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Preface

Within the realms of biomedical research and technology, the implemen-
tation of nanoscience and nanotechnology is acquiring an ever-increasing 
amount of significance. The scope of this multidisciplinary scientific field 
includes studies of the nanoscale behavior of chemistry, physics, materials 
science and engineering, biology, and medicine. Fascinatingly, nanoscale 
dimensions with a high surface-to-volume ratio, simple surface modifi-
cation, improved physicochemical stability, specialized optical properties, 
and targeted and controlled release capabilities can result in lower toxicity 
and higher efficacy, making them more appropriate for efficient smart pre-
vention, diagnosis, and treatment. Further, nano-dimensional materials 
interact efficiently with biological functional molecules (such as proteins, 
nucleic acids, carbohydrates, lipids, and complexes) to answer numerous 
day-to-day difficulties that are related to a bio-medical theme. This is a 
significant advancement in the field. In addition, the impact that the nano-
material has on optical, photothermal, electrical, electronic, and magnetic 
parameters paves the way for the development of smart and intelligent 
technologies. These technologies are based on external stimuli to combat 
preventive, diagnostic, and therapeutic issues in a commendable manner. 
This can be achieved by combining the nanomaterial’s optical, photother-
mal, electrical, electronic, and magnetic parameters.

This book focuses on the fundamental features of various nanomateri-
als that are related to the development of biomedical technologies. These 
fundamental qualities are broken up into three parts: prevention, diagnos-
tics, and therapeutics. When it comes to infectious diseases, prevention 
is of utmost importance. Highly advanced nanomaterials including silver, 
titanium, graphene-based filters, and copper nanoparticles are used to 
fight infectious illnesses. Once the symptoms have been recognized in the 
patients, through the use of effective and straightforward nanodiagnostic 
techniques, the diseases can be accurately localized in either a qualitative 
or quantitative manner. Nanodiagnostics tools currently dominate the 
field of biomedical diagnostics because of their high degree of accuracy, 
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low requirement for samples and reagents, user-friendliness, portability, 
and capacity to perform point-of-care (POC) applications. Nanomaterials 
are widely used in imaging due to many factors, including: their signal 
generation and amplification abilities; the ongoing development of reliant 
new imaging techniques, such as photoacoustic imaging and Raman imag-
ing; their targeting potential, due to the possibility of functionalizing their 
surface with cancer-targeting moieties; their multimodality, since some 
nanomaterials can generate signals for more than one imaging technique); 
and their affordability.

The most notable area of focus in contemporary therapeutics is the 
investigation into numerous breakthroughs that have been made possible 
by applying nanotechnology in the treatment of site-specific cancers. In 
a similar vein, intelligent nanodrug delivery systems make it possible to 
improve medicine delivery at a particular point of care while simultane-
ously underrating the adverse effects that are associated with drugs and 
drug carriers. In the initial generation of nanocarriers, liposomes and 
straightforward polymers played important roles. Phospholipids are the 
building blocks of liposomes. Phospholipids have a hydrophobic tail and a 
polar head, and they can self-assemble into spheres with a diameter vary-
ing from tens to hundreds of nanometers. Liposomes are used to transport 
lipids throughout the body. Stealth liposomes are liposomes that have been 
functionalized with polyethylene glycol (PEG) to increase their half-life in 
circulation. Drugs that are either hydrophilic or hydrophobic can be deliv-
ered via liposomes. In most cases, the nanocarriers that are utilized in the 
process of drug delivery are functionalized by a PEG that has a molecular 
weight (MW) ranging anywhere from 1 to 40 kDa. This coating is use-
ful for nanocarriers because it decreases the nonspecific interactions that 
nanocarriers have with serum proteins. These interactions flag nanocarri-
ers for internalization by cells that are part of the reticuloendothelial sys-
tem (RES). They become less immunogenic as a result, and cells inside the 
RES absorb them less specifically. As a consequence, their phagocytosis is 
reduced, which in turn leads to a prolongation of the nanocarriers’ duration 
in circulation. PEG functionalization of nanocarriers can reduce the tox-
icity of the nanocarriers, as well as prevent them from clumping together. 
Examples of current nanocarriers include viruses, nanoparticles consist-
ing of gold, magnetic nanoparticles, quantum dots, titanium dioxide, zinc 
oxide, and silica, graphene, carbon nanotubes and fullerenes, and hybrids 
of materials (such as lipid-coated or polymer-coated nanoparticles).

This book presents the fundamentals of nanomaterials and discusses the 
direct applications of nanomaterials to the biomedical sector. In addition, 
it explores the potential therapeutic applications of nanotheranostics in the 
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far future. We are deeply grateful to everyone who helped with this book 
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Abstract
Nanoencapsulation protects biologically active compounds from deterioration 
due to system conditions such as oxidation, temperature, and pH changes, among 
other interactions that occur at the interface. Thus, biomedical applications of 
nanometric structures require the evaluation of a complex delivery system, in 
which the interactions that exist at the biomolecule–nanostructure interface, as 
well as their physicochemical properties, will determine the scope of the delivery 
system. A wide range of nanostructured materials exists. However, nanoencapsu-
lation of bioactive compounds is a novelty. One advantage of nanoencapsulation 
is that nanostructures can be coated with biomolecules such as lipids, proteins, 
and polysaccharides, resulting in reduced surface energy and providing biologi-
cal benefits to the organisms they interact with. It is essential to mention several 
challenges to implementing nanomaterials in biomedicine, among which toxicity 
and decreased efficacy stand out. These disadvantages occur mainly due to a lack 
of understanding of the interactions between nanomaterials and their biological 
environment. Currently, the use of nanomaterials is based primarily on the func-
tionality of biomolecules. While nanomaterials are often designed to take advan-
tage of the functionality of biomolecules, it is important to consider the potential 
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impact of biomolecule–nanomaterial binding. Failure to account for such binding 
could lead to changes in the structure of the biomolecule, resulting in an altered or 
lost biological function of the compound. Additionally, binding could cause neg-
ative interactions between the bionanomaterial and the biological environment. 
The purpose of this chapter is to show the benefits of nanomaterials in conjunction 
with biomolecules in providing biological activity to help address various appli-
cations in the field of biomedicine, which will help to provide better and timely 
control of human health; as well as to identify the physicochemical properties of 
nanomaterials, which allow us to figure out what kind of interactions are involved 
at the bio–nano interface, due to their influence on the pharmacokinetic system 
stability associated with some parameters, such as the payload, release, and deliv-
ery efficiency. In addition, the effect of the physicochemical properties of nanoma-
terials and other factors that influence the structure, composition, and function of 
nanomaterial–bioactive compound complexes will be addressed, leading to a bet-
ter understanding of the role of bioactive compound–nanomaterial interactions in 
controlling or predicting the biological fate of nanomaterials.

Keywords:  Nanoencapsulation, bio–nano interface, bioactive compounds, 
fluidized bed

1.1	 Physicochemical Properties of Nanoencapsulated 
Systems

Some physical and chemical aspects of nanoparticle carriers and encapsu-
lated drug molecules have a substantial impact on the basic attributes of 
nano-sized drug products, such as drug circulation, drug release from 
site-specific dosage forms, and absorption into bodily membranes. Particle 
size has a significant impact on the stability of nanoemulsion complex, it 
has been reported that decreasing particle diameter increases the bioavail-
ability of encapsulated compounds [1, 2]. Therefore, these are chief ele-
ments that correlate robustly concerning the stability of the encapsulated 
system. As a result, the particle characteristics are required to have an 
appropriate delivery system [3]. Smaller particle sizes provide a greater 
mass transfer area, leading to an improved drug diffusion rate. Conversely, 
the rate of drug dissipation within bigger particles is lower, as they offer a 
reduced mass transfer surface area. Smaller particles, on the other hand, 
tend to agglomerate when kept and moved [1]. The size of the particles can 
range from 10 nm (nanoemulsion) to 1 mm (hydrogel droplets). Colloidal 
reliable encapsulated particles are typically spherical. In contrast, distinct 
forms, among them cylinders, deformed spheres, or irregular shapes, have 
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been noticed, influencing changes in the properties of particles and the 
interest compound delivery process [3]. The polydispersity of an enclosed 
system indirectly shows its aggregation status. Higher polydispersity 
implies the existence of aggregates, and this can cause destabilization and 
breakage in emulsion-based encapsulating systems. When the polydisper-
sity of an encapsulating system is lower than 0.2, it is said to be mono-
disperse; nevertheless, polydispersity under the value of 0.5 is also regarded 
for pharmaceutical applications [3]. Droplet size is a relevant characteristic 
of emulsions because it promotes emulsion stability as droplet size and 
polydispersity decrease. The simplest and most common technique for 
measuring particle size and polydispersity is dynamic light scattering 
(DLS) [3]. It measures the intensity fluctuation of dispersed light. This fluc-
tuation is the result of the interference of scattered light by individual par-
ticles just because of Brownian motion. The key advantages of DLS are its 
fast analytical speed, lack of calibration requirements, and excellent sensi-
tivity to submicrometer particles [1]. Generally, the scattering angle is set 
to 90 degrees in most DLS techniques. For a monodisperse sample, the 
particle size should not change upon increasing the light scattering angle. 
Due to the extent of scattering at different angles being affected by particle 
size, the intensity-averaged mean particle size varies for polydisperse sam-
ples [3]. Now, the external charge of captured materials corresponds 
strongly with their dispersion stability. The zeta potential is frequently 
employed to analyze the surface charges of encapsulated materials, demon-
strating the dominance of electrostatic forces indirectly [3]. In this connec-
tion, the use of the zeta potential makes it possible to visualize in 
encapsulations the influence of the charge of active molecules on the sur-
face properties of the packing material. These enable the investigation of 
the stability of encapsulated materials besides the study of the electrostatic 
forces that occur between the active molecules and the encapsulating 
material. Colloidal stability is usually analyzed from the zeta potential of a 
nanoparticle. These measurements are performed with a zeta potential 
analyzer or zeta meter and allow prediction of the storage stability of vari-
ous colloidal dispersions. To ensure stability and avoid particle aggrega-
tion, absolute zeta potential levels must be high, either positive or negative. 
The zeta potential measurements can be used to estimate the degree of 
surface hydrophobicity. The zeta (ζ) potential may provide additional 
details about the material enclosed in nanocapsules or coated on their sur-
face [1]. A study on encapsulation used spray drying as a technique to 
obtain vitamin E-loaded nanocapsules using modified starches such as 
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octenyl succinic anhydride (OSA), with two purposes as emulsifier and 
barrier material. The ζ-potential, size distributions, mean particle size, and 
polydispersity index (PDI) of the initial and reconstituted nanoemulsions 
were measured via DLS [1]. The mean particle diameters ranged from 208 
to 235 nm. Although the mean hydrodynamic diameters were quite differ-
ent, the PDI and ζ-potential values were similar. Furthermore, the recon-
stituted nanoemulsions retained their original trim monomodal 
distribution with a modest increase in mean particle sizes, according to the 
authors. It is noteworthy that the reconstituted emulsions kept their 
polydispersity values (PDI < 0.250) and particle sizes (< 250 nm) indicat-
ing that the spray-drying technique had no effect on the nanoemulsions’ 
properties [2]. As a result, the authors reported that OSA-modified starches 
with low molecular weight are efficacious in producing steady vitamin E 
nanocapsules for usage in pharmaceutical and food applications [2]. In 
another study, the authors evaluated the liberation of bioactive compounds 
with antioxidant and antihypertensive ability from packed extracts of 
Gulupa and Cholupa peel and seeds in an in vitro gastrointestinal model to 
simulate the process of digestion [4]. The encapsulates were constructed 
using wall material rice starch enzymatically modified. Characterization of 
the encapsulates revealed a range of electrical potential values between 
−6.34 and −6.66 mV. In addition, the DLS method determines the disper-
sion stability and disclosure PDI measurements from 1.33 to 1.51. The 
authors mentioned that the increment in the surface charge is due to the 
phenolic compounds on the particles. They observed that the wrapped 
extracts had an electronegative charge ζ-potential. As a result, the micro-
capsules showed high stability, so the encapsulates have an enormous 
amount of opportunities in the fields of food and medicine [4]. Advanced 
microscopic techniques such as scanning electron microscopy (SEM), 
transmission electron microscopy (TEM), and atomic force microscopy 
(AFM) are used to determine the general properties of nanoparticles such 
as size, shape, and surface charge. Physical stability and in vivo distribution 
of nanoparticles are important qualities that are heavily influenced by aver-
age particle diameter, size distribution, and surface charge. The geometric 
shape of polymeric nanoparticles is determined using electron microscopy 
techniques, which is an essential consideration that influences their toxic-
ity. The physical stability, dispersion dispersibility, and in vivo performance 
of nanoparticle drug delivery systems are all determined by their surface 
charge capability [1, 5]. SEM gives information about a sample’s exterior 
shape, chemical composition, and crystalline structure through direct 
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visualization by the incident effect of the beam electron. Despite the bene-
fits of morphology and size analyses, SEM provides only a limited amount 
of information on the particle size distribution and pores [1]. Most electri-
cally insulating samples have a tiny layer of conductive substance on them, 
such as gold, carbon, other metals, or alloys. Usually, the most common 
conductive coating used for elemental analysis is carbon, although metallic 
overlays are more useful for high-resolution electronic imaging applica-
tions. With respect TEM operation principle, it is distinct from SEM, even 
though the type of results obtained are similar. The procedure for TEM 
samples is elaborate and takes considerable time. Surface features of the 
sample are obtained when an electron beam is incising on a thin slide of 
the sample, and the electrons interacting are transmitted through it [1, 5]. 
Finally, AFM offers some advantages compared to electron microscopy 
(TEM and SEM); it is based on the calculation force between the material 
surface and the probing tip. The approach is characterized by simple and 
easy sample preparation, quick picture capture, and appropriate finest res-
olution [1]. The analyzed particles need to be immobilized as a first step 
before viewing, in the case of larger particles is easy to get it due to their 
sedimentation rate. However, in small particles, the immobilization pro-
cess faces troubles given to their Brownian motion. In this vein, sample 
dehydration can solved the troubleshooting, but at the same time, it may 
originate in cluster formation, lipid crystallization, shrinkage, and other 
unwanted changes. The main profit of AFM is its proficiency to image 
non-conductive samples without any specific covering treatment, which 
allows envisaging of careful biological and polymeric nano- and micro-
structures [1]. In one of the studies mentioned above [4], along with their 
characterization of encapsulates of Gulupa and Cholupa husk and seed 
extracts using modified rice starch as wall material, the authors employed 
SEM as part of the morphological characterization by obtaining images 
applied to an accelerating voltage of 12.5 kV and different magnification 
powers. They reported that the micrographs showed small sizes of 2 to 
7 µm with a polyhedral arrangement and irregular shapes [4]. Moreover, it 
showed a broad range of particle aggregation, swelling, and solid heteroge-
neity appearance. In addition, some lack of sharpness was observed, with 
some granules showing barely rough surfaces. These characteristics could 
be attributed to the frequency of shrinkage due to water diffusion taking 
more, allowing the structures to shrink and deform to some extent. 
Therefore, these surface characteristics may be beneficial for improving the 
rehydration of powders [4].
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Zhu et al., evaluated nanoparticles (NPs) produced with xanthan gum 
and lysozyme, which contained two different peptides: TSeMMM (STP) 
and SeMDPGQQ (SHP), both containing selenium. TEM was used to 
notice the nanostructure of each sample. The images of the NPs were 
acquired at 15k magnifying power and 100 kV accelerating voltage. The 
NPs were observed to have a spherical morphology with a relatively con-
stant state. NPs sizes were 153 nm somewhat greater than that of NPs-
STP (145 nm) and NPs-SHP (148 nm). However, an important feature 
the authors comment on between TEM and DLS is that the particle size 
(hydrodynamic diameter in DLS) of NPs, NPs-STP, and NPs-SHP mea-
sured by TEM was lower diameter values than that measured by DLS 
analysis. This is due to sample conditioning in the course of TEM anal-
ysis, inasmuch as NPs, NPs-STP, and NPs-SHP are in lyophilized pow-
der form measured, while by DLS average particle sizes measurements of 
NPs, NPs-STP, and NPs-SHP were in solution [6]. Meanwhile, in another 
study, Luo et al., used ultrasound treatment to encapsulate within zein and 
gum Arabic (GA) the peptide TSeMMM (T) with selenium (zein@T/GA), 
which has immunomodulatory functions, that they obtained from seleni-
um-enriched rice protein hydrolysates [7]. They studied the structural and 
morphology characteristics of three nanoparticle formulations: zein, zein, 
and gum Arabian (zein/GA); and the last was zein with gum Arabian and 
the peptide TSeMMM (zein@T/GA). SEM and AFM were used to deter-
mine micromorphological features. To this purpose, zein, zein/GA, and 
zein@T/GA nanoparticles were examined at 1 mg/mL concentration. The 
SEM results showed a smooth surface in zein nanoparticles with a majority 
of spherical shapes and a size distribution particle of 119 nm. Nevertheless, 
by SEM analysis were noticed aggregation and adherent of NPs. Thus, it 
was not possible to determine the size distribution. Therefore, informa-
tion was complemented with the AFM technique. Determining, through 
3D and 2D morphology images analysis the average nanoparticle size 
for zein/GA (90.9 nm) and zein@T/GA (43.7 nm). Moreover, the AFM 
results suggested that zein@T/GA NPs were smaller and showed less 
aggregation because the ultrasonic treatment generated changes in the zein 
structure. Which in turn resulted in the reduction of the nanoparticle size 
and improved stability of NPs in the system by the gum Arabian capacity 
to bind to zein via electrostatic interactions to generate more stable NPs. In 
this sense, the emphasis is on the stable and homogeneous system obtained 
via ultrasonic process to increase the interactions between the NPs com-
ponents. The forces that influenced the zein@T/GA NPs formation were 
dipole-dipole attraction (hydrogen bond), electrostatic repulsion, and 
hydrophobic interactions. On the other hand, the encapsulation efficiency 


