

Fundamentals of Software Testing

Revised and Updated 2nd Edition

Fundamentals of
Software Testing

Bernard Homès

First edition published 2011 in Great Britain and the United States by ISTE Ltd and John Wiley & Sons,
Inc., © ISTE Ltd 2011.

This edition published 2024 in Great Britain and the United States by ISTE Ltd and John Wiley & Sons,
Inc.

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as
permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers,
or in the case of reprographic reproduction in accordance with the terms and licenses issued by the
CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the
undermentioned address:

ISTE Ltd John Wiley & Sons, Inc.
27-37 St George’s Road 111 River Street
London SW19 4EU Hoboken, NJ 07030
UK USA

www.iste.co.uk www.wiley.com

© ISTE Ltd 2024
The rights of Bernard Homès to be identified as the author of this work have been asserted by him in
accordance with the Copyright, Designs and Patents Act 1988.

Any opinions, findings, and conclusions or recommendations expressed in this material are those of the
author(s), contributor(s) or editor(s) and do not necessarily reflect the views of ISTE Group.

Library of Congress Control Number: 2024932622

British Library Cataloguing-in-Publication Data
A CIP record for this book is available from the British Library
ISBN 978-1-78630-982-2

http://www.iste.co.uk
http://www.wiley.com

Contents

Preface . xi

Glossary . xvii

Chapter 1. Fundamentals of Testing . 1

1.1. What is testing? . 1
1.1.1. Software and systems context . 1
1.1.2. Causes of software defects . 3
1.1.3. Role of testing in software development, maintenance
and operations . 5
1.1.4. Tests and quality . 5
1.1.5. Terminology . 7

1.2. What is testing? . 8
1.2.1. Origin of defects . 8
1.2.2. Common goals of testing . 9
1.2.3. Examples of objectives for testing . 9
1.2.4. Test and debugging . 10

1.3. Paradoxes and main principles . 11
1.3.1. Testing identifies the presence of defects 11
1.3.2. Exhaustive testing is impossible . 11
1.3.3. Early testing . 12
1.3.4. Defect clustering . 12
1.3.5. Pesticide paradox . 13
1.3.6. Testing is context dependent . 13
1.3.7. Absence-of-errors fallacy . 14

1.4. Test activities, testware and test roles . 14
1.4.1. Planning . 15
1.4.2. Monitoring and control . 16
1.4.3. Test analysis and design . 17

vi Fundamentals of Software Testing

1.4.4. Test implementation . 20
1.4.5. Test execution . 21
1.4.6. Reporting . 23
1.4.7. Test completion activities . 24
1.4.8. The value of traceability . 25
1.4.9. Impact of context on the test process . 25

1.5. Roles in testing . 26
1.6. Essential skills and “good practices” in testing 26

1.6.1. Generic skills . 26
1.6.2. Specific skills . 27
1.6.3. Whole team approach . 27
1.6.4. Independence of testing . 28
1.6.5. Levels of independence . 29
1.6.6. Adapt to objectives . 30
1.6.7. Destructive or constructive? . 32
1.6.8. People skills . 32
1.6.9. Change of perspective . 33

1.7. Testers and code of ethics (FL 1.6) . 33
1.7.1. Public . 34
1.7.2. Client and employer . 35
1.7.3. Product . 35
1.7.4. Judgment . 37
1.7.5. Management . 37
1.7.6. Profession . 38
1.7.7. Colleagues . 39
1.7.8. Self . 40

1.8. Sample exam questions . 41

Chapter 2. Testing Throughout the Software Life Cycle 47

2.1. Testing through the software development life cycle 47
2.1.1. Sequential models . 48
2.1.2. Iterative models . 50
2.1.3. Incremental model . 52
2.1.4. RAD . 54
2.1.5. Agile models . 55
2.1.6. Selection of a development model . 61
2.1.7. Positioning tests . 62
2.1.8. Test-first and shift-left approaches . 63

2.2. Test levels and test types . 64
2.2.1. Component-level testing or component tests 65
2.2.2. Integration-level testing or integration tests 66
2.2.3. System tests . 68

Contents vii

2.2.4. Acceptance tests . 70
2.2.5. Other levels . 72

2.3. Types of tests . 72
2.3.1. Functional tests . 73
2.3.2. Nonfunctional tests . 74
2.3.3. Tests based on the structure or architecture of the software 76
2.3.4. Tests associated with changes . 77
2.3.5. Comparisons and examples . 79

2.4. Test and maintenance . 80
2.4.1. Maintenance context . 81
2.4.2. Evolutive maintenance . 81
2.4.3. Corrective maintenance . 82
2.4.4. Retirement and replacement . 83
2.4.5. Regression test policies . 83
2.4.6. SLA validation and acceptance . 86

2.5. Oracles . 86
2.5.1. Problems with oracles . 87
2.5.2. Sources of oracles . 87
2.5.3. Oracle usage . 88

2.6. Process improvements . 89
2.6.1. Objectives . 89
2.6.2. Measurements . 89
2.6.3. Retrospectives and improvements . 89

2.7. Specific cases . 90
2.7.1. Performance tests . 90
2.7.2. Maintainability tests . 91

2.8. Sample exam questions . 91

Chapter 3. Static Testing . 97

3.1. Static techniques and the test process . 97
3.2. Review process . 100

3.2.1. Types of reviews . 101
3.2.2. Roles and responsibilities during reviews. 106
3.2.3. Phases of reviews . 109
3.2.4. Success factors for reviews . 122
3.2.5. Comparison of the types of reviews . 123

3.3. Static analysis by tools . 125
3.3.1. Types of static analysis . 125
3.3.2. Types of defects that can be identified . 130
3.3.3. Data flow analysis . 131

3.4. Added value of static activities . 136
3.5. Sample exam questions . 137

viii Fundamentals of Software Testing

Chapter 4. Test Design Techniques . 141

4.1. The test development process . 143
4.1.1. Terminology . 143
4.1.2. Traceability . 144

4.2. Categories of test design techniques . 146
4.2.1. Black box, white box or gray box . 147
4.2.2. Experience-based techniques . 148
4.2.3. Test characteristics . 149
4.2.4. Limitations and assumptions . 149

4.3. Black-box techniques . 151
4.3.1. Equivalence partitioning . 152
4.3.2. Boundary value analysis . 158
4.3.3. Decision tables . 161
4.3.4. Other combinational techniques . 166
4.3.5. State transition testing . 166
4.3.6. Use case testing . 173
4.3.7. Limitations and assumptions . 175

4.4. Structure-based techniques . 175
4.4.1. Statement testing and coverage . 178
4.4.2. Decision testing and coverage . 183
4.4.3. Other structure-based techniques . 186
4.4.4. MC/DC coverage . 188
4.4.5. Limitations and assumptions of structure-based testing 189
4.4.6. Coverage level and exit criteria . 190

4.5. Experience-based technique . 190
4.5.1. Attacks . 191
4.5.2. Defect taxonomies . 192
4.5.3. Error guessing and ad hoc testing . 193
4.5.4. Exploratory testing . 194
4.5.5. Limitations and assumptions . 195

4.6. Collaboration-based test approaches . 196
4.6.1. Collaborative user stories . 196
4.6.2. Acceptance criteria . 197
4.6.3. Acceptance test-driven development . 197

4.7. Choosing test techniques . 198
4.8. Sample exam questions . 200

Chapter 5. Test Management . 209

5.1. Test organization . 209
5.1.1. Independence levels . 209
5.1.2. Roles and responsibilities . 212
5.1.3. Human and contractual aspects . 214

Contents ix

5.2. Test planning and estimation . 215
5.2.1. Planning and evaluation activities . 218
5.2.2. Test planning activities . 229
5.2.3. Test documentation . 231
5.2.4. Entry and exit criteria for test activities . 236

5.3. Test progress monitoring and control (FL 5.3) 240
5.4. Reporting . 243

5.4.1. What to report, to whom and how? . 243
5.4.2. Statistics and graphs . 245

5.5. Transverse processes and activities . 248
5.5.1. Test data definition . 248
5.5.2. Configuration management (FL 5.4) . 249
5.5.3. Change management . 250

5.6. Risk management (FL 5.2) . 250
5.6.1. Principles of risk management . 251
5.6.2. Project risks and product risks . 255
5.6.3. Introduction to risk management . 256

5.7. Defect management (FL 5.5) . 259
5.7.1. Introduction to defect management . 260
5.7.2. Defect identification . 261
5.7.3. Actions applied to defects . 266
5.7.4. Defect disposition . 266

5.8. Sample exam questions . 267

Chapter 6. Tools Support for Testing . 277

6.1. Types of test tools . 277
6.1.1. Test tool classification . 278
6.1.2. Tools supporting test management . 278
6.1.3. Tools supporting requirement management 279
6.1.4. Tools supporting static tests . 279
6.1.5. Modeling tools . 280
6.1.6. Tools supporting test design and test data creation 280
6.1.7. Tools supporting test execution . 281
6.1.8. Tools supporting test environment management 281
6.1.9. Tools supporting test data comparison . 282
6.1.10. Tools supporting test coverage measurement 282
6.1.11. Other test supporting tools . 282

6.2. Assumptions and limitations of test tools . 283
6.2.1. Advantages and risks of the tools . 283
6.2.2. Specific considerations for some tools . 285

6.3. Selecting and introducing tools in an organization 289
6.3.1. Main principles . 289

x Fundamentals of Software Testing

6.3.2. Tool selection process . 290
6.3.3. Test tool implementation . 293
6.3.4. To build or to buy test tools? . 294

6.4. Sample exam questions . 295

Chapter 7. Mock Exam . 299

Chapter 8. Templates and Models . 313

8.1. Master test plan . 313
8.2. Test plan . 315

8.2.1. Test plan as per IEEE 829-1998 . 315
8.2.2. Test plan as per IEEE 829-2008 . 315

8.3. Test design document . 317
8.3.1. Test design specifications as per IEEE 829-1998 317
8.3.2. Test design document as per IEEE 829-2008 317

8.4. Test case . 318
8.4.1. Test case document as per IEEE 829-1998 318
8.4.2. Test case document as per IEEE 829-2008 318

8.5. Test procedure . 319
8.5.1. Test procedure document as per IEEE 829-1998 319
8.5.2. Test procedure document as per IEEE 829-2008 319

8.6. Test log . 320
8.6.1. Test log as per IEEE 829-1998 . 320
8.6.2. Test log as per IEEE 829-2008 . 320

8.7. Defect report . 320
8.7.1. Defect report as per IEEE 829-1998 . 320
8.7.2. Defect report as per IEEE 829-2008 . 321

8.8. Test report . 322
8.8.1. Test report as per IEEE 829-1998 . 322
8.8.2. Interim test report as per IEEE 829-2008 322
8.8.3. Level test report as per IEEE 829-2008 . 323
8.8.4. Master test report as per IEEE 829-2008 323

Chapter 9. Answers to the Questions . 325

9.1. Answers to the end-of-chapter questions . 325
9.2. Correct answers to the sample paper questions 327

References . 329

Index . 333

Preface

“My eldest brother sees the spirit of sickness and removes it before
it takes shape, so his name does not get out of the house. My elder

brother cures sickness when it is still extremely minute, so his name
does not get out of the neighborhood. As for me, I puncture veins,

prescribe potions, and massage skin, so from time to time my name
gets out and is heard among the lords”.

– Sun Tzu, The Art of War

I often turn to the above quote, replacing “sickness” by “defects”, and applying it
to software instead of humans. I have seen few eldest brothers, a number of elder
ones, and am perhaps in the last category of practitioners.

Why this book?

As we know, software testing is increasingly important in the industry, reflecting
the increasing importance of software quality in today’s world. Since 2011, when
the first edition of this book was published, there have been evolutions in the
software industry that have impacted software testing. This new – revised – edition
will help testers adopt more up-to-date fundamental practices.

Due to the lack of formal and recognized training in software testing, a group of
specialist consultants gathered together in 2002 and founded the International
Software Testing Qualifications Board (ISTQB). They defined the minimal set of
methodological and technical knowledge that testers should know depending on
their experience. This was gathered into what is called a syllabus. The foundation
level syllabus was reviewed in 2023 and has been the basis of an international
certification scheme that has already been obtained by more than 1,000,000 testers

xii Fundamentals of Software Testing

worldwide. This book can serve as reference material for testers preparing the
ISTQB foundation level exam, and for any beginner testers. It references the 2023
version of the ISTQB Certified Tester Foundation Level syllabus.

This book follows the order and chapters of the syllabus, which should help you
to successfully complete the certification exam. It is a one-stop reference book
offering you:

– more detailed explanations than those found in the ISTQB syllabus;

– definitions of the terms (i.e. the Glossary) used in the certification exams;

– practice questions similar to those encountered during the certification exam;

– a sample exam.

For testers who want to acquire a good understanding of software and system
tests, this book provides the fundamental principles as described by the ISTQB and
recognized experts.

This book provides answers and areas of discussion to enable test leaders and
managers to:

– improve their understanding of testing;

– have an overview of process improvement linked to software testing;

– increase the efficiency of their software development and tests.

Throughout this book, you will find learning objectives (denoted as FL-…) that
represent the ISTQB foundation level syllabus learning objectives. These are the
topics that certification candidates should know and that are examined in
certification exams.

Prerequisite

Software testing does not require specific prerequisites, but a basic
understanding of data processing and software will allow you to better understand
software testing.

The reader with software development knowledge, whatever the programming
language, will understand certain aspects faster, but a simple practice as a user
should be enough to understand this book.

Preface xiii

ISTQB and national boards

The ISTQB is a not-for-profit international association grouping national
software testing boards covering over 50 countries. These national boards are made
up of software testing specialists, consultants and experts, and together they define
the syllabi and examination directives for system and software testers.

A number of prominent authors of software testing books participated in the
creation of the initial syllabi, ensuring that they reflect what a tester should know
depending on their level of experience (foundation, advanced, expert) and their
objectives (test management, functional testing and test techniques, specialization in
software security or performance testing, etc.).

Glossary, syllabus and business outcomes

The ISTQB is aware of the broad diversity of terms used and the associated
diversity of interpretation of these terms depending on the customers, countries and
organizations. A common glossary of software testing terms has been set up and
national boards provide translation of these terms in national languages to promote
better understanding of the terms and the associated concepts. This becomes
increasingly important in a context of international cooperation and offshore
sub-contracting.

The syllabi define the basis of the certification exams; they also help to define
the scope of training and are applicable at three levels of experience: foundation
level, advanced level and expert level. This book focuses on the foundation level.

The foundation level, made up of a single module, is detailed in the following
chapters.

Expected business outcomes, as stated by the ISTQB, are as follows for
foundation level testers:

– understand what testing is and why it is beneficial;

– understand the fundamental concepts of software testing;

– identify the test approach and activities to be implemented depending on the
context of testing;

– assess and improve the quality of documentation;

– increase the effectiveness and efficiency of testing;

xiv Fundamentals of Software Testing

– align the test process with the software development life cycle;

– understand test management principles;

– write and communicate clear and understandable defect reports;

– understand the factors that influence the priorities and efforts related to testing;

– work as part of a cross-functional team;

– know the risks and benefits related to test automation;

– identify the essential skills required for testing;

– understand the impact of risk on testing;

– effectively report on test progress and quality.

As we can see, the work of a tester impacts many different aspects in software
development, from evaluating the quality of input documentation (specifications,
requirements, user stories, etc.) to reporting on progress and risks, to test automation
and interacting with the development teams to understand what to test and explain
what defects are identified.

ISTQB certification

The ISTQB proposes software tester certifications, which are recognized as
equivalent by all ISTQB member boards throughout the world. The level of
difficulty of the questions and the exams are based on identical criteria (defined in
the syllabi) and terminology (defined in the Glossary).

The certification exams proposed by the ISTQB enable the candidates to validate
their knowledge, and assure employers or potential customers of a minimum level of
knowledge from their testers, whatever their origin. Training providers deliver
courses to help participants succeed in the certification exams, however much of the
training involves brain cramming sessions and does not ensure that the participant
has the required level of autonomy to succeed in the profession. This book attempts
to identify the necessary skills, as well as provide the reader with a concentrate of
more than 40 years of practice in the field of software quality and testing.

The ISTQB certifications are recognized as equivalent throughout the whole
world, enabling international cross-recognition.

Preface xv

Key for understanding the content

To be used efficiently, this book has the following characteristics:

FL-xxx: text that starts with FL-xxx is a reminder of the learning objectives
present in the ISTQB foundation level syllabus for certified testers. Those objectives
are expanded in the paragraphs following this tag.

The titles of the chapters correspond to those of the ISTQB foundation level
syllabus, version 2011. This is also often the case for the section heads; the syllabus
reference is provided in the form (FLx.y), where x.y stands for the chapter and
section head of the ISTQB foundation level syllabus.

A synopsis closes each of the chapters, summarizing the aspects covered and
identifying the terms in the glossary that should be known for the certification exam.
Sample exam questions are also provided at the end of each chapter. These questions
were developed by applying the same criteria as for the creation of real exam
questions.

The sample questions provided in Chapters 1–6 have been reproduced with the
kind permission of © Bernard Homès 2011.

March 2024

Glossary

The definitions listed below have been extracted from the International Software
Testing Qualifications Board (ISTQB) Standard Glossary of Terms used in Software
Testing. Only the terms used for the Foundation Level certification exams are
mentioned, so as not to drown the reader in terms that are used at other levels or in
other syllabi.

Acceptance criteria: The criteria that a component or system must satisfy
in order to be accepted by a user, customer or other authorized entity (from
ISO 24765).

Acceptance test-driven development: A collaboration-based test-first approach
that defines acceptance tests in the stakeholders’ domain language. Abbreviation:
ATDD.

Acceptance testing: Formal testing with respect to user needs, requirements and
business processes conducted to determine whether or not a system satisfies the
acceptance criteria and to enable the user, customers or other authorized entities to
determine whether or not to accept the system. See also user acceptance testing.

ACM: (Association for Computer Machinery) professional and scientific
association for the development of information technology.

Alpha testing: Simulated or actual operational testing by potential
users/customers or an independent test team at the developers’ site, but outside the
development organization. Alpha testing is often employed as a form of internal
acceptance testing.

xviii Fundamentals of Software Testing

Anomaly: A condition that deviates from expectation (from ISO 24765).

Attack: Directed and focused attempt to evaluate the quality, and especially the
reliability, of a test object by attempting to force specific failures to occur.

Beta testing: Operational testing by potential and/or existing users/customers at
an external site not otherwise involved with the developers, to determine whether or
not a component or system satisfies the user/customer needs and fits within the
business processes. Beta testing is often employed as a form of external acceptance
testing in order to acquire feedback from the market.

Black-box technique: See also black-box testing.

Black-box test technique: A test technique based on an analysis of the
specification of a component or system. Synonyms: black-box test design
technique, specification-based test technique.

Black-box testing: Testing, either functional or nonfunctional, based on an
analysis of the specification of the component or system. Synonym: specification-
based testing.

Boundary value analysis: A black-box test technique in which test cases are
designed based on boundary values. See also boundary values.

Branch coverage: The coverage of branches in a control flow graph (percentage
of branches that have been exercised by a test suite). One hundred percent branch
coverage implies both 100% decision coverage and 100% statement coverage.

Bug: See also defect.

Checklist-based testing: An experience-based test technique in which test cases
are designed to exercise the items of a checklist.

Code coverage: An analysis method that determines which parts of the software
have been executed (covered) by the test suite and which parts have not been
executed, for example, statement coverage, decision coverage or condition coverage.

Collaboration-based test approach: An approach to testing that focuses on
defect avoidance by collaborating among stakeholders.

Commercial off-the-shelf software (COTS): See also off-the-shelf software.

Compiler: A software tool that translates programs expressed in a high-order
language into their machine language equivalents.

Glossary xix

Complexity: The degree to which a component or system has a design and/or
internal structure that is difficult to understand, maintain and verify. See also
cyclomatic complexity.

Component integration testing: The testing executed to identify defects in the
interfaces and interactions between integrated components. Synonyms: module
integration testing, unit integration testing.

Component testing: A test level that focuses on individual hardware or software
components. Synonyms: module testing, unit testing.

Configuration control: An element of configuration management, consisting of
the evaluation, coordination, approval or disapproval, and implementation of
changes to configuration items after formal establishment of their configuration
identification.

Configuration item: An aggregation of hardware, software or both, that is
designated for configuration management and treated as a single entity in the
configuration management process.

Configuration management: A discipline applying technical and administrative
direction and surveillance to: identify and document the functional and physical
characteristics of a configuration item, control changes to those characteristics,
record and report change processing and implementation status, and verify
compliance with specified requirements.

Confirmation testing: A type of change-related testing performed after fixing a
defect to confirm that a failure caused by that defect does not reoccur. Synonym:
re-testing.

Control flow: An abstract representation of all possible sequences of events
(paths) in the execution through a component or system.

Coverage: The degree to which specified coverage items are exercised by a test
suite, expressed as a percentage. Synonym: test coverage.

Coverage item: An attribute or combination of attributes derived from one or
more test conditions by using a test technique. See also coverage criteria.

Coverage measurement tool: See also coverage tool.

Coverage tool: A tool that provides objective measures of what structural
elements, for example, statements, branches, have been exercised by the test suite.

xx Fundamentals of Software Testing

Cyclomatic complexity: The number of independent paths through a program.
Cyclomatic complexity is defined as: L – N + 2P, where:

– L = the number of edges/links in a graph;

– N = the number of nodes in a graph;

– P = the number of disconnected parts of the graph (e.g. a calling graph and a
subroutine).

Data-driven testing: A scripting technique that stores test input and expected
results in a table or spreadsheet, so that a single control script can execute all of the
tests in the table. Data-driven testing is often used to support the application of test
execution tools such as capture/playback tools. See also keyword-driven testing.

Data flow: An abstract representation of the sequence and possible changes of
the state of data objects, where the state of an object can be creation, usage or
destruction.

Debugging: The process of finding, analyzing and removing the causes of
failures in a component or system.

Debugging tool: A tool used by programmers to reproduce failures, investigate
the state of programs and find the corresponding defect. Debuggers enable
programmers to execute programs step-by-step, halt a program at any program
statement and set and examine program variables.

Decision coverage: The percentage of decision outcomes that have been
exercised by a test suite. One hundred percent decision coverage implies both 100%
branch coverage and 100% statement coverage.

Decision table testing: A black-box test technique in which test cases are
designed to exercise the combinations of conditions inputs and/or stimuli (causes)
shown in a decision table.

Defect: An imperfection or deficiency in a work product, which can cause the
component or system to fail to perform its required function, for example, an
incorrect statement or data definition (from ISO 24765). A defect, if encountered
during execution, may cause a failure of the component or system. Synonyms: bug,
fault.

Defect density: The number of defects identified in a component or system
divided by the size of the component or system (expressed in standard measurement
terms, for example, lines-of-code, number of classes or function points).

Glossary xxi

Defect management: The process of recognizing, recording, classifying,
investigating, resolving and disposing of defects. It involves recording defects,
classifying them and identifying the impact.

Defect management tool: See also incident management tool.

Defect report: Documentation of the occurrence, nature and status of a defect.
Synonym: bug report.

Driver: A software component or test tool that replaces a component that takes
care of the control and/or the calling of a component or system.

Dynamic analysis tool: A tool that provides run-time information on the state of
the software code. These tools are most commonly used to identify unassigned
pointers, check pointer arithmetic, and monitor the allocation, use and de-allocation
of memory and highlight memory leaks.

Dynamic testing: Testing that involves the execution of the test item/software of
a component or system (from ISO 29119-1). See also static testing.

Entry criteria: The set of generic and specific conditions that permit a process to
proceed with a defined task (from Gilb and Graham), for example, test phase. The
purpose of entry criteria is to prevent a task that would entail more (wasted) effort
compared to the effort needed to remove the failed entry criteria from starting. See
also exit criteria.

Equivalence partitioning: A black-box test technique in which test conditions
are equivalence partitions exercised by one representative member of each partition
(from ISO 29119-1). Synonym: partition testing.

Error: A human action that produces an incorrect result (from ISO 24765).
Synonym: mistake.

Error guessing: A test design technique in which tests are derived on the basis
of the tester’s knowledge of past failures, or general knowledge of failure modes, in
order to anticipate the defects that may be present in the component or system under
test as a result of errors made, and design tests specifically to expose them (from
ISO 29119-1).

Exhaustive testing: A test approach in which the test suite comprises all
combinations of input values and preconditions.

Exit criteria: The set of generic and specific conditions, agreed upon with the
stakeholders, that permit a process to be officially completed. The purpose of exit

xxii Fundamentals of Software Testing

criteria is to prevent a task from being considered completed when there are still
outstanding parts of the task that have not been finished. Exit criteria are used by
testing to report against and plan when to stop testing (after Gilb and Graham).
Synonyms: test completion criteria, completion criteria. See also entry criteria.

Experience-based test technique: A test technique based on the tester’s
experience, knowledge and intuition. Synonyms: experience-based test design
technique, experience-based technique.

Exploratory testing: An approach to testing in which the testers dynamically
design and execute tests based on their knowledge, exploration of the test item
and the results of previous tests. This is used to design new and better tests (from
ISO 29119-1). See also test charter.

Failure: An event in which a component or system does not perform a required
function within specified limits (from ISO 24765). Actual deviation of the
component or system from its expected delivery, service or result (according to
Fenton). The inability of a system or system component to perform a required
function within specified limits. A failure may be produced when a fault is
encountered [EUR 00].

Failure rate: The ratio of the number of failures of a given category to a given
unit of measure, for example, failures per unit of time, failures per number of
transactions and failures per number of computer runs.

Fault attack: See also attack.

Field testing: See also beta testing.

Finite state testing: See also state transition testing.

Formal review: A type of review that follows a defined process with a formally
documented output, for example, inspection (from ISO 20246).

Functional requirement: A requirement that specifies a function that a
component or system must perform.

Functional testing: Testing performed to evaluate if a component or system
satisfies functional requirements (from ISO 24765). See also black-box testing.

Horizontal traceability: The tracing of requirements for a test level through the
layers of test documentation (e.g. test plan, test design specification, test case
specification and test procedure specification).

Glossary xxiii

IEEE: Institute for Electrical and Electronic Engineers, a professional, not-for-
profit association for the advancement of technology, based on electrical and
electronic technologies. This association is active in the design of standards. There is
a French chapter on this association, which provides publications that are useful for
software testers.

Impact analysis: The assessment of change to the layers of development
documentation, test documentation and components, in order to implement a given
change to specified requirements.

Incident: Any event occurring during testing which requires investigation.

Incident management tool: A tool that facilitates the recording and status
tracking of incidents found during testing. They often have workflow-oriented
facilities to track and control the allocation, correction and re-testing of incidents
and provide reporting facilities. See also defect management tool.

Incident report: A document reporting on any event that occurs during the
testing which requires investigation.

Incremental development model: A development life cycle where a project is
broken into a series of increments, each of which delivers a portion of the
functionality in the overall project requirements. The requirements are prioritized
and delivered in priority order in the appropriate increment. In some (but not all)
versions of this life cycle model, each sub-project follows a “mini V-model” with its
own design, coding and testing phases.

Independence of testing: Separation of responsibilities, which encourages the
accomplishment of objective testing.

Informal review: A type of review that does not follow a defined process and
has no formally documented output.

Inspection: A type of formal review that relies on visual examination of
documents to detect defects, for example, violations of development standards and
non-conformance to higher-level documentation, and uses defined team roles and
measurements to identify defects in a work product and improve the review and
software development processes. The most formal review technique and, therefore,
always based on a documented procedure (from ISO 20246). See also peer review.

Intake test: A special instance of a smoke test to decide whether the component
or system is ready for detailed and further testing. An intake test is typically carried
out at the start of the test execution phase. See also smoke test.

xxiv Fundamentals of Software Testing

Integration: The process of combining components or systems into larger
assemblies.

Integration testing: Testing performed to expose defects in the interfaces and in
the interactions between integrated components or systems. See also component
integration testing, system integration testing.

Interoperability testing: The process of testing to determine the interoperability
of a software product.

ISTQB: International Software Testing Qualifications Board, a nonprofit
association developing international certification for software testers.

Keyword-driven testing: A scripting technique that uses data files to contain not
only test data and expected results, but also keywords related to the application
being tested. The keywords are interpreted by special supporting scripts that are
called by the control script for the test. See also data-driven testing.

Maintainability testing: The process of testing to determine the maintainability
of a software product.

Maintenance testing: Testing the changes to an operational system or the impact
of a changed environment on an operational system.

Master test plan: See also project test plan.

Metric: A measurement scale and the method used for measurement.

Mistake: See also error.

Modeling tool: A tool that supports the validation of models of the software or
system.

Moderator: The leader and main person responsible for an inspection or other
review process.

Non-functional testing: Testing performed to evaluate whether a component or
system complies with nonfunctional requirements.

N-switch coverage: The percentage of sequences of N+1 transitions that have
been exercised by a test suite.

Glossary xxv

N-switch testing: A form of state transition testing in which test cases are
designed to execute all valid sequences of N+1 transitions (Chow). See also state
transition testing.

Off-the-shelf software: A software product that is developed for the general
market, that is, for a large number of customers, and that is delivered to many
customers in identical format.

Oracle: See also test oracle.

Peer review: See also technical review.

Performance testing: The process of testing to determine the performance of a
software product.

Performance testing tool: A tool to support performance testing, that usually has
two main facilities: load generation and test transaction measurement. Load
generation can simulate either multiple users or high volumes of input data. During
execution, response time measurements are taken from selected transactions and
these are logged. Performance testing tools normally provide reports based on test
logs and graphs of load against response times.

Portability testing: The process of testing to determine the portability of a
software product.

Probe effect: The effect on the component or system when it is being measured,
for example, by a performance testing tool or monitor. For example, performance
may be slightly worse when performance testing tools are being used.

Product risk: A risk impacting the quality of a product and directly related to the
test object. See also risk.

Project risk: A risk related to management and control of the (test) project, for
example, lack of staffing, strict deadlines, changing requirements, etc., that impacts
project success. See also risk.

Project test plan: A test plan that typically addresses multiple test levels. See
also master test plan.

Quality: The degree to which a component, system or process meets specified
requirements and/or user/customer needs and expectations (from IREB).

xxvi Fundamentals of Software Testing

Quality assurance: Activities focused on providing confidence that quality
requirements will be fulfilled. Abbreviation: QA (from ISO 24765). See also
quality management.

RAD: Rapid Application Development, a software development model.

Regression testing: A type of change-related testing to detect whether defects
have been introduced or uncovered in unchanged areas of the software. It is
performed when the software or its environment is changed.

Reliability testing: The process of testing to determine the reliability of a
software product.

Requirement: A condition or capability needed by a user to solve a problem or
achieve an objective that must be met or possessed by a system or system
component to satisfy a contract, standard, specification or other formally imposed
document.

Requirement management tool: A tool that supports the recording of
requirements, attributes of requirements (e.g. priority, knowledge responsible), and
annotation, and facilitates traceability through layers of requirements and
requirement change management. Some requirement management tools also
provide facilities for static analysis, such as consistency checking and violations to
pre-defined requirement rules.

Re-testing: Testing that runs test cases that failed the last time they were run, in
order to verify the success of corrective actions.

Review: A type of static testing in which a work product or process is evaluated
by one or more individuals to detect defects or provide improvements. Examples
include management review, informal review, technical review, inspection and
walk-through.

Review tool: A tool that provides support to the review process. Typical features
include review planning, tracking support, communication support, collaborative
reviews and a repository for collecting and reporting of metrics.

Reviewer: The person involved in the review who identifies and describes
anomalies in the product or project under review. Reviewers can be chosen to
represent different viewpoints and roles in the review process.

Risk: A factor that could result in future negative consequences; usually
expressed as impact and likelihood. See also product risk, project risk.

Glossary xxvii

Risk analysis: The overall process of risk identification and risk assessment.

Risk assessment: The process to examine identified risks and determine the risk
level.

Risk-based testing: Testing in which the management, selection, prioritization
and use of testing activities and resources are based on corresponding risk types and
risk levels. This approach is used to reduce the level of product risks and inform
stakeholders about their status, starting in the initial stages of a project (from
ISO 29119-1).

Risk control: The overall process of risk mitigation and risk monitoring.

Risk identification: The process of finding, recognizing and describing risks.
(from ISO 31000).

Risk level: The measure of a risk defined by risk impact and risk likelihood.
Synonym: risk exposure.

Risk management: The process for handling risks (from ISO 24765).

Risk mitigation: The process through which decisions are reached and protective
measures are implemented to reduce risks or maintain them at specified levels.

Risk monitoring: The activity that checks and reports the status of known risks
to stakeholders.

Robustness testing: Testing to determine the robustness of the software product.

Root cause: A source of a defect such that if it is removed, the occurrence of the
defect type is decreased or removed (from CMMI).

SBTM: Session-based test management, an ad hoc and exploratory test
management technique, based on fixed length sessions (from 30 to 120 minutes),
during which testers explore a part of the software application.

Scribe: The person who has to record each defect mentioned and any
suggestions for improvement during a review meeting, on a logging form. The
scribe has to ensure that the logging form is readable and understandable.

Scripting language: A programming language in which executable test scripts
are written, used by a test execution tool (e.g. a capture/replay tool).

Security testing: Testing to determine the security of the software product.

xxviii Fundamentals of Software Testing

Shift left: An approach to perform testing and quality assurance activities as
early as possible in the software development life cycle.

Site acceptance testing: Acceptance testing by users/customers on site, to
determine whether or not a component or system satisfies the user/customer needs
and fits within the business processes, normally including hardware as well as
software.

SLA: Service-level agreement, service agreement between a supplier and their
client, defining the level of service a customer can expect from the provider.

Smoke test: A subset of all defined/planned test cases that cover the main
functionality of a component or system, to ascertain that the most crucial functions
of a program work, but not bothering with finer details. A daily build and smoke test
is among industry best practices.

State transition: A transition between two states of a component or system.

State transition testing: A black-box test design technique in which test cases
are designed to exercise elements of a state transition model, and execute valid and
invalid state transitions. Synonym: finite state testing. See also N-switch testing.

Statement coverage: The percentage of executable statements that have been
exercised by a test suite.

Static analysis: The process of evaluating a component or system without
executing it, based on its form, structure, content or documentation, for example,
requirements or code, carried out without execution of these software artifacts (from
ISO 24765).

Static code analyzer: A tool that carries out static code analysis. The tool checks
the source code for certain properties, such as conformance to coding standards,
quality metrics or data flow anomalies.

Static testing: Testing of a component or system at the specification or
implementation level without execution of that software, for example, reviews or
static code analysis. See also dynamic testing.

Stress testing: A type of performance testing conducted to evaluate a system or
component at or beyond the limits of its anticipated or specified workloads, or with
reduced availability of resources, such as access to memory or servers. See also
performance testing, load testing.

Stress testing tool: A tool that supports stress testing.

