SEWAGE AND BIOMASS FROM WASTEWATER TO ENERGY

Edited By Inamuddin, Tariq Altalhi, Mohammad Luqman, and Joseph K. Bwapwa

Sewage and Biomass from Wastewater to Energy

Scrivener Publishing

100 Cummings Center, Suite 541J Beverly, MA 01915-6106

Publishers at Scrivener Martin Scrivener (martin@scrivenerpublishing.com) Phillip Carmical (pcarmical@scrivenerpublishing.com)

Sewage and Biomass from Wastewater to Energy

Edited by Inamuddin Tariq Altalhi Mohammad Luqman and Joseph Kapuku

This edition first published 2024 by John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA and Scrivener Publishing LLC, 100 Cummings Center, Suite 541J, Beverly, MA 01915, USA © 2024 Scrivener Publishing LLC

For more information about Scrivener publications please visit www.scrivenerpublishing.com.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, except as permitted by law. Advice on how to obtain permission to reuse material from this title is available at http://www.wiley.com/go/permissions.

Wiley Global Headquarters

111 River Street, Hoboken, NJ 07030, USA

For details of our global editorial offices, customer services, and more information about Wiley products visit us at www.wiley.com.

Limit of Liability/Disclaimer of Warranty

While the publisher and authors have used their best efforts in preparing this work, they make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives, written sales materials, or promotional statements for this work. The fact that an organization, website, or product is referred to in this work as a citation and/or potential source of further information does not mean that the publisher and authors endorse the information or services the organization, website, or product may provide or recommendations it may make. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for your situation. You should consult with a specialist where appropriate. Neither the publisher nor authors shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages. Further, readers should be aware that websites listed in this work may have changed or disappeared between when this work was written and when it is read.

Library of Congress Cataloging-in-Publication Data

ISBN 978-139420-431-1

Front cover images supplied by Adobe Firefly Cover design by Russell Richardson

Set in size of 11pt and Minion Pro by Manila Typesetting Company, Makati, Philippines

Printed in the USA

10 9 8 7 6 5 4 3 2 1

Contents

1	The	rmal/P	hotocata	lytic Conversion of Sewage Sludge	1
	and	bioma	iss to Ene	ergy	1
	Mar	1a Siac	lique, Sui	mia Akram, Zainab Liaqat	
	and	Muhai	mmad Mi	ushtaq	2
	1.1	Introc	luction	0	2
	1.2	Bioma	ass as Ene	ergy Sources	5
	1.3	Bioma	ass Types	and Energy Content	5
	1.4 Conversion of Biomass to Energy				6
		1.4.1	Therma	Conversion of Biomass to Energy	7
			1.4.1.1	Combustion/Incineration	8
			1.4.1.2	Hydrothermal Carbonization	8
			1.4.1.3	Biomass Pyrolysis	9
			1.4.1.4	Noncatalytic Pyrolysis	10
			1.4.1.5	Slow Pyrolysis (Carbonization/Torrefaction)	10
			1.4.1.6	Rapid/Fast Pyrolysis	11
			1.4.1.7	Co-Pyrolysis	12
			1.4.1.8	Gasification	12
	1.5	Bioch	emical Co	onversion	17
		1.5.1	Photoca	talytic Conversion of Biomass	18
		1.5.2	Photoca	talytic Hydrogen Production	23
			1.5.2.1	Photocatalytic Materials	26
	1.6	Concl	usion and	d Future Prospects	28
		Refere	ences	-	29
2	Sew	age Slu	idge Con	version to Sustainable Energy: Biogas,	
	Met	hane, I	Hydrogen	n, and Biofuels	43
	El A	sri Ou	ahid, Ben	EL Caid Mohamed, Yousfi Ikram	
	and	BenKa	iddour Ra	achid	
	2.1	Intro	luction		44

vi Contents

	2.2	Wastewater: Origins, Characteristics, Types, and Problems	45
	2.3	World Situation in Wastewater and Energy	48
	2.4	Composition of Wastewater	49
	2.5	What is Sewage Sludge?	51
	2.6	What Possibilities for the Conversion of Wastewater to	
		Sustainable Energy?	53
	2.7	Different Technologies, from Wastewater to	
		Sustainable Energy	54
		2.7.1 Anaerobic Digestion: Production of Biogas and Methane	54
		2.7.2 Microbial Fuel Cells: Hydrogen Production	56
		2.7.3 Thermal Hydrolysis	58
		2.7.4 Gasification: Biofuel Production	59
		2.7.5 Membrane Bioreactors: Improving Conversion	
		Processes	60
	2.8	Conclusion	63
		References	63
3	Bio	diesel from Sewage Sludge	73
	Son	ica Sondhi and Roopali Sharma	
	3.1	Introduction	74
		3.1.1 The Utilization of Sustainable Energy Sources	
		for the Transportation Industry	76
		3.1.2 Origin and Properties of Biodiesel	78
		3.1.3 Fabrication of Biodiesel	79
		3.1.4 Municipal Sewage Sludge (MSS)	79
		3.1.5 Generation and Control of Sewage Sludge	79
		3.1.6 Sewage Sludge as a Potentially Useful Lipid Source	81
		3.1.7 Extraction of Lipids from Sewage Sludge	82
		3.1.8 Synthesis of Biodiesel	83
		3.1.9 Quality of Sewage Biodiesel	86
	3.2	Conclusion	86
		References	87
4	Car	bon Emissions, Energy Reduction, and Energy Recovery	
	from	n Wastewater Treatment Plants	93
	Aba	s Siraj Hamda, Dinsefa Mensur, Belay Berhane, Sunaina	
	and	Tatek Temesgen	
	4.1	An Overview	94
	4.2	Major Units of Energy Consumption in WWTPs	95
	4.3	Alternatives Management Techniques for Energy Reduction	
		from WWTP	96

		4.3.1	Energy Auditing	97
		4.3.2	Energy Benchmarking	97
		4.3.3	Energy Management Programs	99
	4.4	Waste	ewater Nexus Energy Recovery Alternatives	101
		4.4.1	Biogas Production	103
		4.4.2	Thermal Energy Recovery	104
		4.4.3	Renewable Energy Recovery	104
		4.4.4	Bio-Hydrogen Production from WWTPs	105
		4.4.5	Microbial Fuel Cells	105
		4.4.6	Alga-Based Biofuel Production	106
	4.5	Emis	sion Sources in WWTP	106
	4.6	Carbo	on Accounting in WWTPs	107
	4.7	Carbo	on Emissions Reduction Options in WWTP	107
	4.8	Carbo	on Emissions Capture and Treatment Options	
		in W	WTP	108
	4.9	Chall	enges and Future Prospective	109
	4.10	Conc	lusion	110
		Refer	rences	110
5	Inte	grated	l Use of Biomass to Produce Energy and	
	Con	struct	ion Material	113
	Sam	avia F	Fiaz, Mehwish Khalid, Sumia Akram	
	and	Muha	mmad Mushtaq	
	5.1	Intro	duction	113
	5.2	Biom	ass Classification and Utilization	116
	5.3	Integ	rated Conversion of Biomass into Energy and	
		Othe	r Products	118
		5.3.1	Combustion/Incineration	120
		5.3.2	Biomass Pyrolysis	123
		5.3.3	Gasification	126
		5.3.4	Hydrothermal Liquefaction	128
		5.3.5	Supercritical Wet Oxidation/Supercritical	
			Water Oxidation	130
		5.3.6	Biochemical Conversion Process	131
		5.3.7	Anaerobic Digestion of Biomass for Biogas	
			Production	132
		5.3.8	Anaerobic Fermentation	132
	5.4	Conc	lusion and Future Prospects	134
		Refer	rences	140

viii Contents

Tec	hnolog	ies for Er	nergy Resources Production from	
Was	stewate	r Treatm	ent Plants	151
Shu	bhanka	ar Mishra	ı, Tohira Banoo, Yogendra Kumar	
and	Subbia	ah Nagar	ajan	
6.1	Intro	duction		151
6.2	Waste	ewater Tre	eatment	152
6.3	Techr	nical and I	Economical Evaluation	153
	6.3.1	Anaerol	pic Digestion	153
		6.3.1.1	Anaerobic Digestion Process and Application	154
		6.3.1.2	AD Process Chemistry	154
		6.3.1.3	Hydrolysis Step	155
		6.3.1.4	Acidogenesis Step	155
		6.3.1.5	Acetogenesis Step	156
		6.3.1.6	Methanogenesis	156
	6.3.2	Chemic	al Characterization of Two-Phase Anaerobic	
		Digestic	on–Produced Municipal Wastewater Sludges	
		for Biog	as Generation	157
		6.3.2.1	Resources and Techniques	157
		6.3.2.2	Economical Evaluation for Anaerobic	
			Digestion	159
	6.3.3	Microbi	al Fuel Cells (MFCs)	160
		6.3.3.1	Principles Involving in MFC	160
		6.3.3.2	Oxidation-Reduction Reactions in MFCs	161
		6.3.3.3	Removal of Organic Substance in MFCs	162
		6.3.3.4	MFCs with Actual Wastewater Using as	
			Substrates	162
		6.3.3.5	Biocathode in MFCs	163
		6.3.3.6	Nitrogen Removal in MFCs	164
		6.3.3.7	Current Challenges and Potential	
			Opportunities	165
		6.3.3.8	Technological Advancement in MFCs	166
		6.3.3.9	Economics and Life Cycle Assessment	166
	6.3.4	Hydroth	nermal Liquefaction	167
		6.3.4.1	Requirement and Process	168
		6.3.4.2	Evolution of HTL	168
		6.3.4.3	Environmental Effects of Treating Sewage	
			Sludge with HTP Technology	169
	6.3.5	Gasifica	tion	169
		6.3.5.1	Economical Evaluation in Gasification	170

	6.4	Conc	lusion	171
		Refer	ences	171
7	Rec	overv (of Cellulose and Extracellular Polymers from	
-	Sew	age Slu	1dge	175
	Mut	thumar	ri Perumal. Varalakshmi Varatharaian. V. Karthik.	
	Selv	akuma	ar Periyasamy and Beula Isabel J.	
	7.1	Intro	duction	176
	7.2	Stage	s of Wastewater Treatment	177
	7.3	Occu	rrence of Cellulose and Extracellular Polymeric	
		Subst	ances from Sewage Sludge	180
	7.4	Recov	very Routes of Cellulose from Sewage Sludge	183
	7.5	Recov	very Routes of Extracellular Polymers from	
		Sewag	ge Sludge	185
		7.5.1	Composition Evaluation of Extracted EPS	187
	7.6	Const	traints and Future Opportunities	187
	7.7	Conc	lusion	189
		Refer	ences	189
8	Was	stewate	pr-Derived Biomass for Energy	195
Ū	Sur	hhi Sha	arma Ridhika Rangotra Risma Hahih	170
	Mus	skaan (Chib. Artzana Thakur. Ritu Mahajan	
	and	Biiend	ler Kumar Baiai	
	8.1	Intro	duction	196
	8.2	Waste	ewater Analysis	198
		8.2.1	Biochemical Oxygen Demand	198
		8.2.2	Chemical Oxygen Demand	199
		8.2.3	Solids	199
		8.2.4	Nitrogen	200
		8.2.5	Phosphorus	200
	8.3	Com	position of Wastewater	200
	8.4	Sourc	es of Wastewater	201
		8.4.1	Domestic or Municipal Wastewater	202
		8.4.2	Industrial Wastewater	203
		8.4.3	Agricultural Wastewater	203
		8.4.4	Storm Sewage	203
		8.4.5	Infiltration	203
		8.4.6	Inflow	204
	8.5	Types	s of Wastewater	204
	8.6	Envir	onmental Hazards of Wastewater	205
	8.7	Waste	ewater Treatment Methods	206

x Contents

		8.7.1	Collection	206
		8.7.2	Preliminary Wastewater Treatment Method	207
		8.7.3	Primary Wastewater Treatment Method	207
		8.7.4	Secondary Wastewater Treatment	207
		8.7.5	Tertiary Wastewater Treatment	208
	8.8	Biom	ass Derived from Wastewater	209
		8.8.1	Sewage Sludge	210
		8.8.2	Wastewater Algae	210
		8.8.3	Plant Biomass	211
		8.8.4	Biofilms	211
	8.9	Conv	ersion of Wastewater-Derived Biomass into Energy	211
		8.9.1	Biodiesel	212
		8.9.2	Bioalcohol	213
		8.9.3	Biogas	213
		8.9.4	Microbial Fuel Cell	214
	8.10	Chall	enges and Future Prospects	215
	8.11	Conc	lusion	216
		Ackn	owledgements	217
		Refer	ences	217
9	Reco	overy o	of Value-Added Products from Sewage Sludge:	
	Proc	cesses,	Life Cycle Assessment, and Costs	225
	Abic	ola E. T	Taiwo, Olayomi A. Falowo, Anthony I. Okoji,	
	Leka	ın M. I	Latinwo and Eriola Betiku	
	9.1	Intro	duction	226
	9.2	Meth	ods and Product Recovery Processes	227
		9.2.1	Conventional Method	228
		9.2.2	Landfilling	228
		9.2.3	Composting	230
	9.3	Bioch	emical Methods	231
		9.3.1	Fermentation	231
		9.3.2	Anaerobic Digestion	231
	9.4	Therr	nal Techniques	232
		9.4.1	Incineration	232
		9.4.2	Pyrolysis	234
		9.4.3	Gasification	234
		9.4.4	Hydrothermal	235
		9.4.5	Wet Air Oxidation	235
	9.5	Mech	anical-Chemical Technique	236
		9.5.1	Ultrasonication Method	236

		9.5.2 E	lectrochem	nical Technology	237		
	9.6	Recover	able Produ	cts from SS	237		
		9.6.1 E	nergy Proc	luct	237		
		9.6.2 N	lutrients ar	d Vitamin Products	238		
	9.7	LCA for	Sludge Tre	atment	241		
		9.7.1 E	conomic Ii	ndicators	244		
	9.8	Conclus	ion and Fu	ture Perspectives	249		
		Reference	ces	-	250		
10	Vari	ous Bion	nasses from	n Wastewater and Possibilities			
	of C	onversio	n to Energ	y Resources	259		
	Neel	laambhig	ai Mayilsw	ramy and			
	Bala	isubrama	nian Kand	lasubramanian			
	10.1	Introdu	uction		260		
	10.2	Compo	osition of D	Different Types of Biomass Procured			
		from V	Vastewater		261		
		10.2.1	Sewage S	udge	261		
		10.2.2	Algal Bio	mass	262		
		10.2.3	Lignocell	ulose-Derived Biomass	263		
	10.3	Variou	s Techniqu	Techniques for the Transformation of Different			
		Wastev	vater-Deriv	red Biomass Feedstock into Energy	264		
		10.3.1	Physical (Conversion Techniques	264		
			10.3.1.1	Mechanical Extraction	264		
		10.3.2	Chemical	Conversion Techniques	265		
			10.3.2.1	Hydrolysis	265		
			10.3.2.2	Supercritical Transformation	265		
			10.3.2.3	Solvent Extraction	267		
		10.3.3	Biochemi	cal Conversion Techniques	267		
			10.3.3.1	Anaerobic Digestion	267		
		10.2.4	10.3.3.2	Fermentation	268		
		10.3.4	Physicoci	The mical Conversion Technique	269		
		10.2.5	10.3.4.1		269		
		10.3.5	Inermoc	Instruction and Carls an institution	270		
			10.3.5.1	Hydrothermal Cardonization	270		
			10.3.5.2	Casification	2/1		
			10.3.5.3	Gasilication	2/3		
	10.4	Conclu	10.3.3.4	IUITERACHUII	2/4		
	10.4	Acknow	wlodgmont		270		
		Referen	wieugiliefil	3	270		
		Kelerences			211		

11 Recycled Wastewater from Sewage Treatment Plants for					
	Susta	inable A	griculture	-	283
	Anusl	ka Raich	oudhury, F	Radha Sankar Mal,	
	Ranja	іу Кита	r Thakur, S	Subhankar Mishra, Mukesh Singh	
	and A	mit Bist	was	C C	
	11.1	Introdu	iction		284
		11.1.1	Worldwide	e Water Crisis with Its Effect on Agriculture	285
		11.1.2	Potential of	of Recycled Wastewater from Sewage	
			Treatment	Plants (STPs) for Sustainable Agriculture	285
		11.1.3	Aims and	Scope of the Chapter	286
	11.2	Quality	of Recycle	d Wastewater for Irrigation	286
		11.2.1	Characteri	istics of Recycled Wastewater	287
		11.2.2	Methods of	of Treating Wastewater for Irrigation	
			Purposes		287
			11.2.2.1	Preliminary Treatment	287
			11.2.2.2	Primary Method	288
			11.2.2.3	Secondary or Biological Method	288
			11.2.2.4	Tertiary Treatment	289
		11.2.3	Types of T	reatment Processes for	
			Recycled V	Wastewater	290
			11.2.3.1	Vermi-Biofiltration	290
			11.2.3.2	Membrane Bioreactor	291
			11.2.3.3	Constructed Wetlands	292
			11.2.3.4	Waste Stabilization Pond	292
			11.2.3.5	Nanofiltration	293
			11.2.3.6	Advanced Oxidation Processes (AOPs)	294
			11.2.3.7	Adsorption	294
			11.2.3.8	Electrochemical Processes	294
		11.2.4	Suitability	of Recycled Wastewater for Irrigation	295
		11.2.5	Problems	Related to Recycled Water Quality	295
			11.2.5.1	Salinity	295
			11.2.5.2	Rate of Infiltration	296
			11.2.5.3	Toxicity	296
			11.2.5.4	Miscellaneous	296
	11.3	Recycle	ed Wastewa	ter Effect on Soil Health	296
		11.3.1	Recycled V	Wastewater Impact on Soil Properties	
			and Micro	bial Activity	297
		11.3.2	Changes in	n Soil Fertility and Nutrient Availability	298
		11.3.3	Impact on	Crop Quality and Food Safety	298
	11.4	Impact	of Recycled	l Wastewater on Crop Parameters	299

	11.4.1	Comparison of Crop Yield	with Recycled Water	
		Irrigation Versus Freshwate	r Irrigation and	
		the Effect of Recycled Wate	r on Crop Growth	
		and Development	1	299
	11.4.2	Effect of Different Irrigation	n Methods on	
		Crop Production		300
	11.4.3	Challenges Associated with	Crop Yield	
		Improvement with Recycle	d Wastewater	300
11.5	Enviro	nmental Impacts of Recycled	Wastewater Use in	
	Agricu	ture		301
	11.5.1	Potential Effect of Wastewa	ter Recycling on the	
		Environment	7 0	302
		11.5.1.1 Several Benefits	of Water Recycling	
		in the Environm	nent	302
	11.5.2	Effects on Aquatic Ecosyste	ms	303
11.6	Econor	nic Viability of Recycled Was	stewater Use	
	in Agri	culture		304
	11.6.1	Cost Analysis and Profits of	f Using Recycled	
		Wastewater for Irrigation		304
		11.6.1.1 Costs		305
		11.6.1.2 Benefits		305
	11.6.2	Comparison of Recycled W	astewater Cost	
		with Freshwater		305
	11.6.3	Economic Feasibility of Imp	plementing Recycled	
		Water Use in Agriculture at	Different Scales	306
		11.6.3.1 Small-Scale Far	ms	306
		11.6.3.2 Medium-Scale I	Farms	307
		11.6.3.3 Large-Scale Far	ms	307
11.7	Challer	nges Associated with Recycle	d Wastewater Use in	
	Agricu	ture		307
	11.7.1	Technical, Regulatory, and	Social Challenges	
		Associated with Recycled W	ater Use in Agriculture	311
		11.7.1.1 Technical Chall	enges	311
		11.7.1.2 Regulatory Cha	llenges	311
		11.7.1.3 Social Challenge	es	311
	11.7.2	Solutions and Strategies for	Addressing Challenges	312
	11.7.3	Case Studies of Successful I	Recycled Wastewater	
		Use in Agriculture		312
		11.7.3.1 Collaboration a	nd Stakeholder	
		Engagement are	Critical	312

			11.7.3.2	Effective Treatment and Monitoring	
				are Essential	313
			11.7.3.3	Key Agricultural Practices	313
			11.7.3.4	Public Education and Outreach are	
				Important	313
			11.7.3.5	Adequate Funding and Incentives are	
				Necessary	313
	11.8	Emergi	ing Techno	logies and Innovations in Recycled	
		Wastew	vater Use in	Agriculture	313
		11.8.1	Overview	of New Technologies and Innovations	
			in the Tre	atment of Wastewater for Irrigation	314
		11.8.2	Potential	Impact of New Technologies on Water,	
			Soil, and	Crop Quality in Agriculture	315
		11.8.3	Prospects	for Recycled Wastewater Use	
			in Agricu	lture	316
	11.9	Conclu	sion		316
		Referer	nces		317
12	Reco	very of V	Value-Add	ed Products from Sewage Sludge	
14	Lleino	Riolog	ical Proces	see	327
	Nadia	Akram	Khalid M	ahmood 7ia Muhammad Usman	521
	Fozia	Δ nium	and Sana I	Dorvaiz	
	12.1	Waste	Activated S	ludge	327
	12.1	Amino	Acids and	Proteins	328
	12.2	Fatty A	cids Chain	s	331
	12.4	Enzym	es	0	332
	12.5	Biopest	ticides		332
	12.6	Bioplas	stics		333
	12.7	Bio-Flo	occulants an	nd Bio-Surfactants	334
	12.8	Curren	t Challenge	es	336
		12.8.1	Productio	on of Food Wastes (FW)	337
		Referer	nces		343
12	Mont	T. matan	unatur aut 1		
13	Ffoot	water 1	and Chall	Processes and Resource Recovery,	247
	Linco	liveness	, and Dall		547
	13.1	Introdu	ur unu run	uvi juin	3/18
	13.1	Waster	vater Treatr	ment. Processes	340
	13.2	1221	Drimary 7	Freatment	350
		13.2.1	Secondar	v Treatment	351
		13.2.2	Tertiary T	reatment	351
		19.4.9	icitial y l	itatiittiit	552

	13.3	Limitations of Wastewater Treatment Techniques	354
	13.4	Resource Recovery Systems (RRS)	355
		13.4.1 Water Recovery	355
		13.4.2 Energy and Material Recovery	355
	13.5	Challenges to the Implementation of RRS Successfully	356
	13.6	Conclusion and Future Prospects	357
		References	358
14	Circu	lar Bioeconomy in the Recovery of Polymers from	
	Sewa	ge Sludge	365
	Merr	y Meryam Martgrita and Siti Khodijah Chaerun	
	14.1	Introduction	366
	14.2	Polymers Recovery in Waste Management	369
	14.3	Mechanisms for Cellulose Recovery from Sewage Sludge	371
	14.4	Mechanism of Cellulose Content Utilization in Sewage Sludge	374
	14.5	Implementing Circular Bioeconomy Principles in the	
		Palm Oil Industry	379
	14.6	Implementing Circular Bioeconomy Principles in the Pulp	
		and Paper Industry	380
	14.7	Future Perspectives	383
	14.8	Conclusions	383
		References	384
15	Recy	cled Wastewater from Sewage Treatment Plant for	
	Susta	inable Agriculture: An Indian Scenario	391
	Arun	a Jyothi Kora	
	15.1	Introduction	392
	15.2	Sewage Treatment Plants	393
	15.3	Water Disinfection	397
		15.3.1 Chlorination	397
		15.3.2 Ozonation	398
		15.3.3 Ultraviolet (UV) Irradiation	399
		15.3.4 Gamma Irradiation	400
	15.4	Government Policies, Initiatives, and Incentives	401
	15.5	Irrigation and Agriculture	402
	15.6	Conclusions	407
		Acknowledgments	408
		References	408
In	dex		413

Thermal/Photocatalytic Conversion of Sewage Sludge and Biomass to Energy

Maria Siddique¹, Sumia Akram², Zainab Liaqat¹ and Muhammad Mushtaq^{1*}

¹Department of Chemistry, Government College University, Lahore, Pakistan ²Division of Science and Technology, University of Education, Lahore, Pakistan

Abstract

Recently, a great deal of research has been devoted to exploring renewable energy sources like sunlight, geothermal, hydropower, and bioenergy. Many developed countries like the United States of America are getting more than 20% of their energy needs from renewable sources and biomass can work as a fascinating renewable energy source. Biomass and sewage are considered viable alternatives to fossil fuels for sustainable energy production. Thermal and photocatalytic conversion technologies can generate energy from these materials, contributing to cost-effective and sustainable energy systems. Utilizing these technologies could reduce the environmental impact of energy production while creating new opportunities for economic growth and job creation. Additionally, utilizing biomass and sewage for energy production provides benefits such as addressing waste management concerns and mitigating the negative environmental impacts of waste disposal. Challenges and opportunities of biomass energy: The potential of thermal and photocatalytic conversion technologies to generate energy from biomass and sewage has been comprehensively highlighted in this chapter. A thorough examination of the various types of biomass and sewage and their energy content paved the way for scrutinizing the challenges and opportunities associated with using them as energy sources. Further investigation into thermal conversion technologies including pyrolysis, gasification, and combustion, in addition to the photocatalytic conversion process, was carried out. Scrutiny of each technology's respective advantages and disadvantages was done with great detail and analysis.

Keywords: Biomass, pyrolysis, photocatalysis, biofuel

^{*}Corresponding author: muhammad.mushtaq@gcu.edu.pk

Inamuddin, Tariq Altalhi, Mohammad Luqman and Joseph Kapuku (eds.) Sewage and Biomass from Wastewater to Energy, (1–42) © 2024 Scrivener Publishing LLC

1.1 Introduction

In recent years, policymakers have been very excited to switch to clean and green energy sources as it not only can help them combat environmental pollution but also provide more renewable energy sources [1]. Meanwhile, rapid industrialization and urbanization have led to a significant increase in global energy demands and a shortfall in fossil fuels. The growing consumption of fossil fuel-based resources for energy has caused several substantial rises in greenhouse gas emissions. These consequences hold immense importance not just for the economy but also for human health [2]. An increase in awareness about future energy and environmental concerns has spurred the utilization of available renewable energy source owing to its eco-sensitive nature, transformability, and, cost-effectiveness [3–5].

As cities continue to grow and become more heavily populated, per capita energy consumption increases and this may lead to high levels of carbon emissions [6]. The scenario becomes more alarming in countries such as China, Pakistan, India, Indonesia, and other certain parts of the world which totally rely on fossil fuels for their energy demands. With dwindling global oil reserves, treating and recycling copious amounts of wastewater produced by these so-called 'megacities' offered new horizons of challenges. Many countries have successfully switched toward solar energy but this technology remained limited to regions of intense and longer sunlight which is not the case with many countries like Russia and other European nations [7, 8]. Consequently, a single energy source may not work fine for all nations and we need a hybrid energy system. For example, countries situated beside oceans like Brazil can exploit algal biomass as a viable source of energy. It has been estimated that algae can produce 30 to 100 times more biomass than that is produced by other photosynthetic sources on Earth. Meanwhile, researchers claim large-scale production of algal biomass is associated with more carbon conversion/capturing present in the air [9, 10].

Although the exact definition and composition of biomass vary from country to country and source to source (Figure 1.1), we, in this monograph, are going to treat the underutilized agricultural residues, seaweeds, organic pollutants, and livestock residues as biomass. In a broader sense, biomass refers to a wide array of living entities that are obtained from the process of photosynthesis [11], including organisms of the plant, animal, microbe, and some byproduct classifications [12]. Various types of biomass

Figure 1.1 The key biomass/waste residues that can be exploited as alternative energy sources.

waste may comprise dissimilarities, for instance, agricultural waste forms encompass straw, crops, wood chips, and animal byproducts [13, 14]. Furthermore, industrial organic wastes include textile and food processing wastes, leftovers, and organic wastewater [15, 16], whereas municipal solid wastes cover food and kitchen waste, as well as domestic waste.

In countries undergoing rapid urbanization and an increase in population, the conversion of municipal waste into energy/electricity has been an essential area of research. The global annual municipal solid waste production is anticipated to be reached around 2200 million tons by 2025 as per the World Bank report [17]. The utilization of solid waste as an alternative energy source especially biomass and bio-solid wastes can help us to resolve not only waste management issues but also improve associated social and environmental standards [18, 19]. In another report, the yearly amount of worldwide solid waste production is estimated at 2400 million tons and is projected to reach above 2600 million tons in the next 6 years [20]. Furthermore, wastewater treatment plants produce around 1000 tons of solid waste each day [21]. With the proper technology, loads of energy required for the process can be minimized and also utilized for the production of sustainable energy sources.

1.2 Biomass as Energy Sources

Sewage and biomass are two promising renewable energy sources that have gained the interest of researchers, lately. Sewage or wastewater is an

4 Sewage and Biomass from Wastewater to Energy

abundant source of organic matter along with other potentials; it can be useful in producing renewable energy such as biogas. Because sewage contains numerous complex components, it cannot be processed directly for energy production, rather it is required to be converted into a suitable form called sewage sludge [22, 23]. Therefore, the residue obtained from wastewater treatment is known as sewage sludge [24]. Sewage sludge can be distinguished both quantitatively and qualitatively, depending on the specific characteristics of the wastewater being processed and the approaches used for treatment. This process is relatively energy-intensive and definitively requires resources. This residue has long been classified as non-useful and often discarded in landfills [25]. A recent perspective regarding wastewater treatment approves of its conversion into energy and other useful products. It has been estimated that sewage sludge can potentially fulfill about 10% of our power demands as an alternative energy source [26, 27]. However, implementation of these perspective technologies is associated with high capital investment and needs considerable land area for sludge disposal. On the other side, sewage sludge production will keep growing with the population, and industrialization and its eco-friendly and sustainable management may cost much more particularly in developing countries [28].

Wastewater treatment plants are responsible for the sanitation of sewage water by separating its components, i.e., solids and minerals. It is also worth knowing that sewage sludge is an unavoidable material residue created at WWTPs, with significant amounts being created on a worldwide basis. According to the statistics, the annual dried sewage production of some countries was as follows: for the United States, it was 6.5 million tons in 2004 [29]; for China, it was almost 6.25 million tons in 2013 [30]; and for the European Union, it was 13 million tons in 2020 [31, 32].

Biomass is a popular phrase that relates to plant-derived and biological waste materials. However, the concept can include any sort of organic material. The total estimated production of carbon is 105 billion metric tons annually, evenly divided between terrestrial sources and oceans (algal biomass). Despite the fact that algal biomass constitutes a major part of world biomass volume, *wood* remains the primary biomass source used in various applications. Wood sources (cover forests) are often utilized for power generation and biopower, while agricultural remains like sugarcane bagasse, rice straw, cotton stalks, and wheat straw are classified as biomass [33–35].

Biomass can be employed as a powerful energy source to mitigate environmental risks associated with waste disposal and establish a sustainable and renewable energy alternative [36]. Bioenergy is another term used to refer to energy that is derived from biomass resources. It takes a series of stages, which include harvesting, drying, storage, moving, conversion, etc., to convert biomass into an energy source that can be utilized.

The direct combustion of wood and biomass has been used as an energy and heat source since prehistoric times. However, the conventional burning/incineration of agricultural residues causes a variety of environmental issues and their transformation into biofuels via a variety of processes (chemical, biological, and physical) renders them a renewable energy source. In many countries, the open burning/combustion of agricultural residues like sugarcane bagasse, rice straw, cotton stalks, and wheat straw is a punishable act [37]. Likewise, planned deforestation or accidental forest fires cause a variety of environmental issues. On the flip side, rural areas of many underdeveloped countries use agricultural and livestock biomass as energy/heat sources in houses, factories, and mills. The only thing that needs to be pointed out here is that direct conversion of agricultural, livestock, domestic waste, or industrial waste (paper and plastics) causes a variety of known and concealed environmental issues and health issues. For similar reasons, agriculture biomass, livestock waste, and municipal waste are subjected to controlled pyrolysis, anaerobic digestion (AD), gasification, and fermentation for the cogeneration of heat and electricity [38]. The algal biomass can work as a fascinating alternative energy source as its production involves the uptake of carbon dioxide and does not need valuable arable land and fresh water. The seaweeds have been successfully transformed into biofuel; however, another school of thought believes that algal species have the potential to be used as superfoods for human and animal consumption.

1.3 Biomass Types and Energy Content

The waste is a fusion of municipal and industrial materials, normally composed of sewage sludge, regular waste, food waste, shrubbery, paper items, latex, fabrics, firewood, debris, and soil. The biomass in contrast covers seaweed, food, and agricultural wastes, and a fraction of domestic or industrial refuse that contains carbon and hydrogen. The exact ratio of components in any waste collected from one location can differ from other sites [39]. Biomass often denotes a form of waste residue derived from sources such as firewood, timber, crops, aquatic plants, shrubs, municipal waste, and human waste. The exact composition of biomass depends upon its source, i.e., agricultural residues mainly consist of cellulose, hemicellulose, lignin, and trace amounts of minerals, vitamins, and extractives [40].

Besides, legal regulations, lifestyle and seasonal elements, preparation, and recycling procedures cause waste streams to vary with time. Underdeveloped nations often have waste that predominantly consists of decomposable material in comparison to plastics. Likewise, municipal waste may be rich in pigments, plastics, glass, and other nonbiodegradable materials. For the production of energy, chemical manufacturing, and biofuel production, it offers more benefits than traditional fuels [41]. According to the International Renewable Energy Agency (IRENA), biomass is expected to become one of the leading renewable energy sources by 2030. According to their roadmap, biomass is capable of meeting up to 60% of global energy consumption [42]. In many developed countries like the United States, biomass contributes more than 2% of renewable energy sources; however, for countries like Brazil which produces more than 20,000 tons (algae year⁻¹), the contribution of biomass as an energy source may exceed.

The use of biomass and other organic waste materials as renewable energy sources has become a fascinating choice for the global energy supply and it has already accounted for about 20% of the global energy production, securing its position as the fourth-largest energy source [27]. Biomass-based sources have been extensively explored to meet our energy demands for the past 30 years, and they can be speculated to be the top energy source fulfilling over half (~56%) of the demands as compared to renewable sources [43]. It has been also anticipated that clean energy sources like biofuel will cover 2 to 27% of our energy source in the immediate future [44]. Organic contents of sludge are typically made up of proteins (24 to 42%), carbohydrates (7 to 18%), and lipids (1 to 14%). The chief functional groups of such organic compounds comprise carbonyl moiety, carboxylic acids, different amines, amides, some aromatics, and methyl. In underdeveloped countries of Asia and Africa, biomass can account for around 33% of the total energy needs [45]. The widespread accessibility of biomass as an energy source makes it advantageous compared to other conventional energy sources [46].

1.4 Conversion of Biomass to Energy

Incineration has been applied for years to destroy hazardous materials or contaminants. For many years, the incineration of organic material has been applied to produce a stream of gasses or heat to run turbines and produce electricity. Nowadays, thermal and photocatalytic methods have been applied to initiate a chemical reaction for the conversion of biomass into energy. Thermal processes use heat to change organic matter into energy, whereas photocatalytic processes rely on light to initiate chemical reactions that generate energy afterward. The power generation system nowadays utilizes waste as fuel and produces energy from the abundant materials present in trash gathered from both residential and industrial sources. As the exact composition of waste or biomass varies with location, the exact incineration, thermal, or photolytic conversion process varies widely [39].

1.4.1 Thermal Conversion of Biomass to Energy

Figure 1.2 illustrates the general way out for the thermal conversion of biomass into a set of products. Despite having an effective system of recycling and reconversion of wastes, many biomass or waste ingredients are hard to break, it is important to have an exact composition of biomass for effective conversion [47]. A variety of approaches are used to convert solid waste into something more beneficial to the planet, including hydrothermal liquefaction [48], pyrolysis [49], and gasification [50]. The key objectives have to apply biological, chemical, or thermal approaches to generate heat and electricity. Using fuel produced from waste materials can have a smaller environmental impact than burning fossil fuels [37]. The energy production from the waste can solve the solid waste disposal issue and produce electricity. For example, during thermal conversion, the wastewater is heated to high temperatures that then generate gasses, especially methane,

Figure 1.2 Process identification diagram for traditional thermal conversion of biomass.

and hydrogen as byproducts that further act as fuel to generate electricity and heat. However, the method uses a substantial amount of energy in getting high temperatures, making it generate harmful air pollutants.

In contrast, the photocatalytic conversion uses less energy to decompose the organic material in the wastewater. This method produces hydrogen gas and CO_2 which can serve as fuel. Photocatalysts (such as titanium oxide) offer several advantages over traditional thermal conversion such as minimal energy input, reduced pollutants, and higher conversion efficiency. The wastewater even has the potential to be transformed into energy using diverse methods mainly in the presence of catalysts, heat, and/or light. However, it is still in the experimental stage, and further research is necessary to improve its efficiency and scalability.

1.4.1.1 Combustion/Incineration

The incineration process involves burning and converting feed materials into beneficial products. This generates heat that can be used in vaporbased turbines and heat exchangers to generate power. The temperature range is in the vicinity of 800°C to 1000°C. Practically, the biomass rich in organic (carbon) that has been dried and holds a water level of less than 50% can be burned in the process [51]. The biomass with higher water levels is usually transformed into energy through biological means. Incineration can decrease the volume of solid waste by 80 to 85% [52]. However, this technique has been around for a long time and is associated with toxic airborne discharges, including dioxins and heavy metals. Also, the inorganic contents like arsenic, mercury, cadmium, and uranium in the ashes which cannot be burned can be dangerous to one's health [53].

1.4.1.2 Hydrothermal Carbonization

This technique involves temperature-based conversion and has captured the interest of many researchers, particularly attractive to scientists working with waste materials that have a moisture content higher than 80 to 90%. This process is considered a "wet" process as it transforms different kinds of waste into a usable energy source subjected to consistent pressures and relatively low-temperature conditions between 180°C and 350°C [54, 55]. This process has multiple advantages such as larger waste handling capacity, removal of odors along with contaminants, and shorter incineration period. Furthermore, an increase in the temperature of the procedure can decontaminate various hazardous materials. The byproducts and certain nutrients can be used for the production of gasses and fertilizers. The hydrothermal carbonization process simultaneously causes hydrolysis, condensation, dehydration, and decarboxylation in the damped raw material [56, 57].

1.4.1.3 Biomass Pyrolysis

Pyrolysis is the thermal decomposition of material in an oxygen-free environment by using an external heat source to keep the temperature between 300°C and 850°C. The expression pyrolysis is derived from the Greek words 'pyro' signifying fire and 'lysis' implying disassembly or breaking into separate parts. The result of this process is typically char, solid residue, and a blend of carbon and ash. It is also possible to condense the product to yield tar, crude wax, lubricants, and oil. On average, the syngas created from pyrolysis contains a net calorific value of 10 to 20 MJ/Nm³ [58].

Pyrolysis has grown significantly popular due to its adjustable nature, aptitude for using many different feedstocks, and possibility for varied outputs. During this process, which does not require oxygen, heat is applied from outside sources, and biomass components are broken down into gasses and vapors which usually have subsequent reactions, thus providing a broad scope of results. The circumstances that can have an immense influence on both the products and the process performance consist of feedstock, technology, reaction temperature, accompaniments, accelerants, vaporization stay time, solid stay time, and pressure. For thousands of years, pyrolysis has been utilized to create charcoal, yet only within the past 35 years have efforts been made to invent rapid pyrolysis for the production of liquids. Such pyrolysis needs to occur at approximately 500°C for a very brief period of time with the vapor's stay in this hot area lasting less than 2 s. This kind of quick pyrolysis is of particular fascination because it can produce liquids in high yields of up to 75 wt% [59]. The slow and intermediate pyrolysis process centers on the production of dry char and biomass, which can be directly utilized in a wide range of applications, offering energy density and/or serving as a biofuel source. More attention is now being paid to maximizing the resulting products. This method of burning has been practiced for more than seven decades in order to reduce the amount of disposed waste while making the remainder less ecologically damaging.

Thermochemical conversion of biomass takes place through pyrolysis, gasification, liquefaction, and combustion. Pyrolysis is the origin of all of these conversions, which breaks a compound down into solid, liquid, and gas components with no oxygen. Particular importance is placed on the technologies that can create either gaseous or liquid products which can be improved to become useful energy sources such as electricity and transportation fuel.

When placed inside a reactor and heated, the organic elements in the wastewater sludge commence transforming at around 200°C, leading to volatile products and a nonvolatile solid byproduct known as char created by several breaking and forming processes [60]. Primary pyrolysis and the vaporization of moisture contained in a material are both essential initial steps for all of the processes involved in transforming something through chemical reactions with heat, including burning, generating gas, forming a liquid, and changing the composition of carbon.

1.4.1.4 Noncatalytic Pyrolysis

Pyrolysis is an advantageous way to treat sewage sludge because it changes the solids in the sludge into biochar, bio-oil, and gasses (such as hydrogen, carbon monoxide, and some other frothy gasses) while emitting only a small amount of pollutants in a temperate to moderate temperature range, in the absence of oxygen. Specifically, pyrolysis involves thermally breaking down the sludge solids at high temperatures (400°C to 600°C) in an oxygen-free environment, to obtain the required output. Pyrolysis can be of various types including slow, fast, hydro, vacuum, and flash pyrolysis [61, 62]. Crucial elements that can affect the pyrolysis operation include heating rate, feedstock size, duration of residence of reactant, and temperature. Pyrolysis has been utilized to treat various feedstocks such as plastic waste, municipal solid waste, oily sludges, sewage sludges, and woody biomass.

1.4.1.5 Slow Pyrolysis (Carbonization/Torrefaction)

Slow pyrolysis (carbonization/torrefaction) typically comprises temperatures below than 400°C. The goal of this process is to condense moisture and densification, and also make the material more grindable. Generally, slow pyrolysis results in a greater volume of char and lower amounts of bio-oil and gas. The solid that is left behind is referred to as charcoal. The carbonization process eliminates the presence of NO_x, SO_x, and additional contaminants along with the densification of sludge and also raises the C/H ratio and calorific value [63, 64]. When sewage sludge is burnt at 900°C, it produces a noteworthy decrease in NH₃ (46%) [65]. Furthermore, sewage sludge or biomass can be mixed and burned to form a large biochar product. Factors of importance to assess include balances of energy and mass to identify the productivity of torrefying sewage sludge.

1.4.1.6 Rapid/Fast Pyrolysis

This type is employed for the conversion of sewage sludge into different bio-oil products. It differs from slow pyrolysis in its heating rate, stay time, and temperature range (400°C to 600°C). The fast pyrolysis of biomass produces more bio-oil [66]. Bio-oil produced via fast pyrolysis of sewage sludge mainly comprises hydrocarbons, organic acids, high molecular weight carbonyl compounds, phenols, ketones, a broad range of both aliphatic and aromatic compounds, acetic acid, different alcohols, nitrogen, and sulfur-containing compounds along with water [22, 67-69]. The bio-oil is found to be more eco-friendly than traditional heavy fuel oil, as it contains additional constituents and has higher moisture levels thanks to the presence of oxygenated compounds that divide it into two fractions, one lighter, and the other with a higher concentration of organic oil. The organic phase which is lightweight largely consists of water, with the heavier one being abundant in benzene, toluene, styrene, naphthalene, phenol, and so forth. The mean heat energy value of bio-oil (30.1 MJ/kg) is less than fuel oil (40.2 MJ/kg). Due to pyrolysis, the heat energy of the biooil becomes low and the resultant product is typically used for combustion and heating purposes, although the small heat energy acts as a hindrance to this method. Research on how to improve the quality of bio-oil has been conducted to raise the C/H ratio and diminish oxygen concentration.

The gas stream released as the result of sewage sludge pyrolysis consists of lighter gasses such as hydrogen (H₂), carbon dioxide (CO₂), carbon monoxide (CO), methane (CH₄), ethylene (C₂H₄), propane (C₃H₈), and butane (C₄H₁₀) with energy values of 32.2 MJ/kg for bio-oil, 12.3 MJ/kg for char, while 25 MJ/kg for gas, with the process taking place at 500°C [70]. If a higher temperature is used during the pyrolysis, the quantity of gas rises; though at the same time, increasing the possibility of emissions such as nitrous oxide (NO_x), sulfur oxide (SO_x), tar, polycyclic aromatic hydrocarbons (PAHs), and particulate matter (PM). The percentage of PAHs in sludge products of pyrolysis at different gas residence times and temperatures of 1000°C can rise from 1.14 wt% up to 6.33 wt%, thanks to high flow rates of the gasses produced. These pyrolysis gasses may have reduced energy content when heated in a medium to low range, yet they still have the possibility of being used to generate heat [71, 72].

The char obtained from the rapid thermal decomposition procedure includes a combination of carbon and has been utilized as an adsorbent due to possessing a very large exterior area or for more utilization in the generation of syngas and chemicals in the process of gasification. The heating values of the chars mainly vary according to their basic material, and the readings generally range from 11 to 15 MJ/kg [72].

1.4.1.7 Co-Pyrolysis

Incorporating alternative feedstocks alongside sewage sludge through co-pyrolysis proves to be a beneficial approach for improving both the quantity and quality of obtained pyrolysis outcomes. Among the feed fuels, reported to be used with sludge in such pyrolysis are pinewood saw [73], microalgae [74], wood dust [75], paddy straw [76], wheat chaff [77], bamboo wood dust [78], compost [79], filbert shell [80], wool + stalk [81], cannel shale/fossil oil [82], lignite coal/brown coal [83], megass [84], and waste wood [85]. Such feed fuels raise the output of H₂, CO, and other gasses, boost the texture of biochars, and help take out oxygenated rainwater and different pollutions in the bio-oil. Organic sources like bagasse, wheat chaff, paddy straw, and filbert supplement additional mass reduction at 200°C to 600°C heat range rather than the sludge, so this can set off the dismantling of volatile matter and a rise in the supply of oil and gas.

1.4.1.8 Gasification

Gasification (Figure 1.3) lies between pyrolysis and combustion in terms of its processing temperature; it requires oxygen, air, steam, or a mixture of them and a heat of $>650^{\circ}C$ [86]. The net heat output of gasification is usually less than that of combustion or incineration, usually in the range of 4 to 14 MJ/Nm³. The process is exothermal, meaning an external source

Figure 1.3 Layout for traditional thermal pyrolysis/gasification of biomass.