NANOSCIENCE AND NANOTECHNOLOGY FOR SMART PREVENTION, **DIAGNOSTICS AND** THERAPEUTICS Fundamentals to Application

Edited by Sathish-Kumar Kamaraj, Arun Thirumurugan, Muthuchamy Maruthupandy, Mercedes Guadalupe López Pérez and Shanmuga Sundar Dhanabalan

Nanoscience and Nanotechnology for Smart Prevention, Diagnostics and Therapeutics

Scrivener Publishing

100 Cummings Center, Suite 541J Beverly, MA 01915-6106

Publishers at Scrivener Martin Scrivener (martin@scrivenerpublishing.com) Phillip Carmical (pcarmical@scrivenerpublishing.com)

Nanoscience and Nanotechnology for Smart Prevention, Diagnostics and Therapeutics

Fundamentals to Applications

Edited by Sathish-Kumar Kamaraj

Instituto Politécnico Nacional (IPN)-Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada (CICATA-Altamira), Mexico

Arun Thirumurugan

University of ATACAMA, Vallenar, Chile

Muthuchamy Maruthupandy

Department of Health Sciences, Dong-A University, Busan, South Korea

Mercedes Guadalupe López Pérez

Department of Biotechnology and Biochemistry, Centro de Investigación y de Estudios Avanzados del IPN - CINVESTAV, Guanajuato, Mexico

and

Shanmuga Sundar Dhanabalan

School of Engineering, RMIT University, Australia

This edition first published 2024 by John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA and Scrivener Publishing LLC, 100 Cummings Center, Suite 541J, Beverly, MA 01915, USA © 2024 Scrivener Publishing LLC

For more information about Scrivener publications please visit www.scrivenerpublishing.com.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, except as permitted by law. Advice on how to obtain permission to reuse material from this title is available at http://www.wiley.com/go/permissions.

Wiley Global Headquarters

111 River Street, Hoboken, NJ 07030, USA

For details of our global editorial offices, customer services, and more information about Wiley products visit us at www.wiley.com.

Limit of Liability/Disclaimer of Warranty

While the publisher and authors have used their best efforts in preparing this work, they make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives, written sales materials, or promotional statements for this work. The fact that an organization, website, or product is referred to in this work as a citation and/or potential source of further information does not mean that the publisher and authors endorse the information or services the organization, website, or product may provide or recommendations it may make. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for your situation. You should consult with a specialist where appropriate. Neither the publisher nor authors shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages. Further, readers should be aware that websites listed in this work may have changed or disappeared between when this work was written and when it is read.

Library of Congress Cataloging-in-Publication Data

ISBN 978-1-394-17457-7

Cover image: Pixabay.Com Cover design by Russell Richardson

Set in size of 11pt and Minion Pro by Manila Typesetting Company, Makati, Philippines

Printed in the USA

10 9 8 7 6 5 4 3 2 1

Contents

Pr	eface		xvii			
Ac	knov	vledgements	xxi			
1	1 Bio–Nano Interface Technology for Biomedical Applications Ana Luisa Gómez-Gómez, Deyanira del Rosario Moguel-Concha, José Eduardo Borges-Martínez, Alma Leticia Martínez-Ayala and Gloria Dávila-Ortiz					
	1.1 1.2	Physicochemical Properties of Nanoencapsulated Systems Nanoencapsulation of Bioactive Compounds by Fluidized	2			
	Bed Drying					
		1.2.1 Fluidized via Bed Drying	12			
	1.3 Protein and Peptide Nanoencapsulation in Biomedical					
		Applications	14			
		References	18			
2	Sma	art Nanomaterials for Antiseptic Application	23			
	Srib	harani Sekar, Jayaraman Pitchaimani and A. Tamilselvi				
	2.1	Introduction	24			
	2.2	Metallic Nanoparticles	24			
		2.2.1 Gold Nanoparticles	24			
		2.2.2 Silver Nanoparticles	27			
		2.2.2.1 Various Silver-Based Nanomaterials				
		for Antiseptic Application	28			
		2.2.3 Nonmetallic Nanomaterials as Antiseptic	30			
		2.2.4 Ionic Systems as Antiseptics	31			
	2.3	Mechanism of Antimicrobial Action	31			
		References	33			

vi Contents

3	Sur	face Pla	asmon-B	ased Diagnostic Technology	35
	Sop	an Nan	igare, Ma	hendra Mahajan and Pravin Patil	
	3.1	Intro	duction to	o Surface Plasmon-Based Diagnostic	
		Techr	nology	C C	36
		3.1.1	Concep	t of Surface Plasmon	36
		3.1.2	Types of	f SP-Based Diagnostic Technology	37
	3.2	Nano	materials	for the Design of Surface Plasmon-Based	
		Biose	nsor	C C	39
	3.3	Biotra	ansducers	in Surface Plasmon-Based Biosensor	41
		3.3.1	Immobi	lization Chemistry in SPR Biosensor	42
	3.4	Appli	cations of	f Surface Plasmon-Based Diagnostic	
		Techr	nology	C C	43
	3.5	Curre	ent Challe	enges and Prospects	53
	3.6	Conc	luding Re	emarks	54
		Confl	ict of Inte	erest	55
		Ackn	owledgm	ents	55
		Refer	ences		56
1	Nor	onroh	as for Ch	stathiona Investigation and Deal Time	
4	Inal	ioprob	es for Git	natione investigation and Keai-Time	61
	Qua		lve magi	ng and Vanthilanan Balaanhuamanian	01
	Jan	ani Arc	nana K. (ina Karinikeyan Balasubramanian	62
	4 1	Abbre	duations		62
	4.1	Clute	thiono	A Dotont Mostor Antioxidant	03 66
	4.2	Biasa	unione—	A Poleni, Master Antioxidant	60
	4.3	diose.		futatione Using a variety of Nanomaterials	67
		4.3.1	Fluores	aterials: A Game Changer in the Past Decade	67
		4.3.2	Fluores	cence-based biosensors for Glutathione	60
				Un donaton din a Elucanoscon co	60
			4.3.2.1	Eluoroscon co Sonoing Stratogy	60
			4.5.2.2	Turn Off and Turn On Songing	70
		122	4. <i>3</i> . <i>2</i> . <i>3</i>	Turn-On and Turn-On Sensing	70
		4.5.5	Gutlaal	ence imaging	/4
		4.3.4	Consing	and Imaging	75
				Crambana and Carban Quantum Data	/5
			4.3.4.1	Graphene and Carbon Quantum Dois-	75
			4242	Based Materials as Donors	75
			4.3.4.2	Matal Nanomatialas as Donors	7/
			4.5.4.3	Metal Nanoparticles as Donors	/8
			4.3.4.4	Ivicial-Organic Framework as Donors	81
			4.3.4.5	Transition Metal Dichalcogenide Materials	02
				as Donors	- 82

		4.3.4.6 Polymer Nanoparticles as Donors	83
		4.3.4.7 Upconversion Nanoparticles as Donors	86
	4.4	Conclusions	87
		References	88
5	Dia Ant Bio	gnosis of Physical Stimuli Response Enhances the i-Quorum Sensing Agents in Controlling Bacterial film Formation	91
	Gov	rindan Ramachandran, Balamurugan Palanisamy,	
	Gna	insekaran Chackaravarthy, Chenthis Kanisha Chelliah,	
	GOV	'inaan Kajivganani, Franck Quero Manoharan Natasan	
	5 1	Introduction	02
	5.1	5.1.1 Biofilm Formation and Quorum Sensing Mechanism	92
		5.1.2 Stimuli–Response Systems	94
	52	Types of Stimuli Response for Material Synthesis	96
	5.2	5.2.1 Physical Stimuli–Response	97
		5.2.1.1 Light Responsive Systems	97
		5.2.1.2 Photodynamic Therapy	98
		5.2.2 Chemodynamic Therapy	99
	5.3	Thermal Responsive Systems	100
		5.3.1 Photothermal Release	101
		5.3.2 Magnetothermal Release	102
	5.4	Ultrasound-Responsive Systems	104
	5.5	Magnet Responsive Systems	105
	5.6	Electrical Responsive Systems	107
	5.7	Conclusion	109
		References	110
6	Cur for	rent Advances in the Use of Functionalized Nanoparticles the Diagnosis and Treatment of Microbial Infections	
	in A	Aquaculture	117
	Kan	nnan Rangesh, Muthusamy Anand, Subbiah Padmapriya	
	and	Muthuchamy Maruthupandy	110
	6.1	Introduction	118
		6.1.1 Utilization and Processing of Fisheries	110
		and Aquaculture Production	119
	60	6.1.2 Aquaculture Biosecurity	121
	0.2	FISHER Y Disease Outbreaks	122
		6.2.2 The Lies of Antibiotics in Aquacultura	123
		0.2.2 The Use of Antibiotics III Aquaculture	124

7

	6.2.3	The Usage of Probiotics in Aquaculture	
		for Disease Control	125
	6.2.4	Administration Strategies of Probiotics	125
6.3	Nano	technology in Aquaculture	126
	6.3.1	Advantages of Nanotechnology in Aquaculture	126
	6.3.2	Seafood Processing Using Nanotechnology	127
	6.3.3	Cerium Oxide (CeO ₂) as Potential Nanoparticle	
		for Fish Disease	127
	6.3.4	Silver Nanoparticle for Fish Bacterial Disease	128
	6.3.5	Use of Gold Nanoparticles as Efficient Diagnosis	
		of Fish Disease	129
6.4	Immu	anomodulation and Immunostimulation	129
	6.4.1	Chitosan Nanoparticles for Immunomodulation	
		in Fish	130
	6.4.2	Chitosan Nanoparticle as Dietary Supplementation	130
	6.4.3	Selenium Nanoparticles for Immunomodulation	
		in Fish	131
	6.4.4	Nanoparticles for Infectious Fish Disease	132
	6.4.5	Nanomaterials as Efficient Diagnosis of White Spot	122
	616	Disease	132
	0.4.0	Vaccine Delivery for WSSV Control Using	122
65	Nano	nanoparticles	133
0.5	6 5 1	Nanoencansulation Improves Seafood Product	134
	652	Alginate-Encansulated Vaccine as Effective	150
	0.5.2	Oral Booster for Lactococcus Disease	136
6.6	Conc	lusion	137
	Ackn	owledgment	137
	Refer	ences	137
Nor	otochr	alogical Strategy for the Diagnosis of Infactions	
Die	Pases I	Recent Developments and Opportunities	143
Von	nila Th	irumalaiswamy C V Vaishali	145
Satl	hvavath	i Sundararaiu. Chockalinoam Muthiah Ramakritinan.	
Mu	neeswa	ran Thillaichidambaram and Franck Ouero	
7.1	Intro	duction	144
7.2	Optic	al Biosensors	145
7.3	Electr	cochemical Biosensors	146
7.4	Detec	tion of Viral Diseases	146
	7.4.1	Influenza Virus	150
	7.4.2	Chikungunya and Zika	153

		7.4.3	HIV/AI	DS	155
		7.4.4	Hepatiti	S	156
	7.5	Detec	tion of Ba	acterial Diseases	158
		7.5.1	Mycobac	cterium tuberculosis	158
		7.5.2	Salmone	lla Spp	161
		7.5.3	Clostridi	ium Spp	162
	7.6	Vecto	r-Borne I	Diseases	162
		7.6.1	Malaria		162
		7.6.2	Dengue		165
	7.7	Conc	lusion		166
		Ackn	owledgme	ent	167
		Refer	ences		167
8	Met	al Nan	oparticle	-Based Impedimetric Biosensors for	
	Rap	id Det	ection of 2	Bacterial Pathogen in Aquaculture	183
	Sub	biah Pa	admapriy	a, Muthusamy Anand, Kannan Rangesh	
	and	Muthi	ichamy M	laruthupandy	
	8.1	Intro	duction		184
		8.1.1	Sources	of Contaminants in Aquaculture	
			and Its I	mpacts	184
		8.1.2	The Mos	t Prevalent Categories of Potential Pathogens	185
		8.1.3	Convent	ional Bacterial Pathogen Detection	
		0.1.4	Techniq	ues and Their Limitations	186
		8.1.4	Nanotec	hnology Influenced Impedance Biosensor	107
	0 1	Mana	IOT Dete	ction of Aquatic Pathogens	18/
	8.2	Nano	particles Motol or	d Motel Oride Nenonentiales	100
		0.2.1	Influenc	e of Nanomaterials on Biosensor	190
		0.2.2	Derform		103
	83	Biose	nsor	ance	193
	0.5	831	Design a	and Principle	193
		8.3.2	Attribute	es of Biosensors	194
		8.3.3	Classific	ation of Biosensors	195
		8.3.4	Biorecer	otors or Biosensing Elements	196
		8.3.5	Bacteria	Detection Using Molecular	
			Recogni	tion Elements	196
			8.3.5.1	Enzyme Bioreceptor	196
			8.3.5.2	Cells as Bioreceptor	197
			8.3.5.3	Antibody Bioreceptor	197
			8.3.5.4	Nucleic Acid Biosensor	197
			8.3.5.5	Bacteriophage Bioreceptor	197
			8.3.5.6	Nanobiosensors Based on MIPs	198

x Contents

	8.4	Trans	ducer Component	199
		8.4.1	Electrochemical Transducers	199
		8.4.2	Optical Transducers	199
		8.4.3	Mass-Based Transducers	199
		8.4.4	Electrochemical Biosensor	200
	8.5	Mech	anisms for Impedance-Based Detection	
		of Mi	croorganisms	202
		8.5.1	Detection Based on Bacterial Metabolism	202
		8.5.2	Detection Reliant on the Insulating Attributes	
			of the Cell Membrane	203
		8.5.3	Ionic Cytoplasm Substance Release-Based Detection	203
	8.6	Metal	Nanoparticles Enabled Immunosensing	
		to Ide	entify Bacterial Pathogens	204
		8.6.1	Escherichia coli	205
		8.6.2	Vibrio cholera	205
		8.6.3	Bacillus cereus	205
		8.6.4	Staphylococcus aureus	206
		8.6.5	Clostridium perfringens	207
		8.6.6	Sulfate-Reducing Bacteria	208
		8.6.7	The Concurrent Detection of Several Pathogens	208
			8.6.7.1 Streptococcus pyogenes, Salmonella	
			typhimurium, and Pseudomonas aeruginosa	208
	8.7	Conc	lusion	210
		Ackno	owledgement	211
		Refer	ences	211
9	Pro	perties	and Applications of Dendrimers: A New Class	
	of P	olymei	rs	217
	Che	, nthis K	Kanisha Chelliah, Manavalan Murugan,	
	Vine	od S. Ur	ndal, Manish R. Ahir, Chackaravarthy Gnanasekaran,	
	Ran	nachan	dran Govindan, Rajivgandhi Govindan	
	and	Franch	k Quero	
	9.1	Intro	duction	218
	9.2	Archi	ves of Dendrimers	219
	9.3	Dend	rimers as Drug Delivery Vehicles	220
	9.4	Intera	actions Between Drug Molecules and Dendrimers	221
	9.5	Prope	erties of Dendrimers	221
	9.6	Facto	rs Affecting the Properties of Dendrimers	222
		9.6.1	Consequence of pH	223
		9.6.2	Effect of Solvent	223
		9.6.3	Effect of Salt	224

		9.6.4	Effect of Concentration	224
		9.6.5	Temperature	224
	9.7	Reason	ns Influencing Drug Solubilization and Release	225
	9.8	Curren	nt Marketing Status of Dendrimers	226
	9.9	Structu	are and Chemistry of Dendrimers	226
	9.10	Dendri	imers in Various Fields	229
		9.10.1	Dendrimers in Biomedical Field	229
		9.10.2	Magnetic Resonance Imaging Contrast Agents	
			of Dendrimers	230
	9.11	Dendri	imers in Antitumor Therapy	230
	9.12	Dendri	imers as Gene Transfer Reagents	230
	9.13	Drug I	Delivery of Dendrimers	231
	9.14	Targete	ed Drug Delivery of Dendrimers	231
	9.15	Transd	ermal Drug Delivery of Dendrimers	232
	9.16	Dendri	imers in Vaccine Development	232
	9.17	Applic	ation of Dendrimers	233
		9.17.1	Molecular Probes of Dendrimers	233
		9.17.2	X-Ray Contrast of Dendrimers	233
		9.17.3	Dendrimers as MRI Contrast Agents	233
		9.17.4	Dendrimers Used as a Boron Neutron	
			Capture Therapy	234
		9.17.5	Application of Dendrimers in Environment	234
	9.18	Noxiou	as Outline Concerning Dendrimers	234
	9.19	Dendri	imers and Transport System	235
	9.20	Conclu	ision	237
		Referen	nces	237
10	Micr	oneedle	of Drug Delivery Systems	243
	Foua	d Damii	ri, Hitendra M. Patel, Sagar Salave, Bharathi K.,	
	Naga	vendra	Kommineni, B.H. Jaswanth Gowda,	
	Kartl	hika Pau	ıl, Sanju Bala Dhull and Mohammed Berrada	
	10.1	Introdu	uction	244
	10.2	Mecha	nism of Drug Delivery	245
	10.3	Types a	and Fabrication of Microneedle	245
		10.3.1	Pulling Pipettes	249
		10.3.2	Droplet-Born Air Blowing Method	249
		10.3.3	Solvent Casting/Micromolding Method	250
		10.3.4	Atomized Spraying Method	251
		10.3.5	Laser Cutting	251
		10.3.6	Laser Ablation	252
	10.4	In Vitre	o and In Vivo Evaluation of Microneedles	252

	10.5	Patents	;		254
	10.6	Conclu	sion		256
		Referen	nces		256
11	Smar	t Nanoc	arriers in	Drug Delivery Systems	261
	Alfree	do Amai	ury Bautis	ta-Solano, Emilia Ramos-Zambrano,	
	Nadi	a Romer	o-Martíne	z, Alma Chu-Martínez	
	and A	Alma Lei	ticia Marti	ínez-Ayala	
	11.1	Introdu	uction		262
	11.2	Progree	ss in Mater	ials Chemistry and Drug Delivery	
		in Sma	rt Nanocar	riers	263
		11.2.1	Silica Na	noparticles	263
		11.2.2	Chitosan		263
		11.2.3	Metal-Ba	sed Nanoparticles	264
		11.2.4	Quantum	n Dots	264
		11.2.5	Liposom	es	264
		11.2.6	Micelles		265
		11.2.7	Dendrim	ers	265
	11.3	Physico	ochemical	Properties of Smart Nanocarriers	266
		11.3.1	Mechanie	cal Properties	267
		11.3.2	Thermal	Properties	267
		11.3.3	Magnetic	Properties	268
		11.3.4	Electroni	c and Optical Properties	270
	11.4	Stimuli	-Responsiv	ve Nanosystems in Smart Nanocarriers	271
		11.4.1	Exogenou	as Stimuli-Responsive Drug Delivery	272
			11.4.1.1	Heat-Sensitive Nanocarriers	272
			11.4.1.2	Light-Sensitive Nanocarriers	273
			11.4.1.3	Magnetism-Sensitive Nanocarriers	273
			11.4.1.4	Ultrasound-Sensitive Nanocarriers	273
		11.4.2	Endogen	ous Stimuli-Responsive Drug Delivery	274
			11.4.2.1	pH-Sensitive Nanocarriers	274
			11.4.2.2	Nanocarriers Sensitive to Redox	
				Reactions	274
			11.4.2.3	Enzyme-Sensitive Nanocarriers	275
		11.4.3	Multiple	Stimuli-Responsive Drug Delivery	275
	11.5	Clinica	l Status of	Stimuli-Responsive Nanocarriers	275
		11.5.1	Nanocari	riers in Clinical Cancer Care and Other	
			Diseases		278
			11.5.1.1	Nanocarriers in Cancer	278
			11.5.1.2	Nanocarriers in HIV/AIDS	279
			11.5.1.3	Nanocarriers in Tuberculosis	279

		11.5.1.4 Nanomedicines in Other Diseases	279
	11.6	The Role of Bioinformatics and In Silico Analysis	
		in the Design of Smart Nanocarriers	280
	11.7	Conclusions	281
		References	282
12	Recen	t Era of Smart Nanocarrier-Based Drug Delivery	
	System	m for Inhibition of Azole-Resistant Biofilm	
	Form	ing Candida albicans	287
	Rajiv	gandhi Govindan, Mohankumar Narayanan,	
	Franc	k Quero, Ramachandran Govindan,	
	Chacl	karavarthy Gnanasekaran, Balamurugan Palanisamy,	
	Chen	this Kanisha Chelliah and Manoharan Natesan	
	12.1	Introduction	288
	12.2	Role of Nanocarriers in Drug Delivery System	288
	12.3	Role of Nanomaterial-Based Nanocarriers	289
	12.4	Various Nanocarriers and Their Uses in Drug	
		Delivery System	290
		12.4.1 Liposomes	290
		12.4.2 Dendrimers	292
		12.4.3 Carbon Nanotubes	294
		12.4.4 Polymeric Nanomicelles	295
		12.4.5 Nanocapsules	297
		12.4.6 Metallic Nanoparticles	299
	12.5	Importance of Fungal Infections (C. albicans)	300
	12.6	Biofilm-Forming <i>C. albicans</i>	301
	12.7	Virulence Factors of <i>C. albicans</i> in Biofilm Formation	302
	12.8	Eradication of C. albicans	303
	12.9	Azole-Resistant C. albicans and Its Role in Biofilm	
		Formation	304
	12.10	Inhibition of Azole-Resistant Biofilm Forming <i>C. albicans</i>	305
	12.11	Conclusion	306
		Acknowledgement	307
		References	307
13	Role	of Polymer-Based Nanocarriers in Drug Delivery System	311
	Moha	nkumar Narayanan, Chackaravarthy Gnanasekaran,	
	Balar	nurugan P., Ramachandran Govindan,	
	Chen	this Kanisha Chelliah, Rajivgandhi Govindan	
	and M	1anoharan Natesan	
	13.1	Introduction	312
	13.2	Polymeric Nanocarriers	315

	13.3	Structu	es of Polymeric Na	nocarriers	317
		13.3.1	Polymeric Micelle	6	317
		13.3.2	Nanocapsules		319
		13.3.3	Polymersomes		321
		13.3.4	Dendrimers		322
		13.3.5	Polymeric Nanoge	ls	325
		13.3.6	Polymeric Nanosp	here and Nanocomposite	326
	13.4	Applica	tions of Polymeric	Nanoparticles in Cancer	
		Drug I	elivery		328
	13.5	Conclu	sion		333
		Acknow	ledgement		333
		Referen	ces		334
14	Curre	ent Tren	ls in Dissolvable N	ficroneedles: Transdermal	
	Appli	cations			339
	Moha	amed Sh	ik Tharik Abdul A	zeeze,	
	Sai E	swar Bo	dalakunta, Krati S	Shukla and Abhay Raizaday	
	14.1	Introdu	ction		340
	14.2	Types of	f MNs		341
	14.3	Biodeg	adable MNs		342
	14.4	Different Methods of Preparation for Dissolvable			
		Micror	eedles		344
		14.4.1	Fabrication of Diss	solving Microneedles	344
	14.5	Evaluation and Characterization of Dissolving			
		Micror	edles (DMNs)		346
		14.5.1	Morphological Ch	aracteristics of Microneedles	346
		14.5.2	Mechanical Chara	cteristics of MNs	346
			14.5.2.1 Axial M	echanical Strength Test	346
			14.5.2.2 Transver	rse Mechanical Strength Test	346
		14.5.3	Insertion Test		346
			14.5.3.1 Staining	of MNs	347
			14.5.3.2 Histolog	cical Tissue Staining/	
			Cryosec	tioning	347
			14.5.3.3 Confoca	l Microscopy	347
		14.5.4	In Situ Dissolution	of DMNs	347
	14.6	Applica	tions of Dissolvable	Microneedles	347
		14.6.1	Cosmetic Industry		348
		14.6.2	Skin Acne Infectio	n	348
		14.6.3	Cancer Application	ns	349
		14.6.4	Pain Reliever		349

		14.6.5	Diabetes Applications	349
		14.6.6	Mucosa Therapy	349
	14.7	Dissolv	able MNs Undergoing Clinical Trials: Therapeutic	
		Applica	ations	349
	14.8	Conclu	sion and Future Direction	351
		Conflic	t of Interest	351
		Fundin	g	351
		Acknow	vledgment	352
		Referen	nces	352
15	Adva	ntages o	f Synthesized Nanocarriers from Saltmarsh	
	Phyto	ochemic	als and Their Biological Applications	357
	Balar	nurugan	ı Palanisamy, Mohankumar Narayanan,	
	Rama	ichandro	an Govindhan, Chackaravarthi Gnanasekaran,	
	Rajiv	gandhi (Govindhan and Manoharan Natesan	
	15.1	Introdu	iction	358
	15.2	Saltmai	rsh	359
	15.3	Phytoc	hemicals and Their Role	360
	15.4	Nanoca	arriers	360
	15.5	Synthes	sis of Nanocarriers	361
	15.6	Types of	of Nanocarriers	362
		15.6.1	Polymeric Nanocarriers	362
		15.6.2	Liposomes	362
		15.6.3	Micelles	364
		15.6.4	Dendrimers	365
		15.6.5	Mesoporous Silica Nanoparticles	365
		15.6.6	Carbon Nanotubes	366
		15.6.7	Gold Nanoparticles (AuNPs)	366
		15.6.8	Superparamagnetic Iron Oxide Nanoparticles	367
		15.6.9	Quantum Dots	367
	15.7	Applica	ation of Phytochemical Nanocarriers	368
		15.7.1	Antimicrobial Activity	369
		15.7.2	Anticancer Activity	370
		15.7.3	Photocatalytic Activity	370
		15.7.4	Antioxidant	371
	15.8	Conclu	sion	372
		Acknow	vledgement	373
		Referen	nces	373
	-			

Preface

Within the realms of biomedical research and technology, the implementation of nanoscience and nanotechnology is acquiring an ever-increasing amount of significance. The scope of this multidisciplinary scientific field includes studies of the nanoscale behavior of chemistry, physics, materials science and engineering, biology, and medicine. Fascinatingly, nanoscale dimensions with a high surface-to-volume ratio, simple surface modification, improved physicochemical stability, specialized optical properties, and targeted and controlled release capabilities can result in lower toxicity and higher efficacy, making them more appropriate for efficient smart prevention, diagnosis, and treatment. Further, nano-dimensional materials interact efficiently with biological functional molecules (such as proteins, nucleic acids, carbohydrates, lipids, and complexes) to answer numerous day-to-day difficulties that are related to a bio-medical theme. This is a significant advancement in the field. In addition, the impact that the nanomaterial has on optical, photothermal, electrical, electronic, and magnetic parameters paves the way for the development of smart and intelligent technologies. These technologies are based on external stimuli to combat preventive, diagnostic, and therapeutic issues in a commendable manner. This can be achieved by combining the nanomaterial's optical, photothermal, electrical, electronic, and magnetic parameters.

This book focuses on the fundamental features of various nanomaterials that are related to the development of biomedical technologies. These fundamental qualities are broken up into three parts: prevention, diagnostics, and therapeutics. When it comes to infectious diseases, prevention is of utmost importance. Highly advanced nanomaterials including silver, titanium, graphene-based filters, and copper nanoparticles are used to fight infectious illnesses. Once the symptoms have been recognized in the patients, through the use of effective and straightforward nanodiagnostic techniques, the diseases can be accurately localized in either a qualitative or quantitative manner. Nanodiagnostics tools currently dominate the field of biomedical diagnostics because of their high degree of accuracy, low requirement for samples and reagents, user-friendliness, portability, and capacity to perform point-of-care (POC) applications. Nanomaterials are widely used in imaging due to many factors, including: their signal generation and amplification abilities; the ongoing development of reliant new imaging techniques, such as photoacoustic imaging and Raman imaging; their targeting potential, due to the possibility of functionalizing their surface with cancer-targeting moieties; their multimodality, since some nanomaterials can generate signals for more than one imaging technique); and their affordability.

The most notable area of focus in contemporary therapeutics is the investigation into numerous breakthroughs that have been made possible by applying nanotechnology in the treatment of site-specific cancers. In a similar vein, intelligent nanodrug delivery systems make it possible to improve medicine delivery at a particular point of care while simultaneously underrating the adverse effects that are associated with drugs and drug carriers. In the initial generation of nanocarriers, liposomes and straightforward polymers played important roles. Phospholipids are the building blocks of liposomes. Phospholipids have a hydrophobic tail and a polar head, and they can self-assemble into spheres with a diameter varying from tens to hundreds of nanometers. Liposomes are used to transport lipids throughout the body. Stealth liposomes are liposomes that have been functionalized with polyethylene glycol (PEG) to increase their half-life in circulation. Drugs that are either hydrophilic or hydrophobic can be delivered via liposomes. In most cases, the nanocarriers that are utilized in the process of drug delivery are functionalized by a PEG that has a molecular weight (MW) ranging anywhere from 1 to 40 kDa. This coating is useful for nanocarriers because it decreases the nonspecific interactions that nanocarriers have with serum proteins. These interactions flag nanocarriers for internalization by cells that are part of the reticuloendothelial system (RES). They become less immunogenic as a result, and cells inside the RES absorb them less specifically. As a consequence, their phagocytosis is reduced, which in turn leads to a prolongation of the nanocarriers' duration in circulation. PEG functionalization of nanocarriers can reduce the toxicity of the nanocarriers, as well as prevent them from clumping together. Examples of current nanocarriers include viruses, nanoparticles consisting of gold, magnetic nanoparticles, quantum dots, titanium dioxide, zinc oxide, and silica, graphene, carbon nanotubes and fullerenes, and hybrids of materials (such as lipid-coated or polymer-coated nanoparticles).

This book presents the fundamentals of nanomaterials and discusses the direct applications of nanomaterials to the biomedical sector. In addition, it explores the potential therapeutic applications of nanotheranostics in the

Preface xix

far future. We are deeply grateful to everyone who helped with this book and greatly appreciate the dedicated support and valuable assistance rendered by Martin Scrivener and the Scrivener Publishing team during its publication.

> Sathish-Kumar Kamaraj Arun Thirumurugan Muthuchamy Maruthupandy Mercedes Guadalupe López Pérez Shanmuga Sundar Dhanabalan

Acknowledgements

First, we want to thank God for blessing us with good health and the ability to edit this book. Our deepest gratitude goes to the series editor and advisory board for believing in our work and accepting our book for publication. Thanks to everyone who helped make this book a reality—the authors, the reviewers, and everyone in between. We are grateful to the many publishers and authors who permitted us to use their work, especially the figures and tables.

Sathish-Kumar Kamaraj would like to thank the director of the Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Altamira (CICATA Altamira) and the director general of the Instituto Politécnico Nacional (IPN) for their ongoing support and facilities that enable the research activities. I appreciate the work of Secretara de Investigación y Posgrado (SIP)-IPN on project SIP:20231443. Additional extensions have been granted to the Secretary of Public Education (SEP-Mexico) and the National Council of Humanities, Sciences, and Technologies (CONAHCyT-Mexico). He expresses his gratitude to Mrs. Mounika Kamaraj and Bbg Aarudhra for providing family assistance.

Arun Thirumurugan would like to express his gratitude to Dr. Justin Joseyphus (NIT-T, India), Prof. P.V Satyam (IOP, India), Dr. Ali Akbari-Fakhrabadi (FCFM, University of Chile, Chile), Prof. RV Mangala Raja (University of Adolfo Ibanez, Santiago, Chile) for their kindness and guidance. Arun Thirumurugan would like to thank Dr. R. Udaya Bhaskar and Mauricio J. Morel (University of ATACAMA, Chile), Carolina Venegas, Yerko Reyes, and Juan Campos, Sede Vallenar, University of ATACAMA, Chile for their support. Arun Thirumurugan acknowledges ANID for the financial support through SA 77210070.

Muthuchamy Maruthupandy would like to thank Dr. Anand (DMCS, Madurai Kamarai University, India), Prof. Ji-Ming Song (SCCE, Anhui University, P.R. China), Dr. Aravind Kumar Rengan (IIT-H, India), Dr. Franck Quero (FCFM, University of Chile, Chile), Prof. Wan-Seob Cho (LAMS, Dong-A University, South Korea) for their guidance and support. MM acknowledges the Brine Korea 21 (BK-21) and Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Science, ICT & Future Planning (NRF-2022R1I1A1A01069472) for financial support.

Mercedes Guadalupe López Pérez would like to thank each and every one of the students and postdoctoral fellows who have passed through my laboratory during the last three decades, without them, my scientific and academic life would not be the same. She also wants to thank her institution (CINVESTAV) and, in a very special way, the many Agave and Tequila companies, without their financial support, her entire career would be less rewarding. Finally, she would like to thank this group of co-authors, who have made possible the culmination of this project. Thank you for including her on this journey.

Shanmuga Sundar Dhanabalan would like to express his sincere thanks to Prof. Sivanantha Raja Avaninathan (Alagappa Chettiar Government College of Engineering and Technology, Karaikudi, Tamil Nadu, India), Prof. Marcos Flores-Carrasco (FCFM, University of Chile, Chile), Prof. Sharath Sriram, and Prof. Madhu Bhaskaran (Functional Materials and Microsystems, RMIT University, Australia) for their continuous support, guidance, and encouragement. He would like to extend his gratitude to Mrs Preethi Chidambaram and his family for support.

Bio-Nano Interface Technology for Biomedical Applications

Ana Luisa Gómez-Gómez¹, Deyanira del Rosario Moguel-Concha¹, José Eduardo Borges-Martínez¹, Alma Leticia Martínez-Ayala² and Gloria Dávila-Ortiz^{1*}

¹Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Av. Wilfrido Massieu S/N, Unidad Profesional Adolfo López Mateos, Zacatenco, Delegación Gustavo A. Madero, Ciudad de México, México ²Centro de Desarrollo de Productos Bióticos, Instituto Politécnico Nacional, Carretera Yautepec-Jojutla, Col. San Isidro, CEPROBI, Yautepec, Morelos, Mexico

Abstract

Nanoencapsulation protects biologically active compounds from deterioration due to system conditions such as oxidation, temperature, and pH changes, among other interactions that occur at the interface. Thus, biomedical applications of nanometric structures require the evaluation of a complex delivery system, in which the interactions that exist at the biomolecule-nanostructure interface, as well as their physicochemical properties, will determine the scope of the delivery system. A wide range of nanostructured materials exists. However, nanoencapsulation of bioactive compounds is a novelty. One advantage of nanoencapsulation is that nanostructures can be coated with biomolecules such as lipids, proteins, and polysaccharides, resulting in reduced surface energy and providing biological benefits to the organisms they interact with. It is essential to mention several challenges to implementing nanomaterials in biomedicine, among which toxicity and decreased efficacy stand out. These disadvantages occur mainly due to a lack of understanding of the interactions between nanomaterials and their biological environment. Currently, the use of nanomaterials is based primarily on the functionality of biomolecules. While nanomaterials are often designed to take advantage of the functionality of biomolecules, it is important to consider the potential

^{*}Corresponding author: gdavilao@yahoo.com

Sathish-Kumar Kamaraj, Arun Thirumurugan, Muthuchamy Maruthupandy, Mercedes Guadalupe López Pérez and Shanmuga Sundar Dhanabalan (eds.) Nanoscience and Nanotechnology for Smart Prevention, Diagnostics and Therapeutics: Fundamentals to Applications, (1–22) © 2024 Scrivener Publishing LLC

2 NANOTECH FOR HEALTH: SMART PREVENTION & DIAGNOSTICS

impact of biomolecule-nanomaterial binding. Failure to account for such binding could lead to changes in the structure of the biomolecule, resulting in an altered or lost biological function of the compound. Additionally, binding could cause negative interactions between the bionanomaterial and the biological environment. The purpose of this chapter is to show the benefits of nanomaterials in conjunction with biomolecules in providing biological activity to help address various applications in the field of biomedicine, which will help to provide better and timely control of human health; as well as to identify the physicochemical properties of nanomaterials, which allow us to figure out what kind of interactions are involved at the bio-nano interface, due to their influence on the pharmacokinetic system stability associated with some parameters, such as the payload, release, and delivery efficiency. In addition, the effect of the physicochemical properties of nanomaterials and other factors that influence the structure, composition, and function of nanomaterial-bioactive compound complexes will be addressed, leading to a better understanding of the role of bioactive compound-nanomaterial interactions in controlling or predicting the biological fate of nanomaterials.

Keywords: Nanoencapsulation, bio–nano interface, bioactive compounds, fluidized bed

1.1 Physicochemical Properties of Nanoencapsulated Systems

Some physical and chemical aspects of nanoparticle carriers and encapsulated drug molecules have a substantial impact on the basic attributes of nano-sized drug products, such as drug circulation, drug release from site-specific dosage forms, and absorption into bodily membranes. Particle size has a significant impact on the stability of nanoemulsion complex, it has been reported that decreasing particle diameter increases the bioavailability of encapsulated compounds [1, 2]. Therefore, these are chief elements that correlate robustly concerning the stability of the encapsulated system. As a result, the particle characteristics are required to have an appropriate delivery system [3]. Smaller particle sizes provide a greater mass transfer area, leading to an improved drug diffusion rate. Conversely, the rate of drug dissipation within bigger particles is lower, as they offer a reduced mass transfer surface area. Smaller particles, on the other hand, tend to agglomerate when kept and moved [1]. The size of the particles can range from 10 nm (nanoemulsion) to 1 mm (hydrogel droplets). Colloidal reliable encapsulated particles are typically spherical. In contrast, distinct forms, among them cylinders, deformed spheres, or irregular shapes, have been noticed, influencing changes in the properties of particles and the interest compound delivery process [3]. The polydispersity of an enclosed system indirectly shows its aggregation status. Higher polydispersity implies the existence of aggregates, and this can cause destabilization and breakage in emulsion-based encapsulating systems. When the polydispersity of an encapsulating system is lower than 0.2, it is said to be monodisperse; nevertheless, polydispersity under the value of 0.5 is also regarded for pharmaceutical applications [3]. Droplet size is a relevant characteristic of emulsions because it promotes emulsion stability as droplet size and polydispersity decrease. The simplest and most common technique for measuring particle size and polydispersity is dynamic light scattering (DLS) [3]. It measures the intensity fluctuation of dispersed light. This fluctuation is the result of the interference of scattered light by individual particles just because of Brownian motion. The key advantages of DLS are its fast analytical speed, lack of calibration requirements, and excellent sensitivity to submicrometer particles [1]. Generally, the scattering angle is set to 90 degrees in most DLS techniques. For a monodisperse sample, the particle size should not change upon increasing the light scattering angle. Due to the extent of scattering at different angles being affected by particle size, the intensity-averaged mean particle size varies for polydisperse samples [3]. Now, the external charge of captured materials corresponds strongly with their dispersion stability. The zeta potential is frequently employed to analyze the surface charges of encapsulated materials, demonstrating the dominance of electrostatic forces indirectly [3]. In this connection, the use of the zeta potential makes it possible to visualize in encapsulations the influence of the charge of active molecules on the surface properties of the packing material. These enable the investigation of the stability of encapsulated materials besides the study of the electrostatic forces that occur between the active molecules and the encapsulating material. Colloidal stability is usually analyzed from the zeta potential of a nanoparticle. These measurements are performed with a zeta potential analyzer or zeta meter and allow prediction of the storage stability of various colloidal dispersions. To ensure stability and avoid particle aggregation, absolute zeta potential levels must be high, either positive or negative. The zeta potential measurements can be used to estimate the degree of surface hydrophobicity. The zeta (ζ) potential may provide additional details about the material enclosed in nanocapsules or coated on their surface [1]. A study on encapsulation used spray drying as a technique to obtain vitamin E-loaded nanocapsules using modified starches such as

octenyl succinic anhydride (OSA), with two purposes as emulsifier and barrier material. The ζ-potential, size distributions, mean particle size, and polydispersity index (PDI) of the initial and reconstituted nanoemulsions were measured via DLS [1]. The mean particle diameters ranged from 208 to 235 nm. Although the mean hydrodynamic diameters were quite different, the PDI and ζ-potential values were similar. Furthermore, the reconstituted nanoemulsions retained their original trim monomodal distribution with a modest increase in mean particle sizes, according to the authors. It is noteworthy that the reconstituted emulsions kept their polydispersity values (PDI < 0.250) and particle sizes (< 250 nm) indicating that the spray-drying technique had no effect on the nanoemulsions' properties [2]. As a result, the authors reported that OSA-modified starches with low molecular weight are efficacious in producing steady vitamin E nanocapsules for usage in pharmaceutical and food applications [2]. In another study, the authors evaluated the liberation of bioactive compounds with antioxidant and antihypertensive ability from packed extracts of Gulupa and Cholupa peel and seeds in an *in vitro* gastrointestinal model to simulate the process of digestion [4]. The encapsulates were constructed using wall material rice starch enzymatically modified. Characterization of the encapsulates revealed a range of electrical potential values between -6.34 and -6.66 mV. In addition, the DLS method determines the dispersion stability and disclosure PDI measurements from 1.33 to 1.51. The authors mentioned that the increment in the surface charge is due to the phenolic compounds on the particles. They observed that the wrapped extracts had an electronegative charge ζ-potential. As a result, the microcapsules showed high stability, so the encapsulates have an enormous amount of opportunities in the fields of food and medicine [4]. Advanced microscopic techniques such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM) are used to determine the general properties of nanoparticles such as size, shape, and surface charge. Physical stability and in vivo distribution of nanoparticles are important qualities that are heavily influenced by average particle diameter, size distribution, and surface charge. The geometric shape of polymeric nanoparticles is determined using electron microscopy techniques, which is an essential consideration that influences their toxicity. The physical stability, dispersion dispersibility, and *in vivo* performance of nanoparticle drug delivery systems are all determined by their surface charge capability [1, 5]. SEM gives information about a sample's exterior shape, chemical composition, and crystalline structure through direct

visualization by the incident effect of the beam electron. Despite the benefits of morphology and size analyses, SEM provides only a limited amount of information on the particle size distribution and pores [1]. Most electrically insulating samples have a tiny layer of conductive substance on them, such as gold, carbon, other metals, or alloys. Usually, the most common conductive coating used for elemental analysis is carbon, although metallic overlays are more useful for high-resolution electronic imaging applications. With respect TEM operation principle, it is distinct from SEM, even though the type of results obtained are similar. The procedure for TEM samples is elaborate and takes considerable time. Surface features of the sample are obtained when an electron beam is incising on a thin slide of the sample, and the electrons interacting are transmitted through it [1, 5]. Finally, AFM offers some advantages compared to electron microscopy (TEM and SEM); it is based on the calculation force between the material surface and the probing tip. The approach is characterized by simple and easy sample preparation, quick picture capture, and appropriate finest resolution [1]. The analyzed particles need to be immobilized as a first step before viewing, in the case of larger particles is easy to get it due to their sedimentation rate. However, in small particles, the immobilization process faces troubles given to their Brownian motion. In this vein, sample dehydration can solved the troubleshooting, but at the same time, it may originate in cluster formation, lipid crystallization, shrinkage, and other unwanted changes. The main profit of AFM is its proficiency to image non-conductive samples without any specific covering treatment, which allows envisaging of careful biological and polymeric nano- and microstructures [1]. In one of the studies mentioned above [4], along with their characterization of encapsulates of Gulupa and Cholupa husk and seed extracts using modified rice starch as wall material, the authors employed SEM as part of the morphological characterization by obtaining images applied to an accelerating voltage of 12.5 kV and different magnification powers. They reported that the micrographs showed small sizes of 2 to 7 µm with a polyhedral arrangement and irregular shapes [4]. Moreover, it showed a broad range of particle aggregation, swelling, and solid heterogeneity appearance. In addition, some lack of sharpness was observed, with some granules showing barely rough surfaces. These characteristics could be attributed to the frequency of shrinkage due to water diffusion taking more, allowing the structures to shrink and deform to some extent. Therefore, these surface characteristics may be beneficial for improving the rehydration of powders [4].

6 NANOTECH FOR HEALTH: SMART PREVENTION & DIAGNOSTICS

Zhu et al., evaluated nanoparticles (NPs) produced with xanthan gum and lysozyme, which contained two different peptides: TSeMMM (STP) and SeMDPGQQ (SHP), both containing selenium. TEM was used to notice the nanostructure of each sample. The images of the NPs were acquired at 15k magnifying power and 100 kV accelerating voltage. The NPs were observed to have a spherical morphology with a relatively constant state. NPs sizes were 153 nm somewhat greater than that of NPs-STP (145 nm) and NPs-SHP (148 nm). However, an important feature the authors comment on between TEM and DLS is that the particle size (hydrodynamic diameter in DLS) of NPs, NPs-STP, and NPs-SHP measured by TEM was lower diameter values than that measured by DLS analysis. This is due to sample conditioning in the course of TEM analvsis, inasmuch as NPs, NPs-STP, and NPs-SHP are in lyophilized powder form measured, while by DLS average particle sizes measurements of NPs, NPs-STP, and NPs-SHP were in solution [6]. Meanwhile, in another study, Luo et al., used ultrasound treatment to encapsulate within zein and gum Arabic (GA) the peptide TSeMMM (T) with selenium (zein@T/GA), which has immunomodulatory functions, that they obtained from selenium-enriched rice protein hydrolysates [7]. They studied the structural and morphology characteristics of three nanoparticle formulations: zein, zein, and gum Arabian (zein/GA); and the last was zein with gum Arabian and the peptide TSeMMM (zein@T/GA). SEM and AFM were used to determine micromorphological features. To this purpose, zein, zein/GA, and zein@T/GA nanoparticles were examined at 1 mg/mL concentration. The SEM results showed a smooth surface in zein nanoparticles with a majority of spherical shapes and a size distribution particle of 119 nm. Nevertheless, by SEM analysis were noticed aggregation and adherent of NPs. Thus, it was not possible to determine the size distribution. Therefore, information was complemented with the AFM technique. Determining, through 3D and 2D morphology images analysis the average nanoparticle size for zein/GA (90.9 nm) and zein@T/GA (43.7 nm). Moreover, the AFM results suggested that zein@T/GA NPs were smaller and showed less aggregation because the ultrasonic treatment generated changes in the zein structure. Which in turn resulted in the reduction of the nanoparticle size and improved stability of NPs in the system by the gum Arabian capacity to bind to zein via electrostatic interactions to generate more stable NPs. In this sense, the emphasis is on the stable and homogeneous system obtained via ultrasonic process to increase the interactions between the NPs components. The forces that influenced the zein@T/GA NPs formation were dipole-dipole attraction (hydrogen bond), electrostatic repulsion, and hydrophobic interactions. On the other hand, the encapsulation efficiency