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Utilization of non-renewable fossil resources in the transportation and chemical 
industry is responsible for the large amounts of carbon dioxide in the atmosphere. 
Mitigation of such emissions requires disruptive solutions in the area of renewable 
energy (such as solar and wind) exploitation and utilization, while replacement of 
fossils with renewable carbon resources will be indispensable. Given its CO2 conver-
sion capabilities, biomass is such a sustainable feedstock for the production of fuels 
and chemicals. Processing biomass in biorefineries is a challenging, perhaps under-
explored, research activity but also a necessary step to advance biomass conversion 
field. Besides the carbohydrates, lignin (an aromatic biopolymer) represents the 
major fraction of the lignocellulosic biomass. Its structure is diverse, hampering 
quick and easy valorization, and therefore burnt for power and heat today. However, 
new ideas and advances in lignocellulose biorefinery are focusing on value-added 
utilization by generating higher-quality primary lignin products for more promising 
upgrades.

Lignin is a promising carbon feedstock for the production of (oxygen-free) fuels 
such as bio-jet fuels due to its higher energy density and original cyclic molecular 
structure, compared to other plant components such as sugars and vegetable oils. 
Even more, the unique chemical structure of lignin, with its oxygen-containing 
functional groups, offers opportunities for functional aromatic and cyclic chemi-
cals, as well as for diverse functional materials. Effective and selective conversion of 
lignin to such high-value products is challenging. This book therefore covers the 
chemistry of lignin utilization. It starts with an introduction of the state-of-the-art 
structural characterization and understanding of lignin and its refined lignin frac-
tions, in relation to the lignin’s properties. Fractionation of lignin from plant bio-
mass by different (catalytic) biorefinery approaches (including acid and base 
treatments) to obtain distinct lignin properties is then discussed. The main part of 
the book discloses a myriad of catalytic conversion of lignin toward high-value 
chemicals, including biocatalysis, oxidation, photocatalysis, and electrocatalysis, 
followed by lignin valorization toward functional materials such as thermoset and 
thermoplastic polymeric materials, nanoparticles, carbon materials, and hydrogels.

Given that it covers analytical chemistry, catalysis, biology, material chemistry, 
and engineering in the field of biomass conversion, thanks to the interdisciplinary 
expertise of the contributors; this book may be a valuable and inspiring reference for 

Preface



xvi ﻿Preface

students, scientists, engineers, and professionals to motivate them to discover and 
advance new biorefinery and valorization technologies, with a view on commercial 
lignin utilization.

We would like to thank Wiley-VCH and its staff for their great support in this 
project. Finally, we repeat our appreciation and gratitude to all our co-authors for 
their invaluable work and time they have spent during the intense editing process.
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1

1.1  Introduction

To reduce greenhouse gas (GHG) emissions, society should use renewable carbon 
resources in a sustainable way to produce chemicals, materials, and fuels next to 
circular use of currently available carbon feedstock. Lignocellulosic biomass has 
been considered as an abundant, carbon dioxide neutral, and renewable carbon 
resource [1]. The major compositions in lignocellulosic biomass are three oxygen-
containing biopolymers: cellulose (40–60%), hemicellulose (10–40%), and lignin 
(15–30%), and the minor compositions include proteins, fats, pectins, inorganic 
matter, and others  [2]. Cellulose and hemicellulose are carbohydrate-based 
biopolymers, whereas lignin is a complex aromatic biopolymer with a high carbon 
content (Figure  1.1)  [3, 4]. Typically, cellulose determines the structure of cell 
walls in the form of microfibrils. The cross-linked lignin and hemicellulose wrap 
around the cellulose microfibrils (Figure 1.1). The lignin can provide additional 
rigidity and cause the cell walls to be hydrophobic and water impermeable. 
Therefore, these three main fractions are intertwined to yield the complex struc-
ture, contributing to biomass recalcitrance, which hampers the effective valoriza-
tion of lignocellulosic biomass toward high-value products such as chemical and 
liquid fuels [5].

Different approaches have been developed to overcome the recalcitrance and val-
orize lignocellulosic biomass over the past decades [2, 6]. Classically, the lignocel-
lulosic biomass is utilized to produce high-quality pulps for paper production. 
Emerging approaches are conversion of lignocellulose via thermal cracking (e.g. 
pyrolysis), biocatalysis, chemocatalysis, and integration of them toward chemicals 
and fuels such as bioethanol, furfurals, and levulinic acid [1, 3, 4, 7–13]. It is clear 
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1  A Brief Introduction of Lignin2

that these products are usually derived from cellulose and hemicellulose, whereas 
lignin, either left as a solid residue after conversion of cellulose and hemicellulose 
(such as via hydrolysis) or extracted from lignocellulose with cellulose and hemicel-
lulose as solid residue, is considered as a waste or a low-value product for energy 
use. Currently, the pulping and biorefinery processes such as bioethanol production 
generate more than 50 million tons of lignin annually with ca. 95% used as fuel for 
heat and power generation due to the recalcitrance of lignin [14, 15]. The utilized 
5% of lignin have several applications such as additives, surfactants, and adhesives. 
Although delignification (i.e. removal of lignin) of lignocellulosic biomass can facil-
itate the utilization of cellulose and hemicellulose to improve the economics of 
biorefineries, the value of biomass may not be maximized without utilization of 
lignin toward high-value products. Techno-economic analysis (TEA) and life-cycle 
assessment (LCA) have shown that valorize lignin can improve both economics and 
sustainability of biorefineries [16]. Hence, it is paramount to valorization of lignin 
with novel strategies to explore the potential of all carbon constituents of 
lignocellulose.

Over the past years, some progresses were achieved in the aspects of lignin char-
acterizations to reveal the structure of lignin, isolation to obtain lignin with differ-
ent properties (even native like), and valorization toward chemicals, fuels, and 
materials with novel approaches. Hence, this book aims to introduce the most 
recent advancements in these aspects, particularly the valorization methods such as 
oxidation, photocatalysis, electrocatalysis, and valorization of native lignin. As a 
preface to the following chapters, this introductory chapter will briefly introduce 
the structure of lignin from the point of view of monomeric units, inter-unit link-
ages, and biosynthesis.
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cellulose, hemicellulose, and lignin. Source: From Liao et al. [2].
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1.2 The Bu  ilding Blo cks of Ligni  3

1.2  The Building Blocks of Lignin

Lignin, a phenolic biopolymer, is derived primarily from three kinds of  
4-hydroxyphenylpropanoids (i.e. monolignols, e.g. p-coumaryl alcohol, coniferyl 
alcohol, and sinapyl alcohol, Figure 1.2). These monolignols differ in substitution 
degree of methoxylation on the aromatic ring (i.e. 2 and 6 positions) and incorporate 
into lignin chain to produce corresponding p-hydroxyphenyl (H), guaiacyl (G), and 
syringyl (S) units, respectively [17]. Besides, it is found that lignin is derived from 
numerous other building blocks, such as p-coumarates, ferulates, caffeyl alcohol, 
p-hydroxybenzoates, hydroxycinnamaldehdyes, tricin, and hydroxystilbenes [18, 19]. 
These building blocks are shown in Figure 1.2.

Currently, the only known route to form these building blocks is the phenylpropa-
noid pathway starting from phenylalanine via multiple steps in all plants with dif-
ferent enzymes [20, 21]. Whereas tyrosine can be an additional starting substrate for 
grasses. Figure 1.3 overviews the complete pathway of phenylpropanoid pathway 
for these building blocks. The phenylalanine was first deaminated in the presence of 
phenylalanine ammonia-lyase (PAL) toward cinnamic acid, which is then hydroxy-
lated toward p-coumaric acid in the presence of cinnamate 4-hydroxylase (C4H). 
While in the case of tyrosine, p-coumaric acid can be produced from a shortcut 
pathway, direct deamination with tyrosine ammonia-lyase (TAL) or PAL [14, 23].

Then, p-coumaric acid is enzymatically converted toward either p-coumaroyl-
CoA via 4-coumarate: CoA ligase (4CL) or caffeic acid through hydroxylation via 
p-coumarate 3-hydroxylase (C3H). p-Coumaryl alcohol is produced from reduc-
tion of p-coumaroyl-CoA via cinnamoyl-CoA reductase (CCR) and cinnamyl 
alcohol dehydrogenase (CAD). For caffeic acid, methylation via caffeic acid 
O-methyltransferase (COMT) forms ferulic acid, which can be transformed into 
feruloyl-CoA. Meanwhile, caffeic acid can be converted toward cafferoyl- 
CoA, which can be further methylated to feruloyl-CoA via caffeoyl-CoA 
O-methyltransferase (CCoAOMT). In addition, conversion of p-coumaroyl-CoA 
in the presence of shikimate/quinate hydroxycinnamoyl transferase (HCT) yields 
p-coumaroyl shikimate. Hydroxylation of p-coumaroyl shikimate via C3H can 
produce p-caffeoyl shikimate, which can be transformed toward caffeic acid and 
caffeoyl-CoA in the presence of caffeoyl shikimate esterase (CSE) and HCT, 
respectively. The shikimate intermediates are currently recognized as the favored 
substrates for hydroxylation [22].

Reduction of feruloyl-CoA via CCR yields coniferaldehyde, which can be trans-
formed to coniferyl alcohol and 5-hydroxyconiferaldehyde through reduction (via 
CAD) and hydroxylation (via ferulate 5-hydroxylase, F5H), respectively (Figure 1.3). 
The main pathway to produce sinapyl alcohol is hydroxylation (via F5H) of coniferyl 
aldehyde followed by tandem methylation (via COMT) and reduction. Hydroxylation 
(via F5H) of coniferyl alcohol followed by methylation can form sinapyl alcohol as 
well. Oxidation of coniferylaldehyde by hydroxycinnamaldehyde dehydrogenase 
(HCALDH) forms ferulic acid. These synthesized monolignols are transported to 
the cell wall and integrated into a growing lignin chain.
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1  A Brief Introduction of Lignin6

Next to synthesis of the three main monolignols, p-coumaroyl-CoA and feruloyl-
CoA can serve as substrates to synthesize other building blocks. p-Coumaroyl-CoA 
can be transformed toward hydroxystilbenes via stilbene synthase (STS) and flavo-
noids (including tricin, as identified in grasses) via multistep [24–27]. For feruloyl-
CoA, hydroxycinnamides (e.g. tyramine ferulate and diferuloylputrescine) and 
ferulated arabinoxylan can be obtained from it [28–31]. Besides, hydroxybenzalde-
hydes (e.g. p-hydroxybenzaldehyde, vanillin, and syringaldehyde) and hydroxyben-
zoic acids (e.g. vanillic acid and syringic acid) can be obtained from them, though 
the reaction pathway is not clear yet [32, 33].

Furthermore, monolignol p-coumarates, found in grasses, can be synthesized 
from p-coumaroyl-CoA and monolignols with the action of p-coumaroyl-CoA mon-
olignol transferase (PMT), while as found in plants such as Angelica sinensis, 
monolignol ferulates can be obtained from feruloyl-CoA and monolignols with 
feruloyl-CoA monolignol transferase (FMT)  [34, 35]. The three main monol-
ignols  and acetyl-CoA can be transformed in the presence of acyl transferases 
toward γ-O-acylated ester conjugates, acetates, which are found in a large propor-
tion of hardwoods with low levels and in large amount in several plants such as 
palms, abaca, sisal, and kenaf  [36, 37]. Monolignol p-hydroxybenzoates, widely 
found in poplar, aspen, palms, and willow, are the product of three main monol-
ignols and p-hydroxy-benzoyl-CoA  [36, 38]. It should be noted that p-coumarate 
and p-hydroxybenzoate are often misinterpreted as H-unit fractions, overestimating 
the content of H units, which is usually less than 5% and is obtained from monol-
ignol p-coumaryl alcohol [14, 36, 39–41]. Caffeyl alcohol was recently found in the 
lignin of seed coats of some plants such as vanilla planifolia and cactaceae spe-
cies [42–44]. 5-Hydroxyconiferyl alcohol was also identified in seed coats of some 
plants such as escobaria species (E. dasyacantha, E. lloydii, and E. zilziana) [45].

Another two monomers, arylpropane-1,3-diols (guaiacylpropane-1,3-diol in 
Figure 1.3) and hydroxyphenylglycerols, might be produced from dihydroconiferyl 
alcohol (in softwoods) and hydroxycinnamyl alcohols, respectively, likely via radical 
oxidation instead of enzymatical reaction [22, 46, 47].

1.2.1  Interlinkages in Lignin

Lignin is obtained from polymerization of these building blocks after transportation 
to the cell wall. In the polymerization process, the phenols are first oxidatively con-
verted via enzymes to form phenolic radicals, which are then subjected to coupling 
to form a racemic polymer. Peroxidases and laccases are involved in the oxidation 
step [48]. Hydrogen peroxide is the substrate of peroxidases, while laccases oxidize 
using oxygen. Lignification is a purely chemical process and not enzymatically 
determined once the radicals are formed [49].

Generally, the monolignol is first dehydrogenated (i.e. oxidation) to form a phenol 
radical, which is relatively stable due to the unpaired electron delocalization [40]. 
Afterward, two monolignol radicals couple to yield a (dehydro)dimer, thereby form-
ing a covalent bond. These monolignol radicals are preferred to couple at their β 
position, leading to the formation of β-β (resinol), β-O-4 (β-aryl ether), and β-5 
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(phenylcoumaran) (dehydro)dimers (Figure 1.4) [50]. These are the most common 
interunit linkages in lignin. These dimers are further oxidized to form radicals, 
which then couple with another monolignol radical to increase polymer chain. 
Usually, the new monolignol radical is coupled exclusively at the β position of the 
growing oligomer, forming β-O-4 interunit linkage. Therefore, β-O-4 interunit link-
age is the most abundant linkage in lignin, and it accounts for 50–80% of total link-
ages in native lignin  [19, 50], while isolation of lignin can decrease the amount of 
β-O-4  interunit linkage in isolated lignin due to degradation of lignin, and the 
reduced amount depends on the process conditions [14]. This type of polymeriza-
tion is termed as endwise coupling, where a monolignol radical is added to the 
growing lignin polymer (also radical) in one reaction. As the polymerization pro-
gresses, two lignin oligomeric phenolic end units are coupled to form 5-5 (biphenyl) 
and 4-O-5 (diphenyl ether) interlinkages, which are not from the coupling between 
monomer and oligomer or between monomer and monomer [19, 50]. This is rare for 
S-unit rich lignin due to the presence of the two methoxy groups, while it is com-
mon in G-unit rich lignin as only one methoxy group in the monolignol. Besides, β-1 
(spirodienone) linkage is formed by coupling a β-aryl ether dimeric end unit with a 
monolignol. The possibility of different linkages depends on the type of monol-
ignols and the conditions in the cell wall [50].

The lignin obtained from combinatorial radical coupling is very complex and dif-
ficult to valorize and characterize. The composition (i.e. the relative abundance of 
units), structure, and amount of lignin differ between plant species and within the 
plant species [51, 52]. Besides, the lignin can vary at different growth stages of plants. 
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1  A Brief Introduction of Lignin8

Generally, the lignin in a gymnosperm/softwood is composed of mostly G units, and 
lignin in angiosperm/dicot/hardwood contains both G and S units with trace amount 
of H units  [19]. The lignin in (commelinid) monocot/grass contains H, G, and S 
units [19, 53]. The model lignin structure of these three types of plants is displayed in 
Figure 1.5 [39]. Additional building blocks that have been found in the past are also 
integrated into the chain of lignin to form new linkages. Indeed, most of the lignin 
has a very complex structure, but there is an exception for C-lignin, which is obtained 
from endwise β-O-4 coupling of caffeyl alcohol [42–44]. C-lignin is a linear homopol-
ymer linked with benzodioxane (Figure 1.6) [43]. Therefore, selective depolymeriza-
tion of C-lignin is easier than other types of lignin as they contain different C–O and 
C–C interlinkages. For instance, C-lignin can be nearly quantitatively converted into 
monomeric catechol via hydrogenolysis [54–56]. Besides, 5H-lignin, obtained from 
coupling of 5-hydroxyconiferyl alcohol, has the same benzodioxane units [43, 45].

Lignin has been hypothesized as a highly branched polymer for a long time, but 
this is now doubted. It is assumed that lignin chains connected via 5-5 (biphenyl) or 
4-O-5 (diphenyl ether) interlinkages can form a Y-branch polymer. However, the 
yielded structures are mostly free phenolic (which is traditionally hypothesized to 
be branching points), as identified by 2D NMR recently, and thus the native lignin 
must be less branched than usually assumed [45, 57]. This was also observed for β-1 
(spirodienone) linkage (i.e. free phenolic instead of etherified) [58].

1.2.2  Bioengineering of Lignin

As discussed in the previous section, the monolignols are obtained from phenylala-
nine and tyrosine with the action of different enzymes. Upon genetic modifications 
of the phenylpropanoid pathway can influence the lignin composition, structure, 
and amount. For instance, downregulation of the genes of PAL, C4H, and 4CL, 
which are the enzymes involved in the early stages of phenylpropanoid biosynthe-
sis, can lead to decreased flux, and thus reduce the lignin content in plant  [59]. 
Although low content of recalcitrant lignin can be formed in the plant through this 
strategy, detrimental agronomic effect can occur as plants need a certain amount of 
lignin [60].

The favored approach is downregulation or upregulation of enzymes to yield 
plant lignin, which can facilitate the valorization of biomass (including lignin). For 
instance, the S/G ratio in angiosperms can be regulated via overexpression or under-
expression of the F5H gene [59]. Overexpression of the F5H, when forced by a pow-
erful lignin promoter, can yield linear lignin with extremely high S unit content 
(98.3%) [61]. The interlinkages in this type of high S lignin only involve β-O-4 and 
β-β, where the β-O-4 linkage accounts for 88.8% (i.e. low content of recalcitrant C–C 
interlinkage). Depolymerization of this type of linear lignin can produce high 
monomer yield, such as 78% of monomer was obtained from hydrogenolysis [61, 
62]. In contrast, downregulation of F5H can obtain plant lignin with solely guaiacyl 
unit. Similarly, underexpression of the genes of C3H, HCT, and CSE enzymes, 
which are related to 3-hydroxylation steps, can produce plant lignin rich in 
H units [59, 63–67]. However, in the typical wild-type lignin H units are a minor 
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Figure 1.5  Lignin model structures containing 20 units. (a) A gymnosperm/softwood, (b) an angiosperm/
dicot/hardwood, and (c) a (commelinid) monocot/grass. Source: Adapted from Ralph et al. [39].
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fraction. Besides, if chemi-
cally labile bonds are intro-
duced into the lignin polymer, 
it will be easier to degrade 
lignin  [68]. “Zip-lignin” is a 
successful example in this 
aspect. It introduces ester 
bonds, which are more chem-
ically reactive than ether 
bonds, into lignin chain by 
acyl transferases  [69]. More 
details about the bioengineer-
ing of lignin can be found in 
the decent reviews  [14, 39, 
59, 70].

1.3  Scope of this Book

Besides the inherent complexity as introduced in this chapter, the structure of lignin 
is modified as the result of depolymerization (i.e. cleavage of linkages) and repolym-
erization (i.e. formation of new linkages) in most of the biomass processing tech-
nologies. Depending on processing technologies and the severity of the process, the 
structure of the yielded lignin can be varied. From a chemistry and technology point 
of view, rational utilization of lignin for different applications is determined by 
three important aspects: (i) characterization of lignin to understand the structure 
(including linkages), (ii) isolation to obtain lignin with desired properties, and (iii) 
on purpose valorization of lignin based on the inherent properties (Figure  1.7). 
Therefore, this interdisciplinary book includes chapters focused on introducing the 
latest progress in these aspects, and experts from analytic chemistry, organic chem-
istry, chemocatalysis, biocatalysis, chemical engineering, and material chemistry 
will contribute to this book. The main focus is valorization of lignin toward fuels, 
chemicals, and materials.

Lignin

IsolationValorization

Characterization

Figure 1.7  The scope of this book.
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Figure 1.6  Representative chemical structural models of C-lignin. It is based on Ref. [43].
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