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Foreword

In the ever-evolving landscape of cancer therapeutics, innovation is paramount. The 
quest for more effective treatments has led to groundbreaking discoveries, and 
among them, PROteolysis-TArgeting Chimera- or PROTAC-mediated protein deg-
radation represents frontier science. As we delve into the pages of PROTAC-
mediated Protein Degradation: A Paradigm Shift in Cancer Therapeutics, edited by 
Dr. Mukesh Nandave and Dr. Priti Jain, we embark on a journey through the fore-
front of molecular medicine.

The ubiquitin proteasome system, a cornerstone of cellular regulation, has long 
fascinated scientists with its intricate machinery and profound implications for 
health and disease. This book begins by laying the foundation of our understanding 
and tracing the historical milestones and revolutionary breakthroughs that have 
shaped our perception of this system.

At the heart of this paradigm shift lies the principle of PROTACs—a transforma-
tive approach that harnesses the cell’s own machinery to selectively degrade disease-
causing proteins. With chapters dedicated to elucidating the principles, mechanisms, 
and structural considerations of PROTACs, the reader is equipped with a compre-
hensive understanding of this innovative strategy.

As with any groundbreaking technology, there are inherent advantages and chal-
lenges. This book meticulously examines these, offering insights into the novel 
technologies driving PROTAC design and the future trends shaping its develop-
ment. Moreover, it navigates the complex landscape of global regulatory require-
ments and clinical development, illuminating the path from bench to bedside.

One of the most promising aspects of PROTACs is their potential for tissue-
specific targeting, offering a tailored approach to cancer therapy. From the toxico-
logical aspects to the management of specific malignancies such as prostate cancer, 
breast cancer, and hematological malignancies, each chapter delves into the intrica-
cies of applying PROTACs in clinical practice.

Furthermore, this volume explores the synergies between PROTACs and emerg-
ing technologies like artificial intelligence and machine learning, offering a glimpse 
into the future of precision medicine. Whether in the treatment of glioma or cardio-
vascular diseases, the potential of PROTACs to reshape therapeutic landscapes 
knows no bounds.

In closing, "PROTAC-mediated protein degradation" transcends the boundaries 
of traditional oncology, offering a holistic perspective that encompasses not only the 
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molecular intricacies but also the clinical implications and future directions of this 
transformative technology. It is my sincere belief that this book will serve as a cor-
nerstone for researchers, clinicians, and students alike, driving us closer to the ulti-
mate goal of conquering cancer.

� Shiladitya SenguptaHarvard Medical School, Boston, MA, USA
Center for Engineered Therapeutics, 
Brigham and Women’s Hospital, Boston, MA, USA
Division of Health Science and Technology, 
Dana-Farber Cancer Institute and Harvard-MIT, 
Cambridge, MA, USA

Foreword
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Preface

In the ongoing quest to develop more effective treatments for cancer, researchers are 
exploring innovative approaches that target the molecular mechanisms underlying 
the disease. One such promising avenue is the development of proteolysis-targeting 
chimeras or PROTACs. These molecules represent a novel class of therapeutic 
agents with the potential to revolutionize cancer therapy by exploiting the body’s 
own protein degradation machinery to eliminate disease-causing proteins.

Though, traditional approaches like monoclonal antibodies and small molecule 
inhibitors have shown significant efficacy, they often encounter challenges such as 
drug resistance and limited selectivity. PROTACs tend to overcome these obstacles 
by harnessing the cell’s natural protein degradation pathway to degrade target pro-
teins, thereby achieving more potent and selective inhibition.

In the context of cancer therapy, PROTACs hold tremendous promise for target-
ing oncogenic drivers and overcoming drug resistance. PROTACs have the potential 
to disrupt multiple signaling pathways simultaneously, thereby exerting potent anti-
tumor effects. Furthermore, the ability to target specific proteins within complex 
signaling networks offers the possibility of personalized treatment strategies tai-
lored to the molecular profile of individual tumors.

Despite these exciting prospects, challenges remain in the development and opti-
mization of PROTAC-based therapies. These include issues related to selectivity, 
pharmacokinetics, and off-target effects, which must be carefully addressed to 
ensure the safety and efficacy of PROTACs in clinical settings. Additionally, the 
identification of suitable E3 ligases and the design of optimal ligands pose signifi-
cant hurdles in the rational design of PROTACs.

This book entitled PROTAC-Mediated Protein Degradation: A Paradigm Shift in 
Cancer Therapeutics is published with an intention to provide in-depth concepts of 
PROTACs and their role in the treatment of cancer. This book comprises 17 chapters 
presented logically to understand PROTACs from the fundamental to the latest 
development. This book begins with ubiquitin-proteasome system, its history and 
development, and principles of PROTACs. Further, it proceeds with the chemistry 
of PROTACs and the designing aspects for novel compounds. This book then pro-
gresses with technological aspects and global regulatory requirements for PROTACs 
and then discusses the pharmacological aspects covering the role in prostrate can-
cer, breast cancer, lymphocytic leukemia, and glioma. The delivery systems of 
PROTACs and exploration of AI/ML have also been dealt with in this book.
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In conclusion, PROTACs represent a promising new approach in cancer therapy 
that capitalizes on the cell’s natural protein degradation machinery to eliminate 
disease-causing proteins. The potential of PROTACs to overcome limitations asso-
ciated with traditional inhibitors and to target previously undruggable proteins 
makes them an exciting area of research with the potential to significantly impact 
the treatment of cancer and other diseases.

Overall, our book aims to be a comprehensive and authoritative resource, cater-
ing to both experts in the field and those seeking to gain a deeper understanding of 
PROTAC technology and its transformative potential in cancer therapeutics.

New Delhi, Delhi, India� Mukesh Nandave  
New Delhi, Delhi, India � Priti Jain   

Preface
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Abstract

The Ubiquitin Proteasome System (UPS) stands as a cornerstone in the realm of 
cellular biology, orchestrating the regulated degradation of proteins essential for 
cellular homeostasis. This chapter embarks on a journey through the historical 
milestones that have shaped our understanding of UPS, tracing its roots from 
early observations to contemporary breakthroughs. Moreover, the chapter delves 
into the transformative impact of UPS research on various fields, ranging from 
cancer biology to neurodegenerative diseases, highlighting how deregulation of 
UPS contributes to pathogenesis. Also, this chapter illuminates the historical 
journey and revolutionary insights that have propelled our comprehension of 
UPS, underscoring its pivotal role in cellular physiology and disease mechanisms.
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Abbreviations

AD	 Alzheimer’s disease
ALS	 Amyotrophic lateral sclerosis
AP	 Affinity purification
APC	 Anaphase-promoting complex
CAR-T	 Chimeric antigen receptor T-cell therapy
CDKS	 Cyclin-dependent kinases
CRBN	 Cereblon
DUBs	 Deubiquitylating enzymes
E6-AP	 E6-associated protein
HD	 Huntington’s disease
HECT	 Homologous to E6-AP Carboxyl 74 Terminus
MDM2	 Murine double minute 2
MHC	 Major histocompatibility complex
NDs	 Neurodegenerative diseases
NEMO	 NF-κB essential modulator
PD	 Parkinson’s disease
POI	 Protein of interest
PPI	 Protein–protein interaction
PROTAC	 Proteolysis-targeting chimera
PRRs	 Pattern recognition receptors
RING	 Really interesting new gene
RIPK 1	 Receptor-interacting protein kinase 1
SMAD	 Suppressor of mothers against decapentaplegic
SOD1	 Superoxide dismutase 1
TCRs	 T-cell receptors
TLRs	 Toll-like receptors
TNF	 Tumour necrosis factor
Tp53	 Tumour protein p53
Ub	 Ubiquitin
UPS	 Ubiquitin proteasome system
VHL	 von Hippel-Lindau

1.1	� Introduction

The ubiquitin Proteasome System (UPS) regulates the turnover of numerous cellu-
lar proteins. It is a primary process of intracellular protein breakdown (Wang and 
Maldonado 2006). It is a precise and universal method for the cell to get rid of bio-
logically useless proteins, such as mutant, misfolded, damaged, terminally altered, 
or excessively accumulated proteins. With its ability to quickly start substrate-spe-
cific proteolysis, UPS can function as a molecular switch in a range of signalling 
routes, swiftly stopping a target protein’s activity. Preventing the build-up of poten-
tially hazardous, non-functional proteins is one of the main roles of the 
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UPS. Furthermore, it is now evident that the UPS is engaged in the majority of 
eukaryotic biological mechanisms, encompassing transcriptional regulation, intra-
cellular signalling, and control of cell death. In all eukaryotic cells, the UPS is the 
principal mechanism governing controlled peptide chain breakdown, and it is 
increasingly evident that abnormalities in this route are the root cause of many 
human diseases. A large range of proteins with half-life period ranging from hours 
to days can be progressively degraded in concert via the highly conserved and 
strictly regulated UPS pathway (Kleiger and Mayor 2014; Zolk et al. 2006). Herein, 
we intend to provide the historical turning points that have influenced our knowl-
edge of UPS, from the earliest observations to the most recent innovations. 
Additionally, the chapter explores how UPS research has revolutionised a number 
of domains, from neurodegenerative diseases to cancer biology, emphasising how 
UPS dysregulation plays a role in pathogenesis. Furthermore, this chapter high-
lights UPS’s critical function in cellular physiology and disease mechanisms while 
also illuminating the approaches to enhance the understanding of UPS and target 
UPS for treatment of diseases.

1.2	� History of UPS

Cell biologists were first taken aback by the requirement of ATP for the process of 
cytosolic protein degradation because it is widely known that metabolic energy is 
not needed for peptide bond hydrolysis. Hershko and colleagues employed a method 
that included biochemically fractionating reticulocytes, which are terminally devel-
oped red blood cells devoid of lysosomes, purifying the reticulocytes, identifying 
the constituents, and reconstructing the ATP-dependent cytosolic protein break-
down in vitro. These discoveries were supported by information from other organi-
zations and genetic research revealing the intracellular functions of cytosolic protein 
breakdown in numerous biological systems. Avram Hershko, Aaron Ciechanover, 
and Irwin Rose were granted the 2004 Nobel Prize in chemistry for their ground-
breaking research on the function of protein ubiquitination during cytosolic protein 
breakdown. A rabbit reticulocyte system was created by Etlinger and Goldberg 
(1977) to investigate ATP-dependent and non-lysosomal protein breakdown 
(Etlinger and Goldberg 1977). After reticulocyte was fractionated in 1978 by 
Ciechanover et  al., two fractions—active principle of fraction (APF)-I and 
(APF)-II—were identified (Ciehanover et  al. 1978). By combining APF-I with 
APF-II in 1979, Hershko et al. reconstructed protein degradation. Two fractions, 
APF-IIa and APF-IIb, were created by subdividing APF-II. The E1-E3 ubiquitin-
conjugating enzymes were present in APF-IIb. Later research revealed that APF-IIa 
contained proteasomes (Hough et al. 1986). Wilkinson et al. discovered that APF-I 
was ubiquitin (Wilkinson et al. 1980). Conjugating enzymes and ATP were required 
for the formation of high molecular conjugates between ubiquitin and substrate pro-
teins (Hershko et  al. 1980). Hershko et  al. discovered deubiquitinating enzyme 
activity that could recycle ubiquitin bound to substrate proteins (Hershko et  al. 
1980). The E1 enzyme was identified to activate the ubiquitin carboxyl terminus 
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glycine (Hershko et al. 1981). According to Hershko et al., there is a connection 
between ubiquitination and protein degradation since reticulocytes produced more 
ubiquitin-protein conjugates when aberrant proteins were formed (Hershko et al. 
1982). Further, A method for purification and identification of all three ubiquitin 
conjugating enzymes (E1, E2, and E3) was developed by Hershko et al. (1983) . The 
anatomic functions of the UPS were disclosed by Finley et  al.’s 1984 genetic 
research. The absence of growth in the non-permissive temperature of the mutant 
mammary cell line ts85 was attributed to the E1 enzyme, indicating the potential 
role of ubiquitination in the advancement of the cell cycle. 1984 Ciechanover et al. 
At the non-permissive temperature, the ts85 cell line’s ability to degrade short-lived 
proteins was hindered. Hershko and colleagues in 1986 discovered that an E3 ligase 
exhibited substrate specificity. A large molecular weight neutral protease that origi-
nated from rat liver, the pituitary gland of cows, and the archaebacterium 
Thermoplasma acidophilum was identified by numerous organizations. Since it was 
first believed that this protease was connected to RNA, it has been called “pro-
some”. Notably, an allo-MHC serum was used to identify a large molecular weight 
complex made up of tiny subunits.

Several years later, it was found that the two subunits of the IFN-γ-inducible 
proteasome, β1i and β5i, were encoded by genes situated in the mammalian MHC 
region. In 1986, Hough et al. described a high molecular protease that broke down 
protein ubiquitin adducts but not untagged protein. Its proteolytic and particle char-
acteristics led to the coining of the term proteasome. In the presence of ATP, isolated 
20S proteasomes and 19S regulators were mixed to create active 26S proteasomes 
(Monaco and McDevitt 1984; Sijts and Kloetzel 2011).

1.3	� Components of UPS

1.3.1	� Ubiquitin

Ubiquitin is a tiny protein with a molecular weight of about 8.5 kDa that is made up 
of 76 amino acids folded into a compact globular shape. It exists in the cytoplasm 
either unbound or covalently attached to other proteins. All eukaryotic cells contain 
ubiquitin, a small, highly conserved peptide. Seven lysines are present in this mol-
ecule (K6, K11, K27, K29, K33, K48, and K63). K48 and K11 polyubiquitin chains 
mostly facilitate proteasomal breakdown. On the other hand, K63-related polyubiq-
uitination, which is generally less prevalent in tumours, is generally linked to cel-
lular signal building, transduction, and the repair of damaged cells rather than 
proteasomal breakdown (Huang et al. 2024; Park et al. 2020). A ubiquitin molecule 
is used to mark the substrate protein, which is then broken down by the 26 s protea-
some. Ubiquitin attaches itself to proteins that need to be targeted by the protea-
some. Targeted protein breakdown begins with ubiquitin’s selective binding to 
specific proteins. The target protein and ubiquitin are connected via a branching 
isopeptide bond that forms between the lysine ε-amino group and the carboxyl-
terminal glycine of ubiquitin. Polyubiquitin is created when a ε-amino group of 
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lysine from one ubiquitin molecule forms a similar isopeptide bond with the car-
boxy terminus of ubiquitin.

Monoubiquitination and polyubiquitination are two ways that ubiquitin is altered. 
Monoubiquitination is the result of adding a single ubiquitin molecule to the lysine 
residue of a substrate (Swatek and Komander 2016). In the process of polyubiquiti-
nation, one ubiquitin molecule is joined with additional ubiquitin molecules to cre-
ate polyubiquitin chains. The bare minimum length of a chain required to effectively 
target a protein for proteasomal destruction is four ubiquitin adducts. There are 
three distinct steps of protein ubiquitination, commonly known as ubiquitinylation: 
E1 (ubiquitin-activating enzyme), E2 (ubiquitin-conjugating enzyme), and E3 
(ubiquitin ligase). In each phase, an enzyme is involved (Ebner et al. 2017). The 
ubiquitin chain is generated by the E1 and E2 enzymes and subsequently bound to 
proteins by the E3 enzyme.

1.3.2	� E1, A Ubiquitin-Activating Enzyme

The ATP-dependent activation of ubiquitin by the ubiquitin-activating enzyme E1 
starts the process of ubiquitination. E1-S ~ ubiquitin is created when ubiquitin is 
linked to an internal E1 Cys residue through an intermediary thiol ester between the 
target protein and the ubiquitin monomer from the E2 enzyme. Uba1 is the predomi-
nant version of this enzyme in yeast and humans (Schulman and Wade Harper 2009).

1.3.3	� E2, A Ubiquitin-Conjugating Enzyme

Activated ubiquitin molecules are gradually added to the original ubiquitin proteins 
to form a polyubiquitin chain. Ubiquitin is trans-esterified to a conserved cysteine 
in an E2 enzyme subsequent to its activation by the E1. Yeast has 13 E2s, and verte-
brates probably have a similar amount. The three-letter code ‘Ubc’ represents the 
genetic name of these enzymes. With the exception of Ubc9, an enzyme that conju-
gates SUMO, and Ubc12, an enzyme that conjugates NEDD8 and Rub1, the Ubcs 
have different genetic roles in ubiquitylation, albeit some of them overlap. Ubc3, or 
CDC34, is a crucial E2 enzyme in the Skp1, cullin, F-box (SCF) ubiquitin ligase 
complex (McKinnon and Tabrizi 2014).

1.3.4	� E3, A Ubiquitin Ligase

The mechanism gains its specificity from the E3 ligase. The E3 ligase promotes the 
creation of a covalent link between the target protein and the ubiquitin monomer 
from the E2 enzyme by binding both the target protein and the complex E2-ubiquitin. 
To create a polyubiquitin chain, activated ubiquitin molecules are progressively 
added to the initial ubiquitin proteins. The 26S proteasome recognizes and targets 
proteins that are tagged with chains of four or more ubiquitins for destruction. By 
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attaching itself to a protein target preferentially, the E3 ligase gives the process 
selectivity (Grice and Nathan 2016). Hundreds of different E3 ubiquitin ligases are 
enciphered by the human gene pool and are grouped into three primary classes, 
according to structural similarities: the U-box proteins, the RING-finger proteins, 
which are the most prevalent class of E3 enzymes, and the HECT domain proteins. 
Prior to delivering the ubiquitin to the substrate, HECT domain proteins create a 
covalent (thiolester) link with it (Garcia-Barcena et  al. 2020; Nakamura 2011). 
When RING finger (including amino acids cysteines and histidines responsible for 
co-ordination of two metal atoms) E3s connect to the E2-ubiquitin complex, they 
facilitate direct ubiquitin transfer to the targeted protein, eliminating the need for 
further thiol ester formation—a process that is seen in the HECT family of E3 
ligases (Jackson et al. 2000).

1.3.5	� HECT Domain Proteins

The 350-amino acid, which is similar to the E6-AP C terminus and was initially 
identified in E6-AP, defines HECT domain proteins. Eukaryotes, including yeast 
and humans, have HECT domain proteins. The oncoprotein of the papillomavirus in 
humans recruits E6-AP, a cellular ubiquitin ligase, which degrades the p53 tumour 
suppressor 4. A conserved cysteine combines with ubiquitin to create a thioester in 
the E6 HECT domain. This intermediate is necessary for the process of ubiquitina-
tion. HECT domain proteins are typically big (90–200  kDa) with extended 
N-terminal domains. The N-terminus of these ubiquitin ligases binds to the sub-
strate, whereas the C-terminal HECT domain transfers ubiquitin directly by a 
thioester bond to the substrate (Eldridge and O’Brien 2010; Jackson et al. 2000). It 
was recently demonstrated that Xsmurf1, a novel HECT domain E3, may bind to 
Smad1, ubiquitylate it, and control its stability. Smad1 is a signalling regulator that 
is regulated by the TGF-β family member BMP.  It is unknown if other types of 
protein–protein interaction domains have the ability to bind HECT domain proteins 
to substrates for ubiquitylation.

1.3.6	� Skp1, Cullin, F-Box (SCF) Complexes

The SCF class of ubiquitin ligases comprises at least four proteins: Skp1, Cul1, 
Roc1/Rbx1/Hrt1, and an F-box protein. F-box proteins are adaptors that directly 
bind SCF substrates. These proteins link to substrates by protein–protein interaction 
domains and feature an F-box motif, which is around 45 residues long. The protein 
Skp1, which is significant in SCF complexes but may have additional functions, 
requires the F-box to bind to it. Skp1 then forms an association with either the 
human homolog Cul1’s N-terminus or its counterpart Cdc53p in budding yeast. 
Cul1 belongs to the cullin family, which in humans consists of at least Apc2 and 
cullins Cul1–Cul5. In known E3 complexes, Cul2 and Apc2 have roles. Cullins 
seem to recruit the E2 ubiquitin-conjugating enzyme and help organise and activate 
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the E3 complex. It is possible that the remaining cullins will arrange ubiquitin ligase 
complexes in a similar way. For instance, Cul3 is involved in regulating cyclin E 
stability (McKinnon and Tabrizi 2014). Human Roc1/Rbx1 (Hrt1 in yeast), a pro-
tein with a RING-H2 finger domain, seems to increase ubiquitin ligase activity and 
facilitate the attachment of the Cul1 protein to the E2 enzyme (usually Ubc3/Cdc34 
or Ubc5). One member of the class of finger proteins known as RING finger pro-
teins, RING-H2 is composed of eight cysteine and histidine residues that aid in E2 
binding and catalysis. These four components are sufficient to ubiquitylate certain 
substrates, based on biochemical reconstitution of SCF complexes in yeast 
and humans.

1.3.7	� APC Ubiquitin Ligase

The APC, first multi-component ubiquitin ligase to be discovered, is required for the 
removal of cyclin B to allow for the escape from mitosis and for the degradation of 
substrates controlling the metaphase to anaphase transition. The APC includes a 
RING-H2 finger protein called Apc11 that is comparable to Roc1/Rbx1 and a cullin 
homologue named Apc2, which is similar to the SCF complex. Like the SCF, the 
APC binds to proteins to initiate its activation against particular substrates (Lehman 
2009). The destruction box (also known as the D-box) and the KEN box are two 
destruction signals that have been found in substrates that the APC is aiming to 
destroy. All known APC substrates that use the Cdc20 adaptor, referred to as APC 
Cdc20 substrates, as well as certain APC Cdh1 substrates, referred to as APCCdh1, 
have the nine-residue D-box. The KEN box is a transposable motif consisting of 
seven residues that is known to target substrates to the APC Cdh1. Both D-box- and 
KEN-box-containing substrates, including Cdc20 itself, are susceptible to ubiquity-
lation by Cdh1 (Li and Zhang 2009).

1.3.8	� Proteasomes

A hollow cylinder-shaped protein complex involved in UPS is called a proteasome. 
Adenosine triphosphate-dependent proteasomes are the primary non-lysosomal 
complexes accountable for the breakdown of most of the intracellular proteins. 
Proteases are essential for the survival of organisms and cells in eukaryotes. 
Proteasomes do not exist in eubacteria (Zolk et  al. 2006). The ATP-dependent 
assembly of the 26S proteasome is facilitated by two primary subunits. There are 
several proteolytic sites in the 20S catalytic component, and several ATPases as well 
as a binding site for ubiquitin concatemers are present in the 19S regulatory compo-
nent (Muratani and Tansey 2003).

The 26S proteasome catalytic activity is attributed to its four stacked rings, i.e. 
20S subunit each of which has seven different subunits stacked one on top of the 
other. Two identical outside α rings and two inside β rings are present. Catalytic 
sites facing the hollow centre of the ring structure are located within the two inner 
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beta rings. Beneath the beta rings are the two alpha rings. The 20S β subunit pos-
sesses three unique proteolytic activities: activities similar to peptidylglutamyl, 
achymotrypsin, and trypsin. The alpha subunits’ amino terminus prevents entry to 
the proteolytic chamber. Therefore, the small holes on either end of the cylinder are 
the sole ways to access the proteasome’s inner cavity. While the β rings feature 
several catalytic sites, the outer two α-rings are unknown in purpose. To create the 
26S proteasome, the 19S regulatory components come together at each pore of the 
20S subunit. The two 19S regulatory caps that cap the ends of the 20S complex are 
also referred to as PA700.19S assemblies provide substrate recognition and inser-
tion tasks. A 19S regulatory subunit, located at either end of the 20S proteasome, is 
made up of two distinct subcomplexes: a base made up of ten distinct proteins that 
attaches to the 20S proteasome and a lid made up of nine different proteins that 
binds and recognizes polyubiquitinated proteins. The regulatory caps not only iden-
tify the substrates of the 20S proteasome but also make it easier for the target pro-
teins to enter the 20S proteasome by unfolding the substrate and opening the 
catalytic channel. Because the 20S subunit by itself is inactive, the 19S subunit is 
also necessary for proteolytic action. The 19S regulatory particle participates in 
protein translocation into the catalytic 20S chamber for degradation, as well as sub-
strate preparation and selection. Many subunits, including six ATPases, make up 
each 19S particle. These subunits presumably supply the energy needed for sub-
strate unfolding, which is necessary prior to entry into the 20S chamber. In order to 
process ubiquitin chains prior to substrate translocation and destruction, the 19S 
component’s outer-lid subcomplex is engaged (Mani and Gelmann 2005). After 
proteasome degradation, ubiquitin monomers are released or actively eliminated by 

Fig. 1.1  Degradation of targeted protein through UPS

A. Qadir et al.



9

ubiquitin carboxyl-terminal hydrolases at the proteasome, where they are recycled 
for further usage (Fig. 1.1).

1.4	� Role of UPS in Revolutionizing Cellular Biology

1.4.1	� Functional Understanding

1.4.1.1	� Protein Degradation
For cellular homeostasis and the control of numerous physiological functions, pro-
tein breakdown is necessary. UPS is an extremely controlled route responsible for 
selective protein degradation. It breaks down most of the proteins in a cell. The 
attachment of a polyubiquitin chain—a chain of ubiquitin molecules marks the tar-
get protein for destruction. A protein complex known as the proteasome then identi-
fies this chain and carries the enzymatic activity necessary to break down the target 
protein. The enzymatic sequence of events that results in the initial attachment of 
the polyubiquitin chain to the target protein confers substrate specificity. Both the 
final protein breakdown and the transportation of polyubiquitinated proteins to the 
proteasome are tightly controlled processes (Bingol and Schuman 2005).

It requires three enzymatic components to attach chains of Ub onto proteins that 
are targeted for degradation. The preparation of Ub for conjugation is carried out by 
E1 which is the Ub-activating enzyme and E2, which is a Ub-carrier or conjugating 
protein. However, the most important enzyme in the process is E3, Ub-protein 
ligase, which identifies a particular protein substrate and catalyses the transfer of 
activated Ub to it (Lecker et al. 2006). Mechanistically, E3 enzymes can be divided 
into two primary types based on their RING (or RING-like) and HECT domains. 
The capacity of both varieties of E3 enzymes to establish specific substrate binding 
is similar (Ravid and Hochstrasser 2008).

There are two stages involved in the breakdown of a substrate protein: (1) cova-
lent binding of ubiquitin to the substrate (also known as ubiquitination or ubiquitin 
conjugation); and (2) degradation of the polyubiquitinated substrate, which involves 
breaking down the polyubiquitin chain and recycling free ubiquitin (Li et al. 2022). 
Under stimulus, ubiquitin mediates the breakdown of protein clumps. Proteins in 
the endoplasmic reticulum accumulate in response to cell stimulation; these aggre-
gates are tagged with ubiquitin when E1, E2, and E3 are present, and proteases 
subsequently are degenerated. Along with the hydrolysis of ATP, ubiquitin’s 
C-terminal glycine binds to the active site of E1. Following its transfer to the E2 
enzyme, the active ubiquitin forms a complex with the E2 conjugating activation. 
After that, this complex interacts with the specific enzyme E3, which causes the 
ubiquitin to go to the designated substrate (Li et al. 2022). Once the substrate pro-
tein is altered by a polyubiquitin chain including at least four ubiquitins (Ub), it can 
immediately bind to intrinsic Ub receptors in the 19S regulatory complex of the 26S 
proteasome. As an alternative, it can attach itself to adaptor proteins that include 
domains for both proteasome and polyubiquitin binding (Ravid and 
Hochstrasser 2008).
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