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Circuit Elements and Resistive Circuits
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1

Ohm’s Law, Branch Relationships, and Sources

1.1 Chapter Summary and Polarity Reference

1.1.1 Chapter Summary

Ohm’s law describes the relationship between voltage, current, and resistance for resistive circuits. This chapter
describes Ohm’s law and the related circuit elements, resistors, current sources, and voltage sources. This chapter
also covers the more general idea of branch relationships, the relation between the voltage across a circuit element
and the current through a circuit element, for resistors, voltage sources, and current sources.

Current source and resistor Voltage source and resistor

RI V

Figure 1.1a Current
source driving a resistor.

R
I

V

Figure 1.1b Voltage
source across a resistor.

In Figure 1.1a, the current
source drives current through
the resistor causing a voltage
drop across the resistor.

In Figure 1.1b, the voltage
source across the resistor
causes current to flow through
the resistor.

The ideal independent current source supplies a fixed
amount of current I through the resistor R regardless
of the amount of voltage across the source.

The ideal independent voltage source supplies a fixed
amount of voltage V across the resistor R regardless of
the amount of current through the source.

The resistor R resists the flow of current through it. The
amount of voltage V , that develops across the resistor
R, as a result of the current I flowing through the resis-
tor R, is determined by Ohm’s law, V equals IR, shown
in Equation 1.1a

The resistor R resists the flow of current through it.
The amount of current, that flows through the resis-
tor, as a result of the voltage V across the resistor R, is
determined by Ohm’s law, I equals V over R, shown in
Equation 1.1b.

1.1.1.1 Ohm’s Law

V

I

Figure 1.2 Resistor
schematic symbol with
passive sign convention.

The voltage across a resistor, shown in
Figure 1.2, equals the current through the
resistor times the resistance of the resistor.

V = IR (1.1a)

The current through a resistor equals
the voltage across the resistor divided
by the resistance of the resistor.

I = V∕R (1.1b)

First and Second Order Circuits and Equations: Technical Background and Insights, First Edition. Robert O’Rourke.
© 2024 The Institute of Electrical and Electronics Engineers, Inc. Published 2024 by John Wiley & Sons, Inc.
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1.1.1.2 Branch Relationships

IV

Figure 1.3 Passive sign
convention on a generic
fictitious schematic symbol.

The branch relationship is the equation describing the relationship between current
through a circuit element (in a branch of a circuit) and the voltage across the circuit
element. For example, Ohm’s law V = IR or I = V/R is the branch relationship of
a resistor. Figure 1.3, with a simple square shape, is a generic, non-specific circuit
element.

1.1.2 Polarity Reference

5 ΩVin

1 VDC

Figure 1.4a 1 volt DC
voltage source across a
5 ohm resistor.

In Figure 1.4a, 1 V divided by
5 Ω equals 200 mA (0.2 A).

In each of these two direct current (DC)
examples, Figures 1.4a and 1.4b, the cur-
rent in the loop is 200 mA DC, going down
through the resistor from + to −, and the volt-
age across the 5 Ω resistor is 1 V DC.

5 ΩIin
0.2 ADC

Figure 1.4b 200 mA
DC current source
driving a 5 ohm resistor.

In Figure 1.4b, 0.2 A multi-
plied by 5 Ω equals 1 V.

1.1.2.1 DC Voltage Source Polarity Example

VR

VDC

U = 1 V

+
–

Pr1

R2
R = 5 Ω

Pr1.I VR.VNumber
0.2 11

Figure 1.5 Circuit simulation
schematic with avoltage source
and a resistor.

The voltage source in Figure 1.4a applies voltage across the resistor, and the +
(plus) and − (minus) signs on the resistor indicate the polarity of the voltage.

Figure 1.5 shows a circuit simulation schematic corresponding to the circuit
in Figure 1.4a. The voltage source symbol in Figure 1.5 is specific to DC voltage
sources.

There is a current meter in the right-hand leg of the circuit, just below the
resistor. The downward arrow in the current meter symbol indicates a reference
direction pointing down; the current meter considers clockwise flow of current
in the circuit to be positive.

For the DC circuit simulation, there is a table of results in Figure 1.5. VR, mea-
sured at the top of the circuit, is positive 1 V, and the current Pr1.I, measured by
the current meter, is 200 mA, verifying that current flows downward through the
resistor.

1.1.2.2 DC Current Source Polarity Example

V1

Iup

I = 200 mA

Pr1

Pr1.I V1.VNumber
0.2 11

R1
R = 5 Ω

Figure 1.6 Circuit simulation
schematic with a current source
and a resistor.

The arrow, pointing up in the current source in Figure 1.4b, indicates the direc-
tion of a positive current from the source. Applying Ohm’s law, multiplying
the current times the resistance, tells us the voltage across the resistor, both the
amount and the polarity of the voltage. The + (plus) and − (minus) signs on
the resistor indicate the polarity of the voltage.

Figure 1.6 shows a circuit simulation schematic corresponding to the circuit
in Figure 1.4b. The downward arrow in the current meter symbol indicates a
reference direction pointing down; the current meter considers clockwise flow
of current in the circuit to be positive.
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In Figure 1.6, the current source arrow points up, telling us that current flows up and out of the current source,
and then down through the resistor. As expected from Ohm’s law, 200 mA multiplied by 5Ω yields 1 mV across
the resistor. This 1 V result appears in the table under V1.V. The current direction of the current source and the
current meter are the same, and the measured current, under Pr1.I, is positive 200 mA.

At the top of the schematic in Figure 1.6, there is a V1 marker, indicating a voltage measurement. This voltage
is referenced to ground, so it is equivalent to the way schematics show a + (plus) sign above the resistor and
a − (minus) sign below the resistor.

V2

Idown

I = 200 mA

Pr2

Pr2.1 V2.VNumber

–0.2 –11

R2
R = 5 Ω

Figure 1.7 Circuit simulation
schematic with a DC current
source, pointed down, and a
resistor.

In Figure 1.7 the current source arrow points down, telling us that current flows
down and out of the current source, and then up through the resistor, the opposite
direction from the current source in Figure 1.6.

This makes the measured voltage V2.V −1 V, as it is referenced from the top V2
voltage reference.

As expected from Ohm’s law, −0.2 A multiplied by 5Ω yields – 1 V across the
resistor. This result appears under V2.V in units of volts.

In Figure 1.8, the current source arrow indicates counterclockwise circulation
of current around the loop. The meter, pointing the same direction in Figure 1.8
as it does in Figure 1.7, indicates opposite circulation direction from the current
source and correspondingly the current measured under Pr2.1 is negative 0.2 A.

1.1.2.3 Reference Polarity versus Physical Current Flow Direction

R
I

V

Figure 1.8 Schematic
with a current source,
pointed up, and a
resistor.

It is important to distinguish between actual current flow direction and reference polarity.
If we reversed the direction of the current meter in Figure 1.7, the simulation would indi-
cate a positive current value for Pr2.1, but the current still flows counterclockwise in the
circuit.

The arrow pointing down, in the current source in Figure 1.8, indicates positive current
going down from the current source and then up through the resistor. Using the same
+ (plus) and − (minus) signs on the resistor as a reference polarity for the resistor, we
would get a negative voltage.

In Figure 1.7 the reference direction for the current is down, indicated by an arrow, in
both schematics (Figures 1.7 and 1.8). The current polarity will be measured relative to
this counter clockwise reference direction.

1.2 Branch Relationships and I–V Characteristics

1.2.1 Circuit Element Branch Relationships

1.2.1.1 Ohm’s Law is a Resistor’s Branch Relationship

V

I V = f(I)R

VI = f(V) =
R

Figure 1.9 Resistor schematic
diagram and ohm's law
expressions where current or
voltage are dependent.

Ohm’s law V = IR, describing the behavior of a resistor, is the branch relationship
for a resistor. Figure 1.9 shows how voltage V can be expressed as a function of I
(voltage as a dependent variable) or current can be expressed as a function of V
(current as the dependent variable).



6 1 Ohm’s Law, Branch Relationships, and Sources

1.2.1.2 Capacitor and Inductor Branch Relationships
The branch relationships for capacitors and inductors involve first derivatives and integrals, as shown in
Figure 1.10. The branch relationships for capacitors and inductors will be studied in more detail in subsequent
chapters on reactive elements.

Branch Relationships for R, L, and C

Current as a Voltage as a
function of function of

Circuit element voltage current

Resistor

I = V
R

V = IR

Inductor

I = 1

L ∫
T

0
V dt + I0 V = L di

dt

Capacitor

I = C dV
dt

V = 1

C ∫
T

0
Idt + V0

Figure 1.10 Table showing schematic symbols and branch relationships for resistor, inductor, and capacitor.

A circuit elements’ defining equation (model) typically describes the current through the element in terms of
the voltage across the element.

V I

Figure 1.11a Fictitious generic
circuit schematic symbol.

Figure 1.11a shows an example of a generic (non-
specific) circuit element’s schematic symbol, including
a chosen sign convention for the voltage across it and
the current through it.

I

V

Figure 1.11b Fictitious
generic circuit schematic
symbol.

Drawn differently than Figure 1.11a, Figure 1.11b
shows the same sign convention as Figure 1.11a for
the voltage across a circuit element and the current
through it that make up an I–V characteristic.

1.2.2 I–V Characteristic Plots

The branch relationship is sometimes called the I–V (current-voltage) characteristic of a circuit element.
The I–V characteristic can be plotted with current on the vertical (dependent) axis and voltage on the horizontal
(independent) axis. Some publications put voltage the vertical axis and current on the horizontal axis.

Resistors obeying Ohm’s law are linear devices and this linearity appears as a straight line in the I–V
characteristic.
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1.2.2.1 I–V Characteristics for Circuit Elements
Generic circuit element

i v  

i

v

Figure 1.12 Fictitious generic circuit schematic
symbol.

An I–V characteristic of a circuit element is the equation and
graph of the current through the circuit element as a function of
the voltage across the circuit element. (The shape of the curve in
Figure 1.12 is a fictitious generic example.)

1.2.2.2 Resistor I–V Characteristic
i

v

Resistor with
resistance R

i v  

Figure 1.13 Resistor schematic symbol,
marked with passive sign convention,
adjacent to its linear I-V characteristic graph.

A linear resistor’s I–V characteristic is Ohm’s law v equals iR.
The I–V characteristic line, shown in Figure 1.13, is straight
because there is a linear relationship between current and volt-
age. The slope of the line is 1 over R (1 over R equals G equals
conductance).

1.2.2.3 Non-resistor I–V Example Semiconductor
diode i

v

Figure 1.14 Diode schematic symbol and
nonlinear IV characteristic.

Diodes have a nonlinear exponential relationship between the
voltage across them and the current through them, shown in
Figure 1.14 and given by Equation 1.2.

i(v) = ise(qv∕kT−1) (1.2)

1.2.3 Circuit Elements Models and Schematic Symbols

1.2.3.1 Circuit Elements are Model Descriptions and Schematic Symbols
In electronics, a circuit element is a description (model) and a schematic symbol of a physical device in an electric
or electronic circuit, as shown in Figure 1.15 for a resistor. Resistors, capacitors, inductors, opamps (operational
amplifiers), transistors, and current sources are all examples of circuit elements. Branch relationships represent
the defining model of a lumped circuit element such as a resistor, inductor, or diode.

Physical chip 

resistor circuit 

element

Resistor 

schematic 

symbol

Resistor circuit 

element modeling 

equation (Ohm's Law)

V = iR

Figure 1.15 Resistor circuit element visual summary including the resistor schematic symbol, a drawing of a chip resistor,
and Ohm’s law, the branch relationship, and ideal lumped element modeling equation for a resistor.



8 1 Ohm’s Law, Branch Relationships, and Sources

1.2.3.2 Circuit Schematic Symbols
A circuit schematic symbol represents the circuit element in a schematic of the circuit, as shown in Figure 1.16.

Resistor 

schematic 

symbol

Inductor 

schematic 

symbol

Diode 

schematic 

symbol

Capacitor 

schematic 

symbol

Figure 1.16 Examples of common circuit element schematic symbols.

1.3 Ohm’s Law, Resistance, and Resistors

1.3.1 Resistor and Conductor Equations

1.3.1.1 Resistors

Figure 1.17 Resistor
schematic symbol.

A resistor, shown in Figure 1.17, is a circuit element which resists the flow of electrical
current. An applied voltage is required in order to pass current through a resistor. The
resistance R is the ratio of the voltage applied to the current that flows through the resistor.
This ratio relationship is called Ohm’s law. The unit of resistance is the ohm (Ω).

1.3.1.2 Ohm’s Law

Current

through the

resistor

I 

Resistor

V 
Voltage 

across 

resistor 

Figure 1.18 Resistor schematic symbol labeled
with passive sign convention for visualizing
Ohm’s law.

Ohm’s law states that the voltage across a resistor, shown in
Figure 1.18, equals the current through the resistor times the
resistance R of the resistor.

Equivalently, Ohm’s law states that the current through the
resistor equals the voltage across the resistor divided by the
resistance R.

V = IR (1.3)

IG = V
R

= GV (1.4)

R = V
I

(1.5)

Equations 1.3, 1.4, and 1.5 are all statements of Ohm’s law, which describes the behavior of a resistor. V is the
voltage across the resistor. I is the current through the resistor. R is the resistance and G is conductance, the inverse
of resistance, shown in Equation 1.6. The unit of conductance is the siemen. It used to be called the mho.
Ohm’s law assumes that the resistor is linear, that is, that the resis-
tance of the resistor does not vary as a function of time, current,
or voltage.

G = 1
R

= I
V

(1.6)

1.3.1.3 Ohm’s Law Notation with Time-Dependent Functions
Ohm’s law is also valid for currents and voltages that vary as a function of time. (But the resistance is still constant
with respect to time, voltage, and current.)


