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Preface

Pumps are among the most power-consuming general-purpose equipment in energy conversion
devices and significantly impact the modern industrial economy. A mixed-flow pump can be con-
sidered a type of pump design between centrifugal pump and axial flow pump since it employs the
combined effect of centrifugal force and thrust generated by the rotation of the impeller to convey
fluid, and the fluid flows axially in and diagonally out through the impeller. It can also be called
oblique flow pump with high flow rate, high efficiency, strong anti-cavitation performance, etc.
It is widely used for agricultural irrigation, municipal water supply and drainage, water circulation
in power industry, naval water jet propulsion, underwater weapon launches, and regional water
transfer projects.

Compared to other pump types, the internal flow of mixed-flow pumps is more complex, and the
secondary flow and deliquescence are more prominent. There are not only inherent unsteady flow
problems caused by the static and dynamic interference but also unsteady problems induced by the
wheel edge leakage vortex and its trailing off, rotational stall, and other complex flow phenomena
which seriously affect the operational stability and efficiency of the mixed-flow pumps. Therefore,
there is a need to explore the spatial and temporal evolution of flow structures and flow dynamics
of the internal flow field of a mixed-flow pump as well as to achieve the desired targeted optimized
solutions. In addition, the internal vortex energy loss characteristics of mixed-flow pumps, cavi-
tation damage, and other phenomena also need to be studied systematically. Understanding and
mastering the physical mechanisms of the internal flow in a mixed-flow pump is a prerequisite for
improving the operational stability, reliability, and efficiency of the pump.

In previous studies, the flow field and performance characteristics of a mixed-flow pump were
generally determined and analyzed by experimental means; however, the experimental approach
is not only expensive, but it is often difficult to observe and obtain all the details of the flow field
experimentally due to its complex structure. In recent years, the emergence of computational
fluid dynamics has provided an effective tool to study the finer details of the flow structure inside
the hydraulic machinery, which is uniquely beneficial in analyzing the internal flow field in a
mixed-flow pump at multiple scales for a full range of operating conditions. Currently, there
are no reference books providing the computational approach for the study of the flow fields
and performance of mixed-flow pumps. Therefore, this book selects a typical model of a guide
vane-type mixed-flow pump as the object of study and systematically investigates the complex
internal flow structure through numerical simulations and experiments aiming to provide a
reference work for industrial practitioners, academics, and students interested in the field of
hydraulic machinery.



xii Preface

The book is divided into 12 chapters; the content of each chapter is as follows.
The first chapter provides a brief introduction to the definitions, types, and applications of

mixed-flow pumps. The second chapter provides a detailed description of the basic concepts of
mixed-flow pumps and the related theories. Chapter 3 focuses on computational fluid dynamics
(CFD) simulation technology including geometric modeling, meshing, governing equations
of fluid flow, CFD methods classification, turbulence models, solution algorithms, near-wall
surface treatment, and boundary conditions. Chapter 4 describes different analysis methods
including entropy production analysis, vortex analysis, and wavelet methods. Chapter 5 details
the experimental methods, data, and analysis such as pressure pulsation measurements, PIV
measurements, and axial trajectory measurements. Chapter 6 covers the application of turbu-
lence models and compares the applicability of several turbulence models in the performance
prediction of mixed-flow pumps. Chapter 7 investigates and analyzes the energy characteristics,
flow structure, instability characteristics, and dynamic and static interference of the tip leakage
flow of the mixed-flow pump. Chapter 8 investigates and analyzes the energy characteristics, flow
structure, and the effect of tip clearance on the rotational stall and its propagation characteristics
as well as the causes of incipient and deep rotational stall in the mixed-flow pump. Chapter 9
provides several passive suppression techniques to control the rotating stall in the mixed-flow
pump. Chapter 10 analyzes the cavitation flow field and cavitation energy characteristics of
the mixed-flow pump. Chapter 11 describes a special application of the Wray–Agarwal (WA)
one-equation turbulence model to analyze the vortex dynamics characteristics in the tip region of
the mixed-flow pump to demonstrate the accuracy and efficiency of the WA model for computing
such complex flows compared to the other widely used turbulence models. Chapter 12 investigates
the influence of the sediment particles on internal energy dissipation of the mixed-flow pump
with different solid-phase volume fractions.

This book has been limited in terms of the depth and breadth of data collection. Furthermore,
there could inevitably be some shortcomings and errors in the book. We hope that readers will
provide comments and input so that future editions can be improved.
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1

1

Introduction

1.1 What Is a Mixed-flow Pump?

A mixed-flow pump is a centrifugal pump with a mixed-flow impeller [1]. The specific speed (ns)
lies between 35 and 80 rpm for low-speed mixed-flow pumps and between 80 and 160 rpm for
higher-speed mixed-flow pumps (in special cases, even higher). It has characteristics of both radial
flow and axial flow pumps. As liquid flows through the impeller of a mixed-flow pump, the impeller
blades push the liquid out away from the pump shaft and to the pump suction at an angle greater
than 90∘. The impeller of a typical mixed-flow pump and the flow through a mixed-flow pump are
shown in Fig. 1.1.

1.2 Types of Mixed-flow Pumps

Based on the type of suction chamber, mixed-flow pumps can be divided into two types: volute
mixed-flow pumps and guide vane mixed-flow pumps, as shown in Fig. 1.2. The former is close to
the design of a centrifugal pump, and the latter is close to the design of an axial flow pump.

At present, majority of mixed-flow pumps are volute mixed-flow pumps which are similar
to a single-suction centrifugal pump but are different in the type of impeller: the impeller of a
mixed-flow pump of high specific speed is similar to that of an axial flow pump which is open
type with adjustable blades; the impeller of a mixed-flow pump of low specific speed, on the other
hand, is closed type which is similar to that of a single-suction centrifugal pump, but its flow
channel is wider and the blade outlet is inclined.

Compared to the axial flow pump, the guide vane mixed-flow pump has slightly higher efficiency
and a relatively flat efficiency characteristic curve. In other words, it can ensure higher efficiency
when the water level changes; hence, it is very suitable for farmland drainage and irrigation and
saves power, but compared to the volute mixed-flow pump, its diameter is smaller. For the vertical
guide vane mixed-flow pump, the impeller is submerged in water during operation, so there is no
need for water diversion equipment, and therefore the needed floor area is small. Therefore, in
places where the axial flow pump is used (except for the axial flow pump with large adjustable
blades), it is advantageous to replace it with an appropriate model of guide vane mixed-flow pump.

Other classifications of mixed-flow pumps are:

1. According to the inspection and disassembly form, they can be divided into the extractable
mixed-flow pump and the non-extractable mixed-flow pump.

2. According to the blade regulation type, they can be divided into the fixed mixed-flow pump, the
semi-regulated submersible axial flow pump, and the fully regulated mixed-flow pump.

Mixed-flow Pumps: Modeling, Simulation, and Measurements, First Edition.
Wei Li, Leilei Ji, Ramesh Agarwal, Weidong Shi, and Ling Zhou.
© 2024 John Wiley & Sons, Inc. Published 2024 by John Wiley & Sons, Inc.
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Figure 1.1 Mixed-flow pump impeller and mixed-flow pump model.
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Figure 1.2 Classification of mixed-flow pumps. (a) Structural diagram of volute mixed-flow pump 1. Pump
cover, 2. Impeller, 3. Packing, 4. Pump body, 5. Bearing body, 6. Pump shaft, 7. Pulley, 8. Bolt. (b) Structural
diagram of guide vane mixed-flow pump. 1. Suction horn, 2. Impeller, 3. Guide vane, 4. Outlet elbow,
5. Pump shaft, 6. Rubber bearing, 7. Stuffing box.

1.3 Agricultural and Industrial Applications of Pumps

Due to the characteristics of moderate head and large flow rate, the mixed-flow pump is widely used
in farmland irrigation, flood prevention and drainage, sewage treatment, power station cooling
systems, and other applications.

In agricultural production, the main function of the mixed-flow pump is irrigation and drainage.
There are vast rural areas in the world, thus a large number of pumps are needed every year.
Generally, agricultural pumps account for more than half of the total output of the pumps.

In the mining and metallurgical industries, mixed-flow pumps are also widely used. The
mixed-flow pump is used for drainage and water supply in the process of beneficiation, smelting,
and rolling in mines.
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In the power sector, power stations need a large number of boiler feed pumps, condensate pumps,
circulating pumps, and ash pumps, among which mixed-flow pumps account for the majority.

In the shipbuilding industry, many advanced water jet propulsion pumps are of mixed-flow pump
types.

The following are examples of large-scale mixed-flow pump station projects in which Chinese
companies have been engaged inside China as well as in neighboring countries for development
of shipping, flood discharge, and other functions. The three representative projects are briefly
described below:

1. Pumping station of Zaohe River in Suqian, Jiangsu province, China [2].
The first-stage renovation project of the Zaohe River pumping station in the eastern route of
the south-to-north water diversion project is located in Zaohe town, Suyu district, Suqian City,
Jiangsu Province, China. Its primary task is to pump the diverted water from the Liulaodian
pumping station into Luoma Lake, achieving a target water delivery of 175 m3/s to Luoma Lake
and addressing the drainage needs in the regions of Pihong River and Huangdun Lake.

The Zaohe pumping station, shown in Fig. 1.3 is currently equipped with two sets of
5700HLQ100-4.78 vertical fully adjustable guide vane mixed-flow pumps. The pumps are
designed with a net head of 4.78 meters, a design flow rate of 100 m3/s, an impeller diameter
of 5.70 meters, a rated speed of 75 r/min, and an adjustable blade angle in the range +2∘ to
−18∘. They are paired with TL7000-80/7400 vertical synchronous electric motors with a rated
capacity of 7000 kW and a total installed capacity of 14 000 kW. The first unit was successfully
started on April 8, 2011, at 15:40 in the afternoon.

2. Qushou pumping station of Qinglongshan irrigation area in Heilongjiang Sanjiang Plain,
China [3].

Figure 1.3 Pumping station of Zaohe River in Suqian, Jiangsu province, China. Source: [2]. Jiangsu
Aerospace Hydraulic Equipment Co., Ltd. https://www.pumpcj.com/case/95.html. Last accessed 17 January,
2024.

https://www.pumpcj.com/case/95.html
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Figure 1.4 Qushou pumping station of Qinglongshan irrigation area in Heilongjiang Sanjiang Plain, China.
Source: [3]. Jiangsu Aerospace Hydraulic Equipment Co., Ltd. https://www.pumpcj.com/case/97.html. Last
accessed 17 January, 2024.

The installed flow rate capacity of the Qushou pumping station of Qinglongshan irriga-
tion area is 381 m3/s, and the total installed power capacity is 56 000 kW. It has six sets of
3300HLQ38.1-9.74 fully adjustable mixed-flow pumps to irrigate the largest irrigation area
in Heilongjiang province. Furthermore, it is the second largest mixed-flow pump station in
China, as shown in Fig. 1.4. This infrastructure plays a crucial role in realizing increased grain
production and efficiency, optimizing the regional water resource allocation, and implementing
the coordinated scheduling of surface water, groundwater, and rainwater resources for irriga-
tion in the Sanjiang region – the largest granary in the country. It contributes significantly to
promoting the coordinated and sustainable development of the economy, society, and ecology
in the region.

3. The Belt and Road project of Chongqing Electromechanical Group – the Hyderabad flood con-
trol irrigation project in Telangana, India – has been successfully tested recently [4]. The 24
large, closed-volute mixed-flow pumps and 12 large synchronous motors used in the project
have all been developed by Chongqing Hydro Turbine Co. Ltd. with independent intellectual
property rights. Twenty-four large mixed-flow pumps are installed in this flood control and irri-
gation project. Each water pump has a flow of 41 m3/s, a lift of 11 m, and a rotational speed of
136.6 r/min. It is the largest closed mixed-flow pump with single unit power of 6500 kW syn-
chronous motor. The energy index and stability index of water pumps and synchronous motors
have reached an international advanced level.

1.4 Summary

This chapter provides an overview of the main structural forms of the mixed-flow pump, its
classifications, and industrial applications. In terms of the rotational speed, the specific speed (ns)
ranges between 35 and 80 rpm for low-speed mixed-flow pumps and between 80 and 160 rpm for

https://www.pumpcj.com/case/95.html
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higher-speed mixed-flow pumps. Considering the structure of the suction chamber, mixed-flow
pumps can be categorized as volute mixed-flow pumps and guide vane mixed-flow pumps.
Additionally, the broad applications of mixed-flow pumps in agricultural irrigation and other
major industrial projects attest to their excellent operational range, performance, and stability.
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Basic Concepts and Theory of Mixed-flow Pumps

2.1 Basic Flow and Performance Parameters

The parameters characterizing the performance of the pump are as follows.

2.1.1 Volume Flow Q

Flow is the volume (or mass) of liquid delivered in unit time. Volume flow is expressed in Q, the
unit is m3/s, m3/h, or L/s, etc. The mass flow is expressed as Qm and the unit is ton/h, kg/s, etc.
The relationship between the mass flow and volume flow is

Qm = 𝜌Q (2.1)

where 𝜌 is the density of the liquid in kg/m3; 𝜌 of clean water is generally taken as 1000 kg/m3 at
room temperature.

2.1.2 Head H

Head is the increment of energy per unit weight of liquid pumped by the pump from the pump
inlet to the pump outlet. It is the effective energy obtained by 1 kg of liquid through the pump. The
unit therefore is (N •m/N)=m, which is the equivalent liquid column height pumped by the pump
shaft; the liquid column height is called the pump head H and is conventionally given in meters
(m). The pump head can be written as

H = Ed − ES (2.2)

where Ed is energy per unit weight of liquid at the pump outlet in meters and Es is energy per unit
weight of liquid at the pump inlet in meters.

The energy per unit weight of the liquid is called head in hydraulics, which is usually composed
of the pressure head p

𝜌g
(m), the velocity head 𝑣

2

2g
(m), and the position head z (m), i.e.

Ed =
pd

𝜌g
+
𝑣

2
d

2g
+ zd (2.3)

and

Es =
ps

𝜌g
+
𝑣

2
s

2g
+ zs (2.4)
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Therefore

H =
pd − ps

𝜌g
+
𝑣

2
d − 𝑣

2
s

2g
+ (zd − zs) (2.5)

where pd and ps are the static pressure of the liquid at the pump outlet and inlet respectively,
vd and vs are the liquid velocity at the pump outlet and inlet, respectively, and zd and zs are the
distance from the pump outlet and inlet to a specified measuring datum plane respectively.

The head H of the pump is a key performance parameter of the pump, which is only related to
the energy of the liquid at the inlet and outlet flanges of the pump and is not directly related to
the type of the pump. However, using the energy equation, the pump head can be expressed by the
energy of the liquid in the pump device.

2.1.3 Speed n

The speed n is the number of revolutions per unit time of the pump shaft, and its unit is revolu-
tions r/min.

2.1.4 NPSH

The NPSH, an abbreviated form for the net positive suction head, is the main parameter indicat-
ing the cavitation performance of the pump. The NPSH has also been represented by Δh in the
literature by some scientists.

2.1.5 Power and Efficiency

Pump power usually refers to the input power; it is the power transmitted by the prime mover to
the pump shaft and is also known as the shaft power expressed by P.

The effective power of the pump, also known as the output power is expressed by Pe. It is the
effective energy obtained by the liquid output from the pump per unit time.

Since the pump head is the effective energy obtained from the pump by the unit mass of liquid
output from the pump, the product of head, mass flow, and gravity acceleration is the effective
energy obtained from the liquid output from the pump in unit time, which is the effective power
of the pump.

Pe = HQmg = 𝜌gQH (Watt W) (2.6)

or

Pe =
𝜌gQH
1000

= 𝛾QH
1000

(kW) (2.7)

where 𝜌 is the density of liquid delivered by the pump in kg/m3, 𝛾 = 𝜌 g is the specific gravity of
the liquid delivered by the pump in N/m3, Q is the pump flow in m3/s, H is the pump head in m,
and g is the gravitational acceleration in m/s2.

If the unit of specific gravity of the liquid is kg f/m3, then

Pe =
𝛾QH
100

(kW) (2.8)

The difference in the shaft power R and the effective power Pe is the power loss in the pump,
which is used to determine and define the efficiency of the pump. The efficiency of the pump is the
ratio of the effective power to the shaft power expressed as

𝜂 = Pe∕P (2.9)
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2.2 Typical Type of Flows in the Mixed-flow Pumps

2.2.1 Tip Leakage Flow

Since the tip leakage flow (TLF) in turbomachinery has significant impact on the performance
and even safety of the machine, it is very important in the study of hydraulic machinery. Since the
1950s, the understanding of the TLF has been one of the major research topics in fluid mechanics of
pumps, compressors, and turbines. The TLF model developed by Rains [1] is considered as the first
original and seminal contribution which has served as a stepping stone toward the comprehensive
understanding of this important flow phenomenon in turbomachines. Using this model, the veloc-
ity of TLF at the top of the outlet of the suction surface can be approximately estimated. At the same
time, the change in the runner efficiency caused by TLF can be analyzed, but this model cannot
calculate the micro-flow structure of the flow field. Later, Chen et al. [2] simplified the TLF model
and deduced the trajectory coordinates of the two-dimensional tip leakage vortex (TLV) theoreti-
cally. Early experimental research and numerical simulations in the field of gas turbines provided a
lot of information and data for exploring and analyzing the cause of formation as well as flow field
structure of the flange leakage vortex [3, 4]. All these research efforts have enormously contributed
to the present understanding of TLF and TLV.

Compared to the gas turbine, due to the large viscosity of water and more complex flow field in
the end wall region, the research progress on TLF of the mixed-flow pump has been relatively slow.
Yi et al. [5] employed the Reynolds-Averaged Navier-Stokes (RANS) equations with the SST k-𝜔
turbulence model, revealing the formation mechanism of TLV and its influence on the performance
of mixed-flow pump. Liu et al. [6] studied the shape and trajectory of the TLV in the mixed-flow
pump, qualitatively and quantitatively analyzed the TLV, and determined that the TLV formed by
the mixing of TLF and mainstream is the main reason for the deterioration of flow pattern and
performance of the mixed-flow pump. Wu [7, 8], and Miorini et al. [9] used PIV technology to test
and measure the flow field structure of TLV in the axial-flow water-jet propeller. It was found that
the instantaneous TLV structure was formed by the unsteady vortex propagating to the top area of
the blade channel, entraining with the mainstream and then breaking when reaching the pressure
surface of adjacent blades. Using the PIV measurements, Masahiro et al. [10] tried to determine the
generation mechanism of TLV of the mixed-flow pump at low flow rates and its impact in creating
instability in the flow. It was found that the load on the impeller blade inlet rim increased with
an increase in the leakage flow, and the TLV developed further with a decrease in the flow rate,
forming a shroud of leakage flow.

Since TLF has a direct relationship with the clearance size, many researchers have studied the
TLF under different tip clearances. Hah [11] and Li et al. [12] employed the LES to reveal the
unsteady flow properties of TLF and TLV and analyzed the structure of TLF for five different tip
clearances. Li et al. [13] studied the leakage flow for different tip clearances by performing numer-
ical calculations and analyzed the formation and development process as well as the losses due
to TLF and TLV for different tip clearances, and found that the strength of TLV increases with
increase in tip clearance resulting in increase in losses. Zhang et al. [14] conducted the numerical
simulation of a mixed-flow pump with low specific speed and analyzed its internal flow field for
different tip clearances and found that the larger the tip clearance, the greater the effect of entrain-
ment between the TLF and the mainstream flow. Goto [15] numerically analyzed the interaction
mechanism of secondary flow and the formation mechanism of jet wake structure in the end wall
region of the mixed-flow pump for four different tip clearances using the three-dimensional RANS
equations and found that the reverse flow caused by the TLF at larger clearances is the main reason
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for thickening of the boundary layer in the end wall region resulting in the deterioration of the
entire flow field. Zhong et al. [16] studied the mixed-flow water-jet pump and analyzed the influ-
ence of different blade tip clearances on the performance and internal flow field of the water-jet
pump and improved the blade profile in order to reduce the losses. Shi and Zhang [17, 18] studied
the external flow characteristics as well as the internal flow field of the mixed-flow pump for dif-
ferent tip clearances through the combination of numerical simulation and experiment to analyze
the evolution process of TLV and determine the influence of different tip clearances on formation
and evolution of TLV and its effect on hydraulic performance and cavitation characteristics of the
pump. Bing et al. [19] experimentally studied the efficiency drop of a mixed-flow pump (Δ𝜂/Δ𝛿)
due to an increase in tip clearance Δ𝛿. It was found that the head, power, and efficiency decrease
with an increase in tip clearance. A large number of studies have shown that TLF has a significant
effect on the hydraulic performance of mixed-flow pumps. These studies provide a great deal of
information toward the understanding of the complex three-dimensional flow field due to TLF in
a mixed-flow pump.

2.2.2 Rotating Stall

The concept of the rotating stall in turbomachinery first appeared in 1955; it was first proposed by
Emmons, [20] who provided a classical explanation as described in Fig. 2.1. Emmons considered an
in-line cascade as an example to explain the rotating stall. The disturbances in the circumferential
direction will easily occur due to the decrease of flow rate, and then resulting in an asymmetric flow.
In addition, due to the uneven manufacturing or installation of blades, some flow channels in the
impeller can generate separated flow, leading to stall and channel blockage. Assuming that blade
C in Fig. 2.1 stalls first, flow separation will occur in the flow channel so that the flow in the flow
channel between the adjacent blades D and C, opposite to the direction of rotation of the impeller,
will be squeezed and the flow deformation shown in Fig. 2.1 will occur to avoid the extrusion area
increasing the angle of attack of blade D and as a result the flow capacity in channel D will be
weakened and the blockage in the flow channel will be exacerbated gradually entering into stall.
The inlet angle of attack of adjacent blade B with the same direction of rotation as the impeller will
decrease. If there is a stall in the flow channel of blade B, the blockage of the flow channel will be
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Figure 2.1 Diagram showing circumferential development of rotating stall. Source: Emmons et al.
[20]/The American Society of Mechanical Engineers.


