl	usion	127
		Refere	ences	128
5	Арр	licatio	n of Quantum Computational Simulation	
	in D	rug De	elivery Strategies with Carbon Nanotubes	141
	Rup	ali Sha	rma, Yashomita Mehta, Shekhar Sharma,	
	Jagr	iti Nar	ang and Shabnam Thakur	
	5.1	Introc	luction	142
	5.2	Prope	rties of CNTs	144
		5.2.1	Electrical Properties of CNTs	144
		5.2.2	Elastro-Mechanical Properties of CNTs	145
		5.2.3	Thermal Properties of CNTs	145
		5.2.4	Optical Properties of CNTs	146
	5.3	Funct	ionalization of CNTs	146
		5.3.1	Covalent Functionalization	146
		5.3.2	Noncovalent Functionalization of CNTs	147
		5.3.3	Encapsulation Inside CNTs	148
		5.3.4	"Defect" Functionalization	148
	5.4	Signif	icance of CNT in Drug Delivery	149
	5.5	Overv	view of CNT-Based Drug Delivery	150
	5.6	Pharn	nacokinetics of CNTs	150
		5.6.1	Absorption	151
		5.6.2	Distribution	151
		5.6.3	Metabolism and Excretion	152
	5.7	Biosaf	iety of Carbon Nanotube	152
		5.7.1	Mechanism of CNT Toxicity	153
		5.7.2	Scenario to Bypass Carbon Nanotube Toxicity	153
	5.8	Quant	tum Computational	154
		5.8.1	Structure-Based Drug Design Methods (SBDD)	154
		5.8.2	Ligand-Based Drug Design Methods (LBDD)	155
	5.9	Variou	us Simulation Approaches in Drug-CNTs Interaction	156
		5.9.1	QM Approaches	157

			5.9.1.1 Ab Initio Approach	159
			5.9.1.2 Semiempirical Approach	159
			5.9.1.3 Hartree–Fock (HF) Approach	159
		5.9.2	Molecular Dynamics (MD) Approaches	159
		5.9.3	Monte Carlo (MC) Simulation Approaches	160
		5.9.4	Hybrid Approaches	160
			5.9.4.1 MD and QM Approaches	160
			5.9.4.2 MM and QM Approaches	161
	5.10	Applie	cations of Quantum Computational Methods	161
		5.10.1	Applications of Quantum Computational Methods	
			in DDS	161
		5.10.2	Applications of Quantum Computational Methods	
			in Nanobiosensors	165
	5.11	Concl	usion	165
		Refere	ences	166
6	Qua	ntum (Computation Approach for Nanotechnology-Based	
	Tar	geted D	Drug Delivery Systems	171
	Smr	, iti Ojh	a, Sudhanshu Mishra, Anubhav Anand,	
	Am	ita Šin	gh and Palak Gupta	
	6.1	Introc	luction	172
	6.2	The T	ypes of Quantum Computers	174
		6.2.1	Scalable Quantum Computers	174
		6.2.2	Noisy Intermediate-Scale Quantum Devices	174
		6.2.3	Analog Quantum Devices	175
	6.3	Role c	of QC in Computer-Aided Drug Design	175
	6.4	Devel	opment of Molecular Formulations	177
		6.4.1	QC-Based Development of Nanocarriers	178
		6.4.2	QC in Biosensor	181
		6.4.3	QC-Based Targeted Drug Delivery	182
		6.4.4	Target Identification	183
		6.4.5	Target Validation	185
		6.4.6	Identification of Hit and Its Validation	185
		6.4.7	Optimization of Lead	186
	6.5	Data (Generation, Interpretation, and Co-Relation	186
	6.6	Role c	of QC in Clinical Trials	187
	6.7	Future	e Prospects	187
	6.8	Concl	usion	187
		Refere	ences	188

7	Role Deli	e of Qu verv o	antum Computing Simula Liposomes	tions in Targeted Drug	195	
	Rub	pali Sharma, Suman Khurana, Arun Mittal,				
	Parv	veen K	ımar Goval. Kavita Sangw	an and Satish Sardana		
	7.1	Intro	luction		196	
	7.2	Lipos	omes		198	
	7.3	Lipos	ome Classification		199	
		7.3.1	Based on Preparation Met	hods	199	
		7.3.2	Based on Compositional a	nd Structural		
			Characteristics		199	
	7.4	Meth	ods of Liposome Preparatio	n	199	
	7.5	Drug	Loading Method		200	
		7.5.1	Passive Loading Technique	e	200	
			7.5.1.1 Sonication		200	
			7.5.1.2 French Pressure	Cell	201	
			7.5.1.3 Freeze-Thawed L	iposomes	201	
			7.5.1.4 Solvent Evaporat	ion with Ether Injection	201	
			7.5.1.5 Alcohol Infusion		201	
			7.5.1.6 Method of Revers	se Phase Evaporation	201	
			7.5.1.7 Removal of Non-	Encapsulated Material		
			with Detergent		202	
		7.5.2	Active Loading Technique		202	
			7.5.2.1 Pro-Liposome		202	
			7.5.2.2 Lyophilization		202	
	7.6	Newe	Approaches to Liposomes		202	
		7.6.1	Stealth Liposomes (Improv	ving Circulation Time)	203	
		7.6.2	Improving Elasticity (Tran	sterosomes)	204	
		7.6.3	Ethosomes (Improving Ski	in Penetration)	204	
		7.6.4	Pharmacosomes (Improve	ment in Medication	004	
			Delivery for Poorly Soluble	e Medicines)	204	
		7.6.5	Nebulized Liposomes and	Stimuli-Responsive	205	
		0	Liposomes		205	
	/./	Quan	tum Computing		205	
	7.8	Com	utational Modeling for Dru	ig Delivery Process	207	
	7.9	Corre	lation Between Quantum C	omputing Simulation	200	
	7 10		utational Simulation of Lin	iles	208	
	7.10	Com	utational Simulation of Lip	iu memoranes	210	
	/.11	7 11 1	Mechanical and Structural	Droperties	210 210	
		7 11 2	Dynamic Properties	riopernes	210 211	
		/.11.2	Dynamic Flopernes		211	

		7.11.	3 Molecule Permeation	211
	7.12	Lipo	somal Drug Delivery System	212
	7.13	Expe	erimental Techniques and Role of Computational	
		Simu	ilation in Liposomal Drug Delivery System	213
		7.13.	1 Lipids Membrane	214
		7.13.	2 Size, Surface Charge, and Zeta Potential	216
		7.13.	3 Morphology and Lamellarity	217
	7.14	Com	putational Simulation Study of Liposomes	217
	7.15	Con	clusion	220
		Refe	rences	221
8	Qua	ntum	Computational Methods and Computer-Aided	
	Dru	g Desi	gn in Transdermal Drug Delivery of Nanoparticles	231
	Jaha	sultan	a Mohammed, Haritha Lanka, Roja Rani Budha,	
	Raja	sekhai	r Reddy Alavala, G.S.N. Koteswara Rao	
	and	Surya	Kovvasu	
	8.1	Intro	luction	232
	8.2	Skin I	Lipid Membranes for TDD	234
	8.3	Comp	outer-Aided Drug Designing for Formulation	236
	8.4	Advai	itages of CADD	236
	8.5	Syster	n and Model	236
		8.5.1	Force Field	236
	0 6	8.5.2	Software Supporting MD and Visualization	238
	8.6	Comp	outational Components	238
	8.7	Proce	dure	238
		8.7.1	Framework for In Silico NP Design	238
		8.7.2	Integumentary Model	239
		8.7.3		240
	0.0	8./.4	Free Permeability Energy	240
	8.8 8.0	Testin	g, Co-Delivery of Actives, and Active Screening	241
	0.9	Cond		241
	0.10	Dofor		242
		Refere	inces	242
9	Con	nputati	onal Approaches for Drug Delivery	
	of N	anopa	rticles	247
	Urva	ishi Sh	arma, Hemant Khambete, Nitu Singh, Sanjay Jain,	
	Neel	am Jai	n and Kamal Dua	
	9.1	Drug	Delivery System	248
		9.1.1	Conventional vs. Controlled Drug Delivery Systems	249
		9.1.2	History of DDS Development	251
		9.1.3	Drug Delivery Routes	255

	9.2	Nano	Nanoparticles				
		9.2.1 Need for Developing NPs					
		9.2.2	Advantages	259			
		9.2.3	Classification of NPs	260			
	9.3	Probl	ems in Conventional Manufacturing of NPs	263			
	9.4	Comp	outational Drug Delivery	267			
		9.4.1	Computational Approach for Nanoparticulate				
			Drug Delivery	268			
		9.4.2	Computational Approach for Bone Drug Delivery	270			
		9.4.3	Computational Approach for Nasal Drug Delivery	270			
		9.4.4	Computational Approach for Polymeric Drug				
	Delivery						
		9.4.5	Computational Approach for Microsphere				
			Drug Delivery	271			
		9.4.6	Computational Approach for Liposomal				
			Drug Delivery	271			
		9.4.7	Computational Approach for Tumor Cord				
			Drug Delivery	271			
		9.4.8	Computational Approach for Gastroretentive				
			Drug Delivery	272			
		9.4.9	Computational Approach for Bioerodible	050			
	o =	П (Device-Based Drug Delivery	272			
	9.5	Futur	e Prospects	273			
	9.6	Conc	lusion	273			
	9.7	Ackno	owledgement	274			
	9.8	Fund	ing Information	274			
		Refere	ences	2/4			
10	Utili	ization	of Computational Methods for Rational				
	Dev	elopm	ent of Nanoemulsions, Polymeric Micelles,				
	and	Dendr	imers Drug Delivery Systems	283			
	Swa	rupanj	ali Padhi and Rupa Mazumder				
	10.1	Intro	oduction	284			
	10.2	Reco	ognizing Optimal Drug-Excipient Pairs	285			
	10.3	Eme	rging of Nano-Formulation Using Theoretic				
		Tech	inique	286			
		10.3	1 Theoretical Approach	286			
			10.3.1.1 Solubility Parameter	286			
			10.3.1.2 Assessment of Total SP	288			
			10.3.1.3 Flory-Huggins (FH) Theory	291			
	10.4	Influ	ence of Rigidity, Conformation, and Compatibility				
		on D	on Drug Loading				

	10.5	MD Simulations and Docking 29					
		10.5.1	10.5.1 Molecular Dynamics (MD) 2				
	10.6	Solubil	ity	299			
		10.6.1	Free Energy Perturbation Calculations	301			
		10.6.2	Widom Insertion Method	301			
	10.7	Screeni	ing	302			
		10.7.1	Carriers-Oriented Screening	302			
		10.7.2	Drugs-Oriented Screening	303			
		10.7.3	Interactions Imagining	304			
	10.8	Artifici	al Intelligence and Machine Learning	305			
	10.9	Partitic	on Coefficient	306			
		10.9.1	Prediction of Partition Coefficient Using				
			Density Functional Theory (DFT)	308			
		10.9.2	Prediction of Partition Coefficient Using				
			MD Simulations	309			
	10.10	Machir	ne Learning	312			
	10.11	Conclu	ision	316			
		Referer	nces	317			
11	Mole	cular Si	mulation: A Promising Tool for In Silico				
	Desig	n of Dr	ug Delivery Formulations	325			
	Prem	Shanka	r Mishra, Rakhi Mishra and Deepika Sharma				
	11.1	Introdu	action	326			
		11.1.1	Simulation of Molecular Dynamic	327			
		11.1.2	A Molecular Simulations Using a General System	328			
	11.2	Softwar	re Available for Performing MDs	330			
	11.3	Applica	ations of Molecular Simulation in Drug				
		Deliver	ry System	333			
		11.3.1	Lipid Bilayer Drug Diffusion and Penetration	333			
		11.3.2	Solubility of Drugs	334			
		11.3.3	Carrier-Drug Miscibility	334			
		11.3.4	Drug Crystallization	335			
		11.3.5	Drug Loading and Release	336			
	11.4	Molecu	ılar Dynamics Simulations for Nanomedical				
		Applica	ations	338			
	11.5	Molecu	ılar Dynamics Insight Examples	340			
		11.5.1	Bloodstream Behavior and Coronal Protective				
			Polymer	340			
		11.5.2	Controlled Release and Drug Loading	341			
	11.6	11.5.2 Conclu	Controlled Release and Drug Loading Ision	341 342			

12	12 Controlling the Drug Release Rate and Targeted Drug				
	Deliv	ery to th	ne Desired Site by Molecular Simulation	353	
	Deep	ika Bair	agee, Sunita Panchawat, Neelam Jain		
	and S	Sirisha P	Pingali		
		Abbrev	riations	354	
	12.1	Introdu	action	355	
		12.1.1	MC and MD Processes	357	
		12.1.2	Correlation of Continual Methods with		
			Molecular Simulation	358	
		12.1.3	Simulation Scheme	359	
		12.1.4	Comparison Between MC and MD Processes	361	
		12.1.5	Size and Boundary Conditions of the System	362	
		12.1.6	Coarse-Graining	363	
		12.1.7	Free Energy Calculation	364	
		12.1.8	Force Fields	365	
		12.1.9	Simulation Software	368	
	12.2	MD Sii	mulations: Existing Limits	368	
	12.3	2.3 MD Simulation and Drug Discovery		370	
	12.4	Applica	ations in Drug Discovery	371	
		12.4.1	Drug Diffusion and Lipid Bilayer Permeation	371	
		12.4.2	Drug Solubility	372	
		12.4.3	Carrier-Drug Miscibility	372	
		12.4.4	Drug Crystallization	373	
		12.4.5	Drug Loading and Release	373	
	12.5	Molecu	lar Simulation of Drug Delivery Strategies with		
		Dendri	mer	374	
	12.6	Molecu	lar Simulation of Drug Delivery Strategies		
		with Po	blymer	375	
	12.7	Liposo	me-Based Molecular Simulation of Drug		
		Deliver	y Strategies	377	
	12.8	Molecu	Ilar Simulation of Drug Delivery Strategies		
		with Ca	arbon Nanotube	379	
	12.9	Conclu	ision	381	
		Acknow	wledgment	383	
		Fundin	ıg	383	
		Referen	nces	383	

13	13 Molecular Docking: An Essential Step in Computer-Aided					
	Drug	, Design			389	
	Lata	Potey, St	uchita Wa	ghmare, Anshu Chaudhary Dudhe,		
	Rupe	sh Dudh	ie and Pra	fulla Sabale		
	13.1	Introdu	uction		390	
		13.1.1	Medicina	al Chemistry	390	
		13.1.2	Compute	er-Aided Drug Design (CADD) and		
			Molecula	ar Docking	391	
		13.1.3	History a	and Progression of CADD	392	
		13.1.4	Classifica	ation of CADD	393	
			13.1.4.1	Structure-Based Drug Design (SBDD)	393	
			13.1.4.2	Ligand-Based Drug Design (LBDD)	394	
		13.1.5	Applicati	on of CADD in Drug Discovery		
			and Dev	elopment	394	
		13.1.6	Stages of	Drug Discovery	395	
			13.1.6.1	Identification of Target	396	
			13.1.6.2	Target Validation	396	
			13.1.6.3	Identification of Lead	397	
			13.1.6.4	Lead Optimization	398	
			13.1.6.5	Product Characterization	399	
			13.1.6.6	Preclinical Testing	399	
			13.1.6.7	The Investigational New Drug (IND)		
				Process	400	
			13.1.6.8	Clinical Research	400	
	13.2	Conclu	ision		403	
		Referei	nces		404	
14	Chall	lenges a	nd Emerg	ing Problems in CADD	407	
	Aksh	ita Aror	a. Simrani	eet Kaur and Amandeet Singh		
	14.1	Introdu	uction	······································	408	
		14.1.1	The Anti	guity of CADD	408	
	14.2	Preaml	ble of CAL	DD	408	
		14.2.1	Structure	e-Based Drug Design	409	
		14.2.2	Protein S	Structure Preparation	409	
		14.2.3	Binding	Site Identification	409	
		14.2.4	Molecula	ar Docking	410	
		14.2.5	Scoring l	Functions	410	
	14.3	Ligand	-Based Dr	ug Design	410	
	14.4	Challer	nges		410	
		14.4.1	Challeng	es in CAD (Computer-Aided Design)	410	
		14.4.2	Geometr	у	411	

		14.4.2.1	Controlling Shape	411
		14.4.2.2	Interoperability	411
		14.4.2.3	Design Exploration	412
	14.4.3	Interactive Techniques		413
		14.4.3.1	Reverse Engineering	413
		14.4.3.2	Everything in Its Place	413
		14.4.3.3	What We Do	414
	14.4.4	Scale		415
		14.4.4.1	Understanding Vast Quantities of Data	415
		14.4.4.2	Suitable Layout for Users	415
		14.4.4.3	Retrieving Data Years Later	416
		14.4.4.4	Constricted by the Light Speed	416
14.5	Challenges in CADD (Computer-Aided Drug Design)			417
	14.5.1	Metal-Binding Docking		417
	14.5.2	Protein–Protein Docking		418
	14.5.3	3 Evaluation of Protein–Ligand Flexibility		
		and Interaction		418
	14.5.4	Protein–Ligand Docking		418
	14.5.5	Docking Peptides or Peptide-Like Ligands		420
	14.5.6	Water Solvation and Docking		420
	14.5.7	Covalent	Docking	421
		14.5.7.1	Bigger QM Regions	422
		14.5.7.2	Utilization of Polarizable Force Fields	
			and Polarized Embedding	422
		14.5.7.3	Improvements on the QM Level	423
	14.5.8	Pose vs. Scoring		423
	14.5.9	Chemical Space		424
	14.5.10 Biological Space			424
14.6	Future Prospects of CADD			425
	14.6.1	Molecular Dynamics Simulations		426
	14.6.2	Virtual Screening		427
	14.6.3	Density Functional Theory (DFT)		428
	14.6.4	Drug Design-Related Web Servers		429
	14.6.5	Big Data		431
	14.6.6 Quantum Mechanics (QM)			432
14.7	Recent	Patents in CADD		433
14.8	Conclusion			437
	Referen	nces		438
dan				442

Index

443

Foreword

The origin of this unique book started in a conversation I had with Rishabha about ten years ago. He had just started his career in research and wished to make a contribution to pharmacy professionals. I knew he was going to be a star in his field as he had all the qualities of a high-flyer. Every story and every achievement were a performance. Today, I am writing this Foreword for his dream project.

Identifying and developing small molecules and macromolecules that might help cure illnesses and diseases is the core activity of pharmaceutical companies. Given its focus on molecular formations, the pharmaceutical industry is a natural candidate for quantum computing. Today's trendiest issues in technology are all related to quantum computing. Thanks to technology, computing issues that were once thought to be insurmountable are now being solved by individuals and businesses. This technology has had a substantial impact on many different domains, including healthcare, the pharmaceutical industry, drug discovery, and many more.

The development of this emerging technology, both by itself and in concert with other technologies, has the potential to make a significantly positive impact on society. The impact of quantum computing on the pharmaceutical industry relies on the development, manufacture, and delivery of molecules. This book explains the profound impact that quantum computing could have on the pharmaceutical industry and presents user examples of its application. I hope after reading this book, healthcare professionals and pharmaceutical companies will be well-advised to assess the quantum computing opportunity for themselves and begin laying the groundwork for securing their place in this new competitive and technological landscape.

Dr. Kamla Pathak

Dean and Professor Faculty of Pharmacy Uttar Pradesh University of Medical Sciences Saifai, Etawah Uttar Pradesh, India

Preface

The majority of drug candidates have low solubility, rapid blood clearance, poor targeting, and, usually, poor ability to penetrate cell membranes. Some of these obstacles can be addressed by drug delivery systems (DDSs) that improve drug delivery to the site of action. Drug delivery technology is advancing significantly, and controlling the precise level and/or location of a given drug in the body reduces adverse effects, lowers dosages, and makes new therapies possible.

Nevertheless, there are still significant obstacles to delivering certain medications to particular cells. Drug delivery methods change pharmacokinetic, pharmacodynamic, and drug release patterns to enhance product efficacy and safety, as well as patient convenience and compliance. Computational approaches in drug development enable quick screening of a vast chemical library and identification of possible binders by using modeling, simulation, and visualization tools. Quantum computing (QC) is a fundamentally new computing paradigm based on quantum mechanics rules that enables certain computations to be conducted significantly more rapidly and effectively than regular computing, and hence this has huge promise for the pharmaceutical sector.

Significant advances in computational simulation are making it easier to comprehend the process of drug delivery. This book explores an important biophysical component of DDSs, and how computer modelling may help with the logical design of DDSs with enhanced and optimized characteristics. The book concentrates on computational research for various important types of nanocarriers, including dendrimers and dendrons, polymers, peptides, nucleic acids, lipids, carbon-based DDSs, and gold nanoparticles.

This new technology's advancement promises a significant and positive effect on society, both independently and in conjunction with existing technologies. With ethical research, development, and implementation, the trickle-down consequences of the quantum revolution should enhance the lives of many people. Understanding the effects that quantum computing could have on the pharmaceutical business is therefore crucial.

This book contains 14 chapters, written by top researchers from many parts of the world. The book is profusely referenced and copiously illustrated, and all chapters were deliberately reviewed and revised to meet the highest standard of publication. We are deeply grateful to everyone who helped with this book and greatly appreciate the dedicated support and valuable assistance rendered by Martin Scrivener and the Scrivener Publishing team during its publication.

> The Editors April 2024

Acknowledgments

Writing a book seemed difficult, but working on this had been a delightful experience. It was more rewarding and motivating than I had imagined. I would like to begin by expressing my gratitude to the Almighty, whose unending blessings and supreme power enable us to accomplish all our goals.

Although this period of my life was filled with many ups and downs, I am eternally grateful to my family for their continuous support and encouragement that made it possible to complete this task.

I am deeply indebted to the management at Galgotias University. I want to thank you all for letting me serve, for being a part of our amazing organization, and for motivating me every day.

Many thanks to all contributors. Without their participation, this goal could not have been achieved. Last but not least, I would like to thank our publisher for their support, innovative suggestions, and guidance in bringing out this edition.

Quantum Computational Concepts and Approaches in Drug Discovery, Development and Delivery

Dhanalekshmi Unnikrishnan Meenakshi^{1*}, Suresh Manic Kesavan², Arul Prakash Francis³ and Shah Alam Khan^{1†}

¹College of Pharmacy, National University of Science and Technology, Muscat, Oman ²College of Engineering, National University of Science and Technology, Muscat, Oman ³Centre of Molecular Medicine and Diagnostics (COMManD), Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India

Abstract

The use of quantum computing approaches in drug discovery, development, and delivery is on rise. Quantum computing (QC) is becoming more popular as a cost-saving measure in the research, production, and manufacturing of drugs. The use of molecular dynamics and computation tasks has greatly enhanced drug design and optimization of drug delivery systems. This QC method aids in investigating several issues that are difficult to examine in laboratory studies. This chapter discusses how QC simulations can assign a specific drug target site by anticipating the target, resulting in a successful drug development process. It also highlights the important applications of several algorithms in drug delivery and disease diagnosis. Additionally, computational methodologies for various drug delivery systems and carriers are discussed. This chapter also discusses ongoing challenges in the pharmaceutical industry and concerns regarding the chances of accomplishment of QC concepts and technology.

^{*}Corresponding author: dhanalekshmi@nu.edu.om

[†]Corresponding author: shahalam@nu.edu.om

Rishabha Malviya, Sonali Sundram and Dhanalekshmi Unnikrishnan Meenakshi (eds.) Drug Delivery Systems Using Quantum Computing, (1–26) © 2024 Scrivener Publishing LLC

2 Drug Delivery Systems Using Quantum Computing

Keywords: Drug discovery, drug delivery, quantum computing, simulations, optimization, molecular dynamics, algorithms

1.1 Introduction

Drug development and discovery to identify new chemical entities to treat or cure human diseases is a very long, complex, expensive, and tedious process that often fails [1]. Over the years, the scientific community has tried its best to decrease expenditure, speed up the process of drug development, and progress the accomplishment frequency of identifying drugs or molecules of natural or synthetic origin [2, 3]. In the late 20th century, the paradigm slowly shifted from Ethnopharmacology, a traditional discovery method from medicinal plants, to a computational chemistry-based technique called computer-aided drug design (CADD) to identify a lead molecule capable of binding to a target protein to exhibit favorable therapeutic effects and pharmacokinetic profile [4]. Discovery and optimization of lead molecules following the high-throughput screening (HTS) over hit libraries using a CADD approach can be done either by structured-based or ligand-based drug design [5]. While the latter is favored in the absence of target architectural data and uses a quantitative structure-activity relation (QSAR) model, the former approach is used when knowledge of the 3D structural information of the biological target is available for molecular docking (pharmacophore modeling). Although most of the drugs in the pipeline have been discovered using CADD, the higher computational cost to study the molecular dynamics of protein-ligand interactions and the reliability of the current statistical techniques available to study pharmacokinetic profile limits its usefulness [6-8]. The challenges and limitations of CADD could be overcome with the help of an emerging quantum computing (QC) technology that can handle and stimulate larger and more complex chemical structures more efficiently. QC application will certainly benefit the pharmaceutical industry from innovation in drug discovery to the manufacture and development of promising therapeutic modalities [8].

Constructing a new drug for a chronic illness in the medical context was mainly based on new pills. Various drugs for identifying energetic facets in conventional therapies like penicillin have recently been developed. In natural compounds, organic molecules that aid in medical purposes to discover ingredients such as cells or unbroken life forms are used in pharmaceutical manufacturing. This is known as traditional pharmacology. As the DNA sequence has enabled massive cloning techniques and improved protein refinement, HTS with various libraries has become