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Preface

The tenth edition of the “International Congress Design and Modeling of Mechanical
Systems” CMSM’2023 was held in Hammamet, Tunisia, from 18th to 20th of December
2023. The CMSM congress has been held in a Tunisian city every two years since its first
edition in 2005. The CMSM congress brings together specialists from universities and
industrial companies to present their recent research findings and to discuss and exchange
research experienceswith other attendees of the CMSMCongress. TheCMSMCongress
is jointly organized by two Tunisian research laboratories: The Mechanical Engineering
Laboratory (LGM) of the National Engineering School of Monastir and theMechanical,
Modeling and Manufacturing Laboratory (LA2MP) of the National Engineering School
of Sfax. The tenth edition of the CMSM Congress has been attended by about 250
participants who participated actively in the plenary sessions and in the sessions devoted
to specialized topics. Five plenary conferences and about 156 papers and 17 posters have
been presented during the three days of the congress.

This book is the sixth volume of the “Lecture Notes in Mechanical Engineering”
series “Design and Modeling of Mechanical Systems”. From the 173 papers and posters
presented in the CMSM’2023, 91 papers are selected to be included in the two volumes
of this book. The papers are classified into the following 8 topics:

1. Design and Analysis of Mechanical Systems
2. Numerical Modeling and Analysis of Structures and Systems
3. Mechanical Vibration Analysis and Applications
4. Industrial Engineering
5. Materials Science and Engineering
6. Composite and Bio-Materials
7. Surface Finishing and Coating
8. Manufacturing Engineering and Additive Manufacturing.

This first volume contains topics one to four. The second volume contains topics five
to eight.

All the papers included in this volume have undergone rigorous reviewing by two
or three reviewers. Authors have been provided by the comments of the reviewers and
requested to submit revised papers. The review process contributed significantly to the
improvement of the quality of the papers included in this volume. The editors would like
to thank all the authors for submitting their recent research work to the CMSM’2023
congress and for considering the comments of the reviewers to revise their papers. The
hard work of the reviewers is also highly appreciated. The editors are also grateful to the
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organizing committee of theCMSM’2023 and to the editing teamof Springer publication
for providing support for the publication of this proceedings.

December 2023 Mnaouar Chouchane
Moez Abdennadher

Nizar Aifaoui
Fakher Chaari
Slim Bouaziz
Zouhaier Affi

Mohamed Haddar
Lotfi Romdhane

Abdelmajid Benamara
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Abstract. The key benefits of magnesium and its alloys are their high biocompat-
ibility and specific strength. Powder metallurgy is a contemporary method for the
preparation of materials based on magnesium. The micro-hardness of pure mag-
nesium (Mg) samples is evaluated in this study after they were produced through
the powder metallurgy process. Magnesium powder’s purity and microstructure
were examined using electron microscopy and x-ray diffractometry. The cold
compaction of powdered magnesium was examined. At laboratory temperature,
magnesium powder with a mean particle size of 30 μm was compressed using
pressures of 400, 450, 500, 550, 600, and 650 MPa. The impact of compacting
pressure was examined using %porosity and green density. It was found that a
pressure of 650MPa produced the best density of 1.715 gm/cm3 and%porosity of
1.323. The sintering process was conducted at three different temperatures (455,
525, and 585 °C) and three different sintering time (30, 45, 60) min. It was found
that 525 °C for 30 min produced the best results, with a density of 1.725 g/cm3,
porosity of 0.75%, and micro-hardness of 97.77%.

Keywords: Evaluation ·Magnesium · Powder metallurgy · Sintering process ·
Microhardness

1 Introduction

With a density of 1.74 g/cm3, magnesium (Mg) is one of the light metals and is found in
large quantities in both the sea and the crust of the earth. Mg has high strength-to-weight
ratios due to their low density. Because of this wonderful quality, it is appealing for
lightweight [1–3]. For instance, Mg and its alloys are good choice for reducing weight
for carrying convenience in customer electronics and tools for power; in the automotive
industry, weight reduction through the use of Mg components can significantly reduce
CO2 (Carbon dioxide gas) emissions and fuel consumption [1]. Since 1999, the global
production of Mg and its alloys has been rising steadily. Cars built in Germany have
already made use of some Mg components [1]. Due to their appropriate mechanical

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
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properties and good biocompatibility, Mg and its some alloys are also utilized by means
of biodegradable materials [4–10]. Mg and its alloys have attracted a lot of attention by
means of potential replacements for conventional orthopedic implantation constituents
in recent years [11–13]. What’s more, these substances are entirely absorbed by the
body once bone tissue regenerates since they are biodegradable [14]. Additionally, it
was observed that Magnesium has effection on lipid profile [15]. The synthesis and
characterization of pure Mg produced using the cold powder metallurgy method is the
main goal of this work. The micro hardness of sintered Mg specimens, their density and
porosity have been studied.

2 Material and Experimental Methods

The mean size of the Mg powder particle used in this study was approximately 30 μm,
and it has an irregular blocky shape as illustrated in (Fig. 1). The purity of base Mg
powder was 99.8%. It was provided by Jingan Chemicals & Alloy Company - China.

Fig. 1. FESEM Image for pure magnesium powder at different magnification powers

Lab XRD-6000 Shimadzu- Japan XRD machine was used for phase identification
analysis for Mg powder. XRD has been used to ensure that the supplied powder is Mg
powder and does not contain any other impurities as clearly displayed in (Fig. 2).

A 304 stainless steel vessel was charged with Mg powder and 11 mm diameter
balls made of chromium iron with a ratio of weight 1:10, respectively. The powder was
milled for three hours at 121 rpm with aid of the ball milling machine that was designed
and manufactured for this purpose. The balls Vickers micro-hardness (HV) was (855)
evaluated by Metkon micro-hardness device with 500 gm applied force. Alloy steel
die and punch and other components shown in (Fig. 3) were used to create cylindrical
samples with 15 mm diameter and with a height suitable for each test.

At room temperature, compaction of the Mg powder into compacts was achieved
by applying varying uniaxial pressures of (400, 450, 500, 550, 600, and 650) MPa.
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Fig. 2. XRD Analysis diagram for pure magnesium powder

Fig. 3. Main parts pressing tool.

Green samples density (ρg) considered by as stated Eq. (1) [14] the mass of samples was
weighted by electronic type balance with 0.1mg accurateness. The volume of samples
was measured with the aid of determining the major dimensions.

Pg = Mc/Vg (1)

Percent porosities (%P) are measured according to the Eq. (2) [14].

%P = (1− ρg/ρTh) × 100 (2)

Next, from the start of the sintering to room temperature, the samples are existed in
an electric furnace of CARBOLITE-UK type while an argon gas stream is continuously
applied. For thirty minutes, samples was soaked at the appropriate temperatures (455,
525, and 585 °C), several samples at each temperature. The rate of heating is set at
10 °C/min. Then samples were allowed to cool inside the furnace gradually to room
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temperature. The samples’ parallel faces was wet ground with the utility of SiC emery
papers with grits of 240, 600, 1000, 2000, and 3000, polished with a 5μm suspension of
alumina solution, cleaned with distilled water, and dried in a oven at 120 °C for 20 min.
Vickers micro-hardness for sintered compacts (SCs) was determined using the same
technique described above. For microstructure analyses, optical microscopy Italy made
invert microscope - was employed.

3 Results and Discussion

Determining the best pressing pressure for Mg samples preparation is crucial. Pressing
pressure and green density were found to be directly correlated (Table 1). Greatest (ρg)
result was under the highest applied pressure (650MPa) with themaximum 1.715 g/Cm3

was achieved. Figure 4 illustrates how density and compression pressure are proportion-
ally related. Hence the decision was that 650MPa is the ideal applying pressure. As a
result, it was used later in the preparation of all samples.

Table 1. Density and Porosity of pure magnesium against applied pressure

Sample No Pressing Pressure MPa Green Density g/cm3 Porosity
%

1 400 1.58 9.09

2 450 1.615 7.077

3 500 1.622 6.674

4 550 1.681 3.28

5 600 1.699 2.244

6 650 1.715 1.323

On other hand the porosity decreased by increasing of the compacting pressure and
the powder particle’s deformation increased with increasing compaction pressure. The
best porosity (1.323%) obtained at 650 MPa. Figure 5 illustrates how % porosity and
compression pressure are related.

The best density value of 1.725 g/cm3 (that is nearest to the theoretical density
of Mg, % porosity of 0.75% and microhardness of 97.77 were obtained at a sintering
temperature of 525 °C and 30 min of sintering time. (Table 2) displays the density, %
porosity and Microhardness calculated at each sintering temperature and time.

Optical microscope photo in Fig. 6 A and B for non-etched microstructure is discov-
ered the how the porosity was restricted at Mg particles boundaries. At some positions
the powder particles boundaries are clearly shown while at other positions the bound-
aries between the nearby particles are partially disappeared due to the diffusion process
that occurred at sintering.



Evaluation of Parameters for Magnesium Fabrication 7

Fig. 4. Relationship between green density and applied compaction pressure

Fig. 5. Relation between % porosity and applied pressing pressure
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Table 2. Density, %Porosity and Microhardness of pure Mg at each sintering temperature and
time.

Pressure MPa Temperature °C Times min Density
g/cm3

Porosity % HV

650 455 60 1.715 1.32 64.47

650 525 30 1.725 0. 75 97.77

650 585 45 1.695 2.5 80.56

650 455 30 1.722 0.92 75.46

650 525 45 1.7247 0.765 90.52

650 585 60 1.684 3.1 79.68

650 455 45 1.721 0.98 73.27

650 525 60 1.7246 0.77 87.14

650 585 30 1.708 1.37 86.9

Fig. 6. A and BMicrostructure of the Mg sample sintered at 525 °C 500X

4 Conclusion

1. This investigation is accomplished efficaciously from the view point of fabrication of
Mgcompacts initially for the reasonof the capability to protecting the compacted samples
from impurity that may be imported from powder metallurgy processing beginning from
milling to sintering process.
2. The presence of the porosity inside the sintered samples was with very low value that
is strong evidence to the success of pressing and sintering processes.
3. All three factors have a distinct impact on the overall quality of the result.
4. Maximum micro-hardness which extended to (~ 98 HV) is comparable to its value
for cast Mg products.
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Abstract. This article presents an experimental study of the mechanical proper-
ties of nitrile-butadiene rubber (NBR)when irradiatedwith gamma rays. NBRwas
irradiated with gamma rays at different absorbed radiation energy doses (0, 30,
45, 60, 75 and 90 kGy). Tensile experiments and hardness test analyses show an
improvement in the elastic behavior of NBRs and a decrease in their plastic behav-
iorwith increasing absorbed radiation energydoses. Scanning electronmicroscopy
(SEM) shows the NBR surface layer to be porous and cracked as a result of gamma
irradiation. The experimental studywas completed by a numerical simulationwith
Abaqus software using hyperelastic models (Mooney Rivlinmodel, Ogdenmodel,
Yeohmodel, Arruda-Boycemodel andNeo-Hookeanmodel). The simulation uses
input data obtained from traction results. Curves of stress-strain for pristine and
irradiated samples, obtained from numerical and experimental studies, were com-
pared. Parameters of the hyperelastic deformation energy function are computed
for each of the five models. So, the Ogden model was found to produce the most
accurate curve, with a mean square error less than 0.5%. The Ogden model is
therefore themost appropriate for simulating themechanical behavior of irradiated
nitrile-butadiene rubber. The results obtained provide a good basis for describing
the performance of this material under gamma rays.

Keywords: Nitrile butadiene rubber · gamma irradiation · Abaqus · hyperelastic
models · tensile test

1 Introduction

Nitrile-butadiene rubbers (NBR) are used over a wide temperature range and are known
for their cost-effectiveness, high oil and fuel compatibility, good elasticity and excellent
adherence [1–4].

The mechanical properties of NBR rubber can be affected by gamma irradiation.
Indeed, tensile strength, modulus of elasticity, elongation at failure and hardness are all
found to modify as irradiation dose γ increases [5–7]. Numerous researchers [8, 9] have
studied the effect of gamma irradiation on elastic modulus, tensile strength and hardness.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
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They reported that the behavior of rubber when irradiated is complex. Therefore, it is
necessary to use simulations to partially minimize or avoid experimental testing.

This article examines the mechanical behavior of NBR exposed to different doses
of gamma radiation. Uniaxial tensile and hardness measurements were first carried out
on pristine and irradiated NBR samples. The results are shown and commented on.
Next, morphological properties were explored by scanning electron microscopy (SEM).
Finally, a simulation was carried out using Abaqus.

2 Materials and Methods

In the present research,we usedNBR (nitrile-butadiene rubber)marketed under the name
of the product Europrene® N 3345. Several sheets of the material were irradiated with
gamma rays at different doses (0 to 90 kGy). The effect of absorbed radiation energy
doses on the mechanical properties of NBR was studied using tensile and hardness mea-
surements. Tensile tests were carried out at room temperature on samples manufactured
in accordance with ASTM D412 type C, using a universal machine (LLOYD LR5K).
Hardness measurements were performed according to ASTM D 2240, using a Shore A
hardness tester. Scanning electron microscopy (SEM) was used to visualize the effects
of gamma irradiation on the morphology of the NBR material.

3 Results and Discussion

Results of tensile tests performed on samples of virgin and gamma-irradiated NBR, at
absorbed radiation energy doses ranging from 00 to 90 kGy, are presented in Table 1.
Figure 1 shows the corresponding stress-strain curves.

Table 1. Tensile properties of irradiated NBR samples.

Gamma dose (kGy) 00 30 45 60 75 90

Elastic modulus (MPa) 13.15 13.26 14.67 17.50 18.06 18.01

Tensile strength (MPa) 4.93 4.72 4.51 4.63 4.73 5.02

Strain at break (%) 243 233 219 218 217 224

Strain at ultimate strength (%) 232.46 224.78 211.45 201.47 198.17 215.96

Stress at 100% strain (relative values %) 101 97 96 101 103 107

Stress at 200% strain (relative values %) 101 98 97 102 103 107

Toughness (106 J/m3) 8.05 7.23 6.64 6.54 6.6 6.8

Crosslink density (10-4mol/cm3) 2.73 2.77 2.65 3.05 3.17 3.38

Strain at break (%) 243 233 219 218 217 224

Figure 2 shows the influence of irradiation on the modulus of elasticity of NBR
material. It is clear that the stiffness of NBR increases with increasing irradiation dose.
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Fig. 1. NBR stress-strain curves for different doses

In fact, an increase in Young’s modulus of up to 37 is due to new cross-linking reactions
and a reduction in distance of atomic separation in irradiated specimens [1, 8–10]. In
addition, irradiation significantly affected the tensile resistance of the material due to
crosslinking/degradation [11]. The variation in tensile resistance with gamma irradiation
dose is shown in Fig. 3. It can be seen that tensile strength varies slightly with increasing
gamma dose. It gradually decreases to a minimum value at an absorbed radiation energy
dose of 45 kGy, then slowly increases again. This is due to modifications in polymer
chain scission and increased cross-linking density resulting from high absorbed radiation
energy doses.

0 20 40 60 80 100

12

14

16

18

20

El
as

tic
m
od

ul
us

(M
Pa

)

Irradiation dose (KGy)

13.16

13.25

14.66

17.49

18.05

18

Fig. 2. NBR elastic modulus at different γ-doses.

The effect of radiation dose on NBR failure was investigated by examining the
evolution of strain at failure versus absorbed radiation energy dose. The results show
that strain at failure decreases with increasing absorbed dose. Indeed, a rapid decrease
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Fig. 3. Tensile strength as a function of irradiation dose

is observed at doses below 45 kGy, with a gradual decrease at higher doses (Fig. 4). It
reaches 16.9% at 90 kGy. This can be explained by the supplementary bonding of filler
and polymer due to the elevated free-radical formation [12]. It is also due to additional
cross-linking reactions during irradiation [13].
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Fig. 4. Strain at break versus absorbed dose

A material’s toughness is defined by the energy of deformation at failure per volume
(J/m3). It corresponds to the material’s capacity to deform plastically without breaking.
The toughness of virgin and gamma-irradiated NBR was calculated and plotted versus
gamma dose (Fig. 5). Toughness decreases progressively with increasing gamma dose.



14 S. Chayoukhi et al.

0 20 40 60 80 100

6.4

6.8

7.2

7.6

8.0

To
ug

hn
es

s
(1
0

6
J/
m

3 )

Irradiation dose (KGy)

8.04

7.22

6.63 6.53

6.50

6.70

Fig. 5. Toughness versus absorbed dose

The effect of absorbed radiation energy dose on material hardness was examined by
means of Shore A hardness measurements. The results presented in Table 2 and Fig. 6
indicate an increase in NBR hardness with increasing gamma dose. This is coherent
with the observation made above for the elastic modulus parameter, and shows that
NBR material is becoming stiffer with rising irradiation dose.
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Fig. 6. NBR hardness as a function of γ-irradiation dose

The influence of gamma rays on the morphology of the NBR was examined by
scanning electron microscopy (SEM). Figure 7 shows the surface morphology of virgin
and irradiated specimens. Visibly porous surfaces and cracks in the NBR surface layer
are the result of gamma irradiation. Polymer fibers randomly arranged in the pristine



Study of the Effects of Gamma Irradiation on the Mechanical Properties 15

Table 2. Hardness shore A of irradiated NBR samples.

Absorbed radiation energy dose (kGy) 00 30 45 60 75 90

Hardness (Sh-A) 75 76 78 83 85 86

specimen. In the irradiated samples, however, the fibers disappeared as pores formed on
the surface. The result could be that the polymerfibers agglomerate to formsemi-compact
zones and pores.

Fig. 7. SEM images.

4 Numerical Study

The principal purpose of the numerical analysis was to identify a suitable model to
describe the hyperelastic properties of NBR rubber under gamma irradiation.

The tensile behavior of the material, before and after irradiation, was simulated
based on the assumption of a hyperelastic material property model, using as input data
those found by uniaxial tensile tests. The models employed (Mooney Rivlin, Ogden,
Yeoh, Arruda-Boyce and Neo-Hookean models) express rubber stress and deformation
as functions of strain energy.

The numerical study uses ABAQUS software to calculate the non-linear deforma-
tions ofNBRmaterial before and after irradiation.After selecting the hyperelasticmodels
mentioned above, the results were assessed by reanalyzing the experimental data, veri-
fying model stability, establishing stress-strain curves and identifying material-specific
constants and best-fit.


