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Preface 

In this fast-moving digital era, the advent of Artificial Intelligence (AI) to inno-
vate and improve healthcare services marks a pivotal moment. This volume brings 
together leading experts to illuminate this transformative journey, from electronic 
health records, robotics, and AI in healthcare, to machine learning-based decision 
support for patient self-triage and appointment scheduling. Each chapter offers a 
glimpse into the intersection between intelligence and healthcare. It is envisaged that 
this volume could provide readers with useful knowledge on how intelligent systems 
enhance patient care, optimize resources, and revolutionize healthcare delivery and 
management. A description of each chapter collected in this volume is as follows. 

Maghool et al. discuss the importance of advanced analytics in utilizing Electronic 
Health Records (EHRs) for improving healthcare services. The use of distributed 
computing and AI in smart healthcare is examined, presenting practical use cases to 
enhance patient care. A workflow using the SMART BEAR (a big data platform with 
evidence-based personalized support for healthy and independent living at home) 
infrastructure is devised to standardize and improve data quality. Its usefulness in 
predicting future health conditions like cardiovascular disease and mild depression 
is assessed. 

Wiczorek examines the critical role of usability and user experience, including 
emotion, trust, and ethical consideration, pertaining to AI applications in healthcare. 
The importance of following human-centered design principles to meet user needs is 
emphasized. While medical professionals are the primary users of AI-based health-
care tools, involving patients in the development process is crucial, particularly in 
contexts like chronic condition prevention and management. The study highlights 
older persons as a significant user group with specific needs and limitations, advo-
cating for their inclusion in the human-centered design process in the design and 
development of AI-based healthcare systems. 

Gino et al. study the impact of the COVID-19 pandemic on telehealth, focusing on 
the role of tele-education and tele-simulation in healthcare. The emergence and effec-
tiveness of tele-simulation for safe clinical skills training are examined. A research 
and innovation laboratory, i.e., maxSIMhealth lab, for addressing healthcare training
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challenges through innovative simulation solutions is introduced. The study under-
scores the increased integration of technology in healthcare education, driven by the 
need for swift adaptation during the pandemic. 

Luca et al. address the challenges associated with storing personal medical data in a 
globalized context, covering existing and potential AI-powered systems. Accessing 
large databases presents difficulties owing to regulations (e.g., the General Data 
Protection Regulation). Despite the challenges, it is important to explore different 
aspects and possibilities in storing individual health information to advance medical 
decision support systems. Indeed, delivering timely, accurate, and personalized infor-
mation to healthcare professionals in decision-making processes shows promise in 
enhancing healthcare outcomes. 

Cuza et al. investigate the crucial issue of determining the minimum data require-
ment for training and testing AI models. A case study focusing on semantic segmen-
tation of radiology images is presented. A combination of theoretical insights with 
experimental results offers comprehensive guidance for various phases of model 
development. The study encompasses both supervised and zero-shot segmentation 
approaches, which include the “Segment Anything Model”, providing a holistic 
understanding of the subject matter. 

Kolpashchikov et al. delve into the growing significance of robots and AI in 
healthcare, playing diverse roles across different fields and delivering benefits to 
both patients and healthcare professionals. An overview on how robots and AI 
interact within the medical field is presented. Robots are useful in conducting precise 
surgical procedures and for helping disabled individuals and caregivers. Meanwhile, 
AI enhances diagnostic accuracy, offers mental support, and facilitates medical 
education. By integrating AI, the capabilities of medical robotics can be greatly 
enhanced. 

Priday et al. strive to answer the question: “How can a network of aged and 
community care living labs provide the benefits of embedded technology innova-
tion while overcoming the limitations of translation and scaling in the Australian 
context?” Through co-design with international and local living lab experts and aged 
care providers, a purpose-built network and process model is developed to miti-
gate issues associated with place-based approaches. The findings contribute towards 
addressing the growing importance of technology-supported aged and community 
care solutions due to demographic transitions, particularly in diverse settings like 
rural and urban areas. 

Campolina and Abe analyze the critical role of patients and healthcare experts 
in Health Technology Assessment (HTA). Advocating a Paraconsistent Expert-
Based Multi-Criteria Decision Analysis approach, and collaborative methodologies 
with experts and HTA organizations are discussed. The significance of incorpo-
rating expert perspectives in HTA, including patients, is highlighted. Paraconsistent 
approaches, as exemplified by the Paraconsistent value framework, offer a robust 
methodology, enhancing decision legitimacy and transparency in HTA. 

Belciug & Iliescu explore two methods for determining the correct view plane in 
examining fetal morphology ultrasound videos, i.e., a probabilistic approach and a 
peer pressure approach. Convolutional neural networks (CNNs) are trained to identify
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fetal abdomen view planes from image scans. A statistical analysis is applied to select 
the appropriate method for analyzing ultrasound videos, considering challenges such 
as fetal movement and overlapping view planes. Both methods perform well, with 
the results validated by expert sonographers. 

Li et al. evaluate the Liver Imaging Reporting and Data System (LI-RADS), which 
standardizes liver imaging terminology, interpretation, and reporting, for undertaking 
liver tumor malignancy. An intelligent LI-RADS framework utilizing multi-task 
CNNs is developed. The framework incorporates four distinct branches to extract and 
analyze specific pathological features. The new multi-task deep learning framework 
is able to achieve reliable and high-precision LI-RADS classification results. 

Ng et al. assess the complexity of healthcare logistics, addressing the challenge 
of efficient last-mile delivery in ensuring timely delivery of drugs, medical supplies, 
and others, for improving healthcare services. The Tabu Search (TS) algorithm is 
utilized as a solution for optimizing delivery routes in healthcare logistics. Following 
a rigorous systems development life cycle, the developed software tool is evaluated 
using three daily logistics scenarios, demonstrating its effectiveness in real-world 
applications. 

Ong et al. develop machine learning (ML) models for use as a self-triage decision 
support tool. The tool predicts and assigns medical specialists to patients based on 
patient symptoms. Specifically, ML is devised by following several steps, including 
data pre-processing, feature selection, and hyper-parameter tuning. The predictions 
and implications of ML-based models are analyzed through a case study involving 
patient self-triage and appointment scheduling. 

We wish to express our heartfelt gratitude to the esteemed authors whose contri-
butions have enriched this volume with inspiring research and profound insights. We 
also would like to express our sincere appreciation to the reviewers for their efforts 
in shaping this volume into a comprehensive resource. The dedication and exper-
tise of all parties involved have illuminated the path towards leveraging intelligent 
methodologies to deliver better healthcare services for our society. 
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Chapter 1 
Technologies and Strategies 
for Continuous Learning through 
Electronic Health Records Data 

Samira Maghool, Valerio Bellandi, and Paolo Ceravolo 

Abstract Achieving a comprehensive view of a patient’s health using data from 
Electronic Health Record systems requires the use of advanced analytics. However, 
effectively managing and curating this data requires carefully designed workflows. 
While digitization and standardization enable continuous health monitoring, issues 
such as missing data values and technical glitches can jeopardize data consistency 
and timeliness. On the other hand, the Efficiency in processing the large volume of 
data from disparate sources generated by the healthcare industry is critical. In this 
chapter, we try to provide an overview of how distributed computing and Artificial 
Intelligence can be used in the context of smart healthcare and big data in practical 
use cases, enabling insights to improve patient care. In addition, we propose a work-
flow for developing prognostic models that uses the SMART BEAR infrastructure 
and leverages the capabilities of the Big Data Analytics engine to standardize and 
harmonize data. Our workflow improves data quality by evaluating different imputa-
tion algorithms and selecting the one that preserves the distribution and correlation 
of features similar to the original data. We applied this workflow to a subset of data 
in the SMART BEAR repository and evaluated its impact on predicting future health 
conditions, such as cardiovascular disease and mild depression. We also explored 
the potential for model validation by clinicians in the SMART BEAR project, the 
transfer of subsequent actions within the decision support system, and the estimation 
of the required number of data points.
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Keywords Internet of Things (IoT) · Smart healthcare · Machine learning ·
Analytics · Cloud computation 

Abbreviations 

EHR Electronic Health Record 
AI Artificial Intelligence 
BDA Big Data Analytics 
CVD Cardiovascular Disease 
ML Machine Learning 
CNN Convolutional Neural Networks 
IoT Internet of Things 
HIPAA Health Insurance Portability and Accountability Act 
GDPR General Data Protection Regulation 
EU European Union 
MNAR Missing Not At Random 
MAR Missing At Random 
MCAR Missing Completely At Random 
NLP Natural Language Processing 
CI Continuous Integration 
CD Continuous Delivery 
CT Continuous Training 
CM Continuous Monitoring 
DSS Decision Support Systems 
FHIR Fast Healthcare Interoperability Resources 
ETL Extract, Transform, Load 
DAG Directed Acyclic Graphs 
RMSE Root Mean Square Error 
MAE Mean Absolute Error 
AE Absolute Error 

1.1 An Overview of the Current State of AI in Healthcare 

In recent years, numerous efforts have been made to implement AI technologies in 
the healthcare domain. These technologies have been highly successful in assisting 
clinicians in various areas, from diagnosis by analyzing medical data, to pattern 
recognition, to assisting in finding appropriate treatments. It can also be used to 
support medical decisions by providing real-time assistance and insights to clinicians. 

AI-based tools can improve accuracy, reduce costs and save time compared to 
traditional diagnostic methods. In addition, AI can reduce the risk of human error 
and provide more accurate results in a shorter time.
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ML models for clinical trials are mostly based on supervised learning. In super-
vised learning, the model is trained against gold standards defined by a clinical expert, 
such as a chart review of 1000 patients with and without CVD, to identify the exist-
ing pattern between patients with CVD and those without. In this process, if some 
hypotheses are raised by clinicians, the researcher tries to prove these hypotheses 
using ML algorithms, but rejecting them needs more clinical and theoretical vali-
dation and evidence [ 8]. On the other hand, unsupervised ML models can also be 
used when there is a need to phenotype multiple conditions. These models are gener-
ally not as accurate as supervised models, but allow high throughput over a handful 
of thousands of variables with improved accuracy. In addition, unsupervised models 
have been used to build clinical models to predict disease progression, optimize diag-
nostics, and target treatment. In addition, unsupervised pattern recognition analyses 
identify subgroups of patient-patient similarity in a high-dimensional or graph-based 
space. 

From the wide variety of current applications of AI in healthcare, we can recall: 

• Robotics in order to provide high-precision surgical procedures. 
• Digital secretary to provide effective intervention by alerting nurses by continu-
ously monitoring the patient. 

• Machine Learning to predict and analyze the patterns in medical data and facilitate 
decision-making by processing a large volume of data. ML can assist in managing 
workflow, and automate tasks in a timely and cost-effective manner. 

• Deep learning by adding layers, for instance in CNN and data mining techniques, 
can help in identifying data patterns. 

• Image processing to improve the finding of a large number of medical images 
and speed up the diagnosis stage. 

• Convert unstructured text data, such as medical charts and prescriptions, to an 
easily readable format. 

• Statistical analysis of patients’ health records to evaluate the result of treatment. 
• Big data analysis in order to provide personal recommendations by processing 
the historical data. 

• Predictive modeling for prediction and prevention of possible risk or adverse 
event of treatments. 

However, there are still many concerns regarding AI-based technologies in the 
health domain and their usage is not widely spread among clinicians. In order to fully 
take advantage of the potential of AI, various issues such as trust, explainability [ 16], 
and responsibility of these technologies should be discussed. Moreover, developed 
systems should consider taking into account fairness [ 4, 17] and guaranteeing the 
benefit for all [ 48]. 

The prerequisites of a fair and accurate AI system in the healthcare domain, are 
data quantity and quality. ML, as a subset of AI, uses data as resources in which 
the accuracy is highly dependent on these two features of the input data in order to 
overcome the challenges and complexity of traditional diagnosis procedure [ 40]. 

The healthcare sector is being profoundly impacted by the rapid expansion of 
digital data, the increasing computing power driven by advancements in hardware
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technologies (such as graphics processing units), and the rapid progress of ML algo-
rithms, particularly those based on deep learning. 

Various companies are developing devices and services that can assist in improv-
ing user health by acquiring health information from daily life using a combination 
of IoT technologies and wearable devices. 

Even though healthcare organizations can adopt AI systems and integrate them 
into existing workflows, successfully implementing predictive analytics requires 
high-quality data, appropriate infrastructure, and clinicians’ oversight to ensure 
appropriate and effective interventions for patients. 

1.2 Data in Healthcare AI 

As a consequence of digitalization, like every other industry, the healthcare sector 
is also producing data at a high rate that presents many advantages and challenges 
simultaneously. This huge volume of data requires suitable infrastructure to manage 
and analyze in order to extract meaningful information. Electronic Health Record 
(EHR) systems facilitate the systematic digitized collection of patient data through 
electronic devices and information systems. The advantages associated with EHR 
adoption span both organizational and clinical realms [ 31]. Clinical decision support 
systems, computerized order entry systems, and health information exchange sys-
tems can significantly enhance their efficiency when integrated with EHRs [13]. This, 
in turn, leads to societal benefits such as decreased medical errors, enhanced research 
capabilities, and improved access to information for both patients and healthcare pro-
fessionals [ 38]. Given the contemporary challenges that healthcare systems confront, 
particularly in the face of the rapid aging of populations [ 49], legislative bodies in 
the EU, the US, and other nations have responded by formulating recommendations 
and standards for healthcare organizations to follow in their utilization of EHRs to 
bolster operational efficiency [ 20, 52]. This trend coincides with a growing interest 
in mobile health (mHealth) monitoring systems. Alongside advancements in hospi-
tal infrastructure, mHealth is paving the road for the establishment of smart health 
ecosystems worldwide, leveraging data from mobile devices, wearables, and IoT 
devices both within and beyond healthcare facilities. These emerging smart health 
ecosystems enable the continuous collection of data from everyday life, which can 
be analyzed to obtain the evidence necessary to offer personalized interventions 
[ 7, 18]. 

The analysis of the extensive data gathered from EHR holds great promise in vari-
ous healthcare applications. These applications include extracting clinically relevant 
information and facilitating diagnostic evaluations [ 33]. Additionally, EHR data can 
be used to generate real-time risk scores for patient transfer to intensive care [ 19]. It 
is also valuable in predicting in-hospital mortality, readmission risk, prolonged hos-
pital stays, and discharge diagnoses [ 47]. Furthermore, EHR data aids in predicting 
future deterioration, such as acute kidney injury [ 51], and enhances decision-making 
strategies, including the weaning of mechanical ventilation [ 44] and the management
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of sepsis [ 45]. Moreover, it assists in learning treatment policies from observational 
data [ 24]. 

Proof-of-concept studies have focused on streamlining clinical workflows. This 
involves tasks like automatically extracting semantic information from transcripts 
[ 28], recognizing speech during doctor-patient conversations [ 15], predicting the 
risk of patients failing to attend hospital appointments [ 41] and, summarizing doctor-
patient consultations. 

At the current status EHR systems have grown substantially in terms of data vol-
ume and diversity, posing a significant challenge in data management. Effective data 
management necessitates the formulation of a data strategy and the establishment of 
reliable methods for data storage, access, integration, cleansing, and data preparation 
for analytic [ 29]. 

1.2.1 Big Data in Healthcare 

As is intuitively understandable from the term, “Big Data” refers to a large amount 
of heterogeneous data that is unmanageable using traditional software or internet-
based platforms. It stores massive amounts of data generated from various sources 
such as IoT devices that create a continuous stream of data while monitoring the 
health of people (or patients) which makes these devices a major contributor to 
big data in healthcare. Such resources can interconnect various devices to provide 
a reliable, effective, and smart healthcare service to the elderly and patients. Big 
data encompasses both structured and unstructured data that organizations generate 
focusing on processing and analyzing data in its raw and unstructured form. 

Therefore, we need advanced technological applications and software that can 
utilize fast and cost-efficient high-end computational power to make sense of this 
large amount of data. By leveraging distributed computing and parallel processing, 
big data platforms enable organizations to extract meaningful insights and patterns 
from massive datasets. 

1.2.2 Privacy and Security in Healthcare AI 

While the term “privacy” has been a frequent topic of discussion, yet a unified 
definition and clear procedure to ensure privacy-preserving policies remain elusive. 
This has led to ongoing confusion regarding the meaning, value, and scope of the 
concept of privacy. Privacy primarily revolves around the collection, storage, and 
utilization of personal information. It delves into questions like whether data should 
be collected in the first place and whether there are justifiable reasons for using 
data collected for one purpose in another (secondary) context. An essential aspect 
of privacy analysis pertains to whether individuals have given their authorization for 
specific uses of their personal information [ 9, 55].
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Privacy plays a pivotal role in facilitating socially beneficial endeavors, such 
as health research. People are more inclined to take part in and endorse research 
when they have confidence in the protection of their privacy. Moreover, safeguarding 
privacy is regarded as a means to improve the quality of data for research and quality 
enhancement initiatives. When individuals take measures to safeguard their privacy, 
such as refraining from seeking healthcare or withholding information, it results in 
the introduction of inaccurate and incomplete data into the healthcare system. These 
flawed data, in turn, get used for research, public health reporting, and outcomes 
analysis, perpetuating the same vulnerabilities [ 22]. Medical records can include 
some of the most intimate details about a person’s life. They document a patient’s 
physical and mental health and can include information on social behaviors, personal 
relationships, and financial status [ 23]. 

Ensuring the security of data in health research is of utmost importance due to the 
substantial amount of personally identifiable health information collected, stored, 
and utilized in this field, much of which can be sensitive. In the event of a security 
breach, individuals whose health information has been inappropriately accessed may 
face a multitude of potential harms. Additionally, there is the risk of economic, social, 
and psychological harm. 

Health Insurance Portability and Accountability Act 1 (HIPAA) is a U.S. federal 
law enacted in 1996 with the primary goal of protecting the privacy and security of 
individuals’ health information, as well as ensuring the portability of health insurance 
coverage. On the other hand, the General Data Protection Regulation 2 (GDPR) is 
a comprehensive data protection regulation that became effective in the European 
Union (EU) in 2018. Its primary aim is to enhance the protection of individual’s 
personal data and provide them with more control over how their data is used. GDPR 
applies not only to organizations within the EU but also to organizations outside the 
EU that process the personal data of EU residents. It covers a wide range of personal 
data, including health data. Adherence to both regulations is essential for protecting 
individual privacy and data security, while they have different scopes and areas of 
emphasis. 

1.2.3 Data Quality and Preprocessing 

The adoption of EHR systems necessitates the development of comprehensive data 
management procedures with a primary focus on “data quality” and “clinical signif-
icance”. These two pillars are instrumental in harnessing data for enhanced monitor-
ing and diagnostic procedures, particularly in the context of mobile health (mHealth) 
data. In mHealth, data records may be collected from various devices, at different 
times, and with varying levels of quality. Data transmission interruptions due to tech-
nical or usability issues, network problems affecting IoT device availability [32], tem-

1 https://www.cdc.gov/phlp/publications/topic/hipaa.html. 
2 https://gdpr-info.eu/. 
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porary discontinuation of monitoring plans due to patient overload perceptions [ 54], 
misaligned time series arising from different temporal granularities in data collec-
tion [ 12], and gaps and missing values in time series [ 34] can all render time series 
incomplete, jeopardizing the validity of data analytics. The importance of verify-
ing data completeness, consistency, and timeliness through tests and implementing 
methods to rectify or enhance data in cases of low quality is well-documented in the 
data quality literature [ 14]. Moreover, the effectiveness of prognostic analytics relies 
on the accuracy achieved by predictive models and the significance of the samples 
used for model training [ 42]. The design of a prognostic model encompasses con-
siderations of domain complexity, domain stability, and sample size to achieve the 
required accuracy [ 6]. 

Whilst EHR systems are constantly producing and recording data, leveraging 
Machine Learning algorithms for creating prognostic and predictive models has 
implications for patients, caregivers, and healthcare facilities for cost management 
purposes [ 2]. Detecting systematically the issues concerning the data quality imposed 
by missing data is an interesting problem that is explored in [ 50]. The authors have 
found patterns in the condition domain and investigated the processes that shape 
them suggesting data quality issues influenced by system-wide factors that affect 
individual concept frequencies. The most general patterns identified in the literature 
are Missing Not At Random (MNAR), Missing At Random (MAR), and Missing 
Completely At Random (MCAR) [ 25]. MNAR points out that there is a relationship 
between the propensity of a value to be missed and its values. For example, people 
with the lowest education are not answering questionnaires including the questions 
on their educational courses. MAR refers to a category of missing values that are 
not related to other missing values but are related to observed values. For example, 
men are more likely to report their weight than women. MCAR, on the other hand, 
represents a category once there is no relationship between missing values and any 
other values. Nothing makes some data more likely to be missing than others. For 
example, blood pressure records are missing randomly, due to user ignorance or 
of charge battery. Even though in an approach the data scientists limit the study 
only to those patients with complete data, recent studies found that, compared to 
restricting the analysis, imputation techniques improved the accuracy of predictions 
at any proportion of missing data [ 26]. This implies that researchers should consider 
whether all the variables related to missingness can plausibly be included in the 
imputation model to limit bias and improve accuracy. 

On the other hand, in the longitudinal studies, covered topics include reliability, 
validity, sampling, aggregation, and the correspondence between theory and method. 
More specifically, in these studies, practical issues in longitudinal research, such as 
the drop-out problem and issues of confidentiality are also addressed [ 11, 36], while 
the automation of this procedure is still missing. Moreover, due to the sensitivity of 
the health care domain, not only a deep knowledge of the process is needed but also 
continuous evaluation of the curation strategy should be considered.
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1.3 Distributed Computing in AI 

Distributed computing infrastructure refers to the hardware and software systems 
designed to support distributed computing, where multiple computers work together 
to solve complex problems or process large amounts of data. It involves the use of 
a network of interconnected computers, often referred to as nodes or servers, that 
collaborate and share resources to achieve a common goal [ 30]. Its major capabilities 
are balancing loads between computers that are taking care of computation while it 
is fault-tolerant and resilient, and requires robust monitoring and management tools 
to track the performance of distributed components. 

The combination of Distributed computing and AI technologies allows for the 
efficient processing of large volumes of data that the healthcare industry generates 
from various sources and enables insights that can improve patient care, accelerate 
research, personalized medicine, disease prevention, healthcare cost reduction, and 
enhance healthcare operations. Distributed computing and AI can be utilized in the 
context of smart healthcare and big data in the following domains: 

Data Collection: Distributed computing frameworks, such as Apache Hadoop 3

or Apache Spark 4, can be employed to collect, store, and preprocess these diverse 
data types from multiple sources [ 1]. 

Data Integration: Distributed computing platforms facilitate the integration of 
disparate data sources by enabling parallel processing and data transformation. This 
integration allows healthcare professionals and researchers to combine and analyze 
data from different domains, uncovering correlations and patterns that were previ-
ously inaccessible. 

Data Preprocessing: Big data in healthcare often needs preprocessing to clean, 
transform, and format the data for analysis. Distributed computing allows for parallel 
processing, making data preprocessing more efficient. 

Data Storage and Management: Distributed databases, like HBase or Cassandra, 
can handle the storage and retrieval of vast amounts of healthcare data. This enables 
quick access to patient records and other critical information for real-time decision-
making. 

Data Analysis and Machine Learning: Distributed computing frameworks pro-
vide the computational power required to train complex models on massive datasets. 
These AI models can assist in diagnosing diseases, predicting outcomes, recom-
mending treatments, and identifying potential risks or anomalies in real time. 

Real-Time Monitoring: Distributed computing systems coupled with AI algo-
rithms can enable real-time monitoring of patient data streams, including vital signs, 
activity levels, and medication adherence. By continuously analyzing this data, 
healthcare providers can identify critical events, detect early warning signs, and 
intervene promptly to prevent adverse outcomes.

3 https://hadoop.apache.org. 
4 https://spark.apache.org. 
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Predictive Analytics: Big data analytics combined with distributed computing 
and AI can leverage historical data to develop predictive models. These models can 
forecast disease progression, identify high-risk patients, anticipate resource require-
ments, and support proactive interventions. Predictive analytics can aid in optimizing 
healthcare resource allocation and improving operational efficiency. 

Natural Language Processing (NLP): NLP algorithms can extract valuable 
information from unstructured text in EHRs, medical literature, and patient feed-
back, providing valuable insights for healthcare professionals. 

Privacy and Security: When working with sensitive patient data, privacy and 
security are of utmost importance. Distributed computing can incorporate privacy-
preserving techniques such as secure multiparty computation and differential privacy 
to protect patient information while enabling collaborative analysis across multiple 
healthcare institutions [ 1]. 

Scalability and Performance: Big data in smart healthcare is characterized by its 
volume, velocity, and variety. Distributed computing architectures enable horizontal 
scalability, meaning the system can seamlessly add more computational resources as 
data volumes grow. By distributing the workload across multiple nodes, distributed 
computing improves performance and reduces processing times. 

Federated Learning: Federated learning is an emerging approach that combines 
AI and distributed computing in healthcare. It enables the training of machine learn-
ing models on decentralized data sources while preserving data privacy. In this sce-
nario, AI models are trained collaboratively across multiple healthcare institutions 
without sharing patient data, thereby fostering data privacy and security. 

Data Fusion: In smart healthcare, data from various sources are fused together 
to provide a comprehensive view of the patient’s health status. Distributed comput-
ing facilitates data fusion from diverse sources and enhances the overall quality of 
healthcare decision-making. 

The integration of distributed computing and AI in smart healthcare allows for the 
efficient processing and analysis of big data. These technologies enable healthcare 
professionals to derive valuable insights, improve patient care, enhance operational 
efficiency, and advance medical research while ensuring data privacy and security. 

1.4 Continuous Learning Models 

ML algorithms learn from data without being explicitly programmed to do so. Tra-
ditional ML models are trained on the data assuming the future produced data distri-
bution will be statistically more or less identical to the retrospective data, while it is 
not always a valid assumption and “concept drifts” are likely to occur to the dataset 
and to the model subsequently. This way, the model gets outdated and is not valid 
(able) anymore for prediction purposes. 

In the following case scenarios adopting continuous learning is highly recom-
mended: (I) To keep an ML model up to date on the latest data, once ML models 
fall below an acceptable threshold for the accuracy metrics; (II) Once the data can
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become too statistically dissimilar from the data the ML model was originally trained 
on. 

Learning from the prospective data contains four major components, Continu-
ous Integration (CI), Continuous Delivery (CD), Continuous Training (CT), and 
Continuous Monitoring (CM) to mimic a human’s ability to acquire and fine-tune 
information continuously. 

Using distributed computing infrastructures makes the CI of data more feasible 
than traditional approaches while CD helps that as new software features and fixes 
pass through the develop-build-test cycle, they become available as rapidly as pos-
sible. 

Unlike traditional ML models, which are trained on a static dataset and require 
periodic retraining, continuous learning models iteratively update their parameters 
to reflect new distributions in the data, allowing them to remain updated and adaptive 
to the continuously changing data. 

CM and model evaluation provide a means to assess the model’s performance and 
reproducibility to ensure consistent outcomes during model evaluation. 

Hence, for continuous learning from EHR systems, data quality and clinical sig-
nificance become central workflows that these systems must address in the context of 
continuous data acquisition and model adaptation. Apriori evaluation of these dimen-
sions is no longer aligned with the goals of modern EHR infrastructures, necessitating 
the design of software and data management workflows accordingly. 

1.5 Clinical Decision Support 

Explain how EHR data can be used to provide real-time clinical decision support to 
healthcare providers. Highlight the potential to reduce medical errors and improve 
patient care. 

Envisioning the support received from computers in complex clinical situations 
by decision support systems (DSSs) that are designed to be used interactively by clin-
icians as they seek to reach decisions, regardless of the underlying analytic method-
ology that they incorporate, has taken place from a long time ago. 

With the evolution of communication technologies and the digitalization of health-
care data, the ability to offer support to clinicians has faced a great improvement. For 
example, many built-in decision-support tools in medical devices create a variety of 
visualization and interpretation of medical data. Moreover, leveraging AI algorithms 
such as ML and NLP has broadened the clinical perspective by predictions using 
prospective data. DSS requires an interactive and intuitive design with a strong sci-
entific foundation considering the established evidence for its safety, validity, and 
reproducibility of the results. The AI model used in DSS should be transparent while 
taking into account the relevance and the pertinent domain with which clinicians 
are likely to ask for assistance. After all, it should be noted that DSSs are designed 
for assistance, to reduce medical error, and to improve patient care by continuous 
monitoring using EHR and are not replaceable with a clinician.
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1.6 A Real Case Scenario: The SMART BEAR Case Study 

The SMART BEAR project 5 provides a comprehensive substructure for long-term 
continuous examinations and testing the well-being status of older people using 
wearable devices, mobile apps, and follow-up assessments by trained personnel and 
physicians. 

SMART BEAR complements an EHR system by providing continuous monitor-
ing, periodic assessments, data gathering from different resources, and providing 
both descriptive and predictive analyses. 

Utilizing the medical/clinical data requires much effort in unifying the concepts 
and terms to make the data understandable and usable by other clinicians and sci-
entists. A proposed solution is leveraging the unique LOINC 6 and SNOMED-CT 7

codes in defining observations, encounters, and biological considerations. Data stor-
age in the SMART BEAR is designed based on the standardized data acquisition 
procedures specified in the Mapping on Fast Healthcare Interoperability Resources 
(FHIR) by [ 37]. FHIR provides a means for representing and sharing information 
among clinicians and organizations in a standard way regardless of the ways local 
EHRs represent or store the data to advance interoperability. 

The data measured and collected with SMART BEAR devices, mobile applications, 
and questionnaires will be stored in HAPI FHIR repositories using the unified codes. 
Regarding the integration of questionnaires on the FHIR repository, a generic model 
is defined 8. 

In this chapter, we aim to present the results attained within the SMART BEAR 
project, focusing on the development of a comprehensive data management pipeline 
for continuous learning in EHR systems. Our solution incorporates multiple data 
management procedures into automated and modular workflows, enabling organiza-
tions to cultivate a culture of continuous improvement. 

1.6.1 The SMART BEAR Infrastructure 

The main objective of the SMART BEAR project is continuous and objective moni-
toring of quality of life of elderly people and their ability to live independently [ 18]. 
Considering these objectives, in order to implement efficient and valid analytics in 
a continuous data acquisition environment, it is required to cure the received data in 
multiple stages of the data management process [ 5]. 

Figure 1.1 presents the technical infrastructure of the SMART BEAR project [ 43]. 
The infrastructure contains different components such as Big Data Analysis (BDA) 
Engine, Security Component, Decision Support System (DSS), Dashboard, and Data

5 https://www.smart-bear.eu/. 
6 https://loinc.org/. 
7 http://www.snomed.org/snomed-ct/Use-SNOMED-CT. 
8 https://www.hl7.org/fhir/questionnaireresponse.html. 
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Fig. 1.1 An overview of the SMART BEAR infrastructure as presented in [ 43] 

Repository. The received data from home sensors and other synergy studies are 
depicted on the right side of the picture. All the data curation procedures, including 
workflows related to data quality assessment, data preparation, sample size evalua-
tion, and continuous learning, are supposed to take place in the BDA engine. Fur-
thermore, the power of the BDA engine is exploited for prediction and personalized 
intervention purposes. 

Taking advantage of the capabilities of the distributed systems, the BDA engine 
is tailored to provide scalability in terms of the addition of resources to the platform 
to support the increase in workload. Due to the execution on Docker containers, the 
configuration and deployment of resources are easy with high flexibility. 

The BDA engine addresses the functionalities required for processing DAWs 
(Data Analysis Workflows) and storing execution results. It uses a series of suitably 
configured Open-Source components and a custom-developed one responsible for 
piloting the execution of the various analyses available in the catalog for results 
storage and presenting them in the dashboard. 

1.6.1.1 BDA Engine Components 

The components used by the platform are as follows: 

• Apache Hadoop: From the Hadoop ecosystem, an exclusively distributed file 
system (HDFS) is utilized for storing the extracted data from the FHIR repository 
and transforming it in a tabular format appropriately.
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• Apache Hive Metastore 9: It contains all the information regarding the databases, 
the tables, and the relationships between them. This is especially useful for han-
dling data that is transformed and saved on the distributed file system. The Meta-
store allows interoperability between the various components that need to access 
the data and enables to launch SQL-like queries using Trino and Spark. 

• Apache Spark: This is the component that allows data management, data engi-
neering, and machine learning tasks on a large dataset. Thanks to its abilities, 
the data are accessible through the Metastore considering the HDFS data similar 
to tables in a SQL database, simplifying life for those who have to develop the 
analytics and guaranteeing the necessary scalability for the platform. 

• Trino 10: It is a distributed SQL query engine designed to query large data sets 
distributed over one or more heterogeneous data sources. It is designed to handle 
data warehousing and analytics: data analysis, aggregating large amounts of data, 
and producing reports (OLAP). It could be leveraged for Extract, Transform, Load 
(ETL) transformations without the overhead of Spark. Furthermore, Trino with the 
proper configuration can run SQL queries directly on tables stored in HDFS. 

• Apache Airflow 11: It can develop, schedule, and monitor batch-oriented work-
flows. Airflow’s extensible Python framework enables us to build workflows using 
different technologies, combined with docker, it can run custom images with all 
the tools needed to run analytic tasks. 

• BDA API: It is internally developed for providing a REST-type interface to the 
dashboard and other platform components in order to be able to interact with 
workflows and save/retrieve the results of previous executions. The BDA API 
includes a catalog of atomic analytics that could be composed in workflows the 
engine schedule automatically or in dependence on specific events. 

• Delta Lake 12: It is an open-source storage framework that enables building a 
Lakehouse architecture. It is located on top of Hadoop providing ACID Trans-
actions, and scalable metadata handling while unifying streaming and batch data 
processing on top of existing data lakes like HDFS . 

• Apache Zeppelin 13: It is a Web-based tool that enables users to create interactive 
data analysis, prototype some of the analytics that should be translated into a 
proper workflow, and share preliminary results in a collaborative environment for 
the data scientist.

9 https://hive.apache.org. 
10 https://trino.io. 
11 https://airflow.apache.org. 
12 https://delta.io. 
13 https://zeppelin.apache.org. 
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1.6.1.2 Data Storing and Data Management by BDA Engine 

Exported data from various storage sources, such as the FHIR repository, is trans-
formed through a series of steps and stored in the format requested by Delta Lake. 
This format allows for building a Lakehouse architecture. The Lakehouse is an open 
architecture that combines the best elements of data lakes and data warehouses. As 
some of the key features of this kind of architecture, we can name: (i) ACID trans-
actions, (ii) Schema enforcement, (iii) Business intelligence support, (iv) Openness, 
(v) Support for diverse workloads, and (vi) Support for structured and unstructured 
data. 

Through Delta Lake, we support all these requirements and offer a real version of 
the management process for data in our environment. With the Time Travel feature 
it is possible to specify the version of a table. This allows us to be able to relaunch 
an analysis on a specific version of the data in order to be able to make a comparison 
between the results of different snapshots. It also provides a mechanism to replicate 
a result and audit the data and the obtained results. 

1.6.1.3 Data Analysis Tasks 

In the SMART BEAR project, data analysis tasks are mainly performed using Spark 
and Python libraries that can operate on data in Delta Lake format. Depending on the 
complexity of the workflows, these tasks could be composed of several steps. In some 
cases, it is easier to query and prepare data through Spark and then use other more 
specific libraries or tools to perform the required analytics. With Apache Airflow 
we can create DAGs (Directed Acyclic Graphs) composed of different tasks and 
use HDFS as a distributed file system to save the data needed for the various steps. 
Furthermore, with this flexibility, if needed, it is possible to use ready Docker images 
containing all the required tools for creating models and performing analysis. The 
main requirement therefore always remains to be able to read data from a distributed 
file system such as HDFS. 

1.6.1.4 Data Flow Management and Workflow Orchestration 

The most complex job in data flow management is querying the FHIR repository to 
export the data from this repository and insert it into the tables in Delta Lake. The 
workflow, that runs each day, is therefore composed of different tasks which can be 
roughly divided as follows: (i) Export from FHIR, (ii) Flattening the data, and (iii) 
Upsert in Delta Table. To export the data, the possibilities offered by the FHIR REST 
API in using the Bulk Data Export API, are exploited. Therefore it is also possible 
to request to export data that has been inserted/modified in the repository from the 
last time the export process was successful. The data exported in ndjson format are 
then stored on HDFS, the next step is to transform them into a flat type format as if 
they were data belonging to a common SQL table. All of this is orchestrated using
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Apache Airflow as the main engine. Using Airflow, it is convenient to configure the 
workflows’ execution according to predefined intervals. In very specific cases it is 
possible to execute workflows using schedules defined through a specific interval by 
a Cron-type expression. 

1.6.1.5 Data Visualization 

For data visualization purposes, the BDA Engine mainly makes use of two different 
tools: Apache Echarts 14 to display the results of the analytics in the Dashboard 
interface and Apache Zeppelin to allow data scientists to carry out data exploration 
and to create examples of analytics which will be deployed in production. Apache 
Echarts is an open-sourced JavaScript visualization tool that can run on web browsers 
and mobile devices, it also provides a rich library of basic charts and the possibility 
to extend or customize according to the needs of the asked output. There are many 
available features in this tool, among the more common ones are: (i) Datazoom 
that is used for zooming a specific area, which enables users to investigate data in 
detail, get an overview of the data, or get rid of outlier points. (ii) Timeline which 
provides functions like switching and playing between multiple charts with relative 
time differences. (iii) Toolbox that contains some functionalities such as the export 
to PNG format. (iv) Legend that shows symbol, color, and name of different series. 
The user can click legends to toggle displaying series in the chart. 

1.6.1.6 Platform Management 

Since all the tools used in the BDA Engine have been containerized, to manage the 
entire platform the tool we rely on is the deployment platform itself, i.e., Kubernetes 
(K8s). K8s is the system that we use to handle scaling, automatic system deployment, 
and manage all the containerized applications that we use in the Cloud. All the 
components described above have their basic configurations saved as ConfigMap 
inside the SMART BEAR repository dedicated to the BDA Engine while passwords 
and sensitive data are stored as Secrets. For some components, it was decided to use 
Helm Charts 15 to deploy as the Spark cluster, while for others ad-hoc deployments 
are used. Then the final configurations should be done using the WEB UI provided 
by the tool. These administration UIs are not available to all users, but only to system 
administrators who can also modify the deployment of the various tools and manage 
the resources needed to keep the infrastructure fast enough.

14 https://echarts.apache.org. 
15 https://helm.sh. 
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