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In 2011 came the first report telling a story of the discovery of MXenes, a two-
dimensional (2D) transition metal carbide, Ti3C2Tx, obtained from selective removal of 
aluminum layers from a 3D-layered Ti3AlC2 MAX phase. This discovery was within a 
year followed by the realization of more MXenes, including Ti2CTx, Ta4C3Tx, and 
Ti3CNTx, and since then, the family of 2D carbides and nitrides has been growing at an 
unprecedented rate. There are currently more than 50  MXenes reported, including 
those with out-of-plane and in-plane ordering, solid solutions on both the M and X 
sites, and high-entropy compositions. Considering the possibility of having both single 
(Cl, Br, S, etc.) and multiple (O, OH, F, etc.) terminations on these laminates, this fam-
ily is by far the largest and most diverse family of 2D materials.

Since 2011, more than 20 000 papers have been published by groups from more than 
100 countries all over the world (six continents), and the number of publications 
appearing every year continues to increase. By the most conservative count (Web of 
Science), more than 70 000 researchers have co-authored MXene papers, following the 
initial discovery and exploring the enormously rich chemistry and large variety of 
MXene structures. The fast growth observed in the past five to six years is caused not 
only by an almost infinite number of new materials that can be synthesized but first 
and foremost by the unique properties of MXenes. Those include the very high electri-
cal conductivity of Ti3C2Tx, a wide range of optical properties depending on the com-
position with absorption peaks from UV to IR wavelength ranges, etc. Biocompatibility 
and easy processability from aqueous colloids add another advantage. Over the past 
decade, a major progress has been achieved in increasing the environmental stability 
of MXenes, with M3C2 and M4C3 MXenes staying for a year or longer in aqueous solu-
tion without degradation, MXene supercapacitor electrodes lasting for 500 000 cycles 
in acidic electrolytes, and micron-thin films maintaining their conductivity after sev-
eral years of storage in the ambient environment.

We stand at the crossroads of discovery and applications. While new MXenes are 
reported regularly and their fundamental properties are being explored, they are also 
tested for a vast array of potential applications. More than 4200 patent applications were 
known to be published at the end of 2022, according to Patsnap. Taking into account the 
18-month gap between patent filing and publishing by patent offices, this number is much 
higher today. The initially explored area of application was energy storage, and the largest 
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number of patents filed address energy, electrochemistry, and separation membranes. 
However, applications in optics and optoelectronics, as well as biomedical applications, are 
the fastest areas of growth nowadays. The area closest to commercialization may be 
electromagnetic interference shielding, where MXenes not only outperform all other 
materials in performance but also allow controlled reflection or absorption, depending on 
the choice of MXene and the film architecture, as well as modulation of shielding effective-
ness. However, with many other applications being explored, it is difficult to predict where 
the first large commercial breakthrough will occur. What matters is that, due to their 
extreme properties, MXenes have already outperformed all known materials in a multi-
tude of applications, from electromagnetic shielding to epidermal electronics and thermal 
management. By adding their simple processing from colloidal solution in water with no 
surfactant or additives needed, the chances are high for fast commercialization.

With properties outperforming many of those for currently applied materials, it is 
crucial to put extra emphasis on how the MXenes, and their precursors, are synthe-
sized. This handbook contains 27 chapters covering synthesis and processing (14 chap-
ters), properties (3 chapters), and applications (8 chapters). A clear emphasis is placed 
on the synthesis, chemistry, and processing of MXenes. In light of current challenges 
and demand for cost-efficient, scalable, and not the least sustainable synthesis 
procedures, the topic of this book Transition Metal Carbides and Nitrides (MXenes) 
Handbook: Guidelines for the Synthesis, Processing, Properties, and Applications, is 
timely. A comprehensive book that summarizes the current state-of-the-art of MAX 
and MXene synthesis, also providing details that may sometimes be overlooked in sci-
entific publications, can provide a platform from which we develop MXene synthesis 
and processing further.

The potential of MXenes will be fully utilized once we have sustainable synthesis meth-
ods. While sustainability and materials are often discussed in terms of achieving desired 
material properties for specific energy and environmental applications, the technology to 
process the materials is sometimes overlooked. Sustainable MXene synthesis requires 
minimizing the environmental impact and consumption of resources. It entails principles 
such as reducing the use of hazardous chemicals (e.g. hydrofluoric acid), optimizing 
energy efficiency, and recycling raw materials and waste products (salt solutions). 
Moreover, this approach should also be used to manufacture MAX phases or other MXene 
precursors. By embracing this way of thinking and with more efforts invested in research 
on the processing of MXenes, they can play a key role in addressing pressing global chal-
lenges, from purification of water, air, and soil to clean energy and beyond.

Johanna Rosen Yury Gogotsi

Linköping University, Sweden Drexel University, USA

(signed using Ti3C2Tx MXene ink)
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