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Preface

Our modern society is characterized by an unprecedented ability to generate vast amounts
of data. The use of big data in science is driving the development of a new scientific
paradigm. Smart search and learning computer algorithms are utilized to extract mean-
ingful patterns from large datasets and generate new knowledge that can be applied to
model the behavior of complex real-world systems much faster than by using traditional
scientific laws and theories. The name of the new game is machine learning, deep learning,
and artificial intelligence. These data-driven research methodologies are already paving the
way for advanced discoveries in numerous scientific disciplines. In healthcare industry
and research, the data-driven modeling approach is opening new frontiers, for example,
enabling to produce more accurate diagnoses, to facilitate the design of drugs, to innovate
treatment protocols and prevent diseases, to produce personalized treatments and reduce
medical costs, thereby significantly advancing medical research.

Computational science, the scientific investigation and solution of complex problems in
science and engineering through modeling and simulation on computers, may be consid-
ered the third pillar of science, complementing theory and experimenting. The conven-
tional simulation approach refers to the theory-based approach in which a model is built
using laws and predictive statements from physics, chemistry, biology, and other fields that
describe the causal relationships between a set of controllable inputs and a set of target
variables. The underlying physics is described by mathematical models such as systems of
ordinary and/or partial differential equations. The model is then solved numerically unless
a closed-form solution to the resulting set of equations is available, which is rarely the case
in practice. Theory-based simulation models are generally very powerful in understanding
the behavior of the system. However, they sometimes fail to accurately reveal the properties
of a complex system due to lack of theory and simplified assumptions, large numbers of vari-
ables and parameters involved in the simulation and, sometimes, a lack of robust numerical
solvers. In these circumstances, data-driven models can be used to identify correlations
between two sets of controlled input and output variables without the need to explicitly
describe their causal pips. Data-mining techniques, for instance, can be used to predict
future data patterns by analyzing the properties of existing datasets. Genetic algorithms
and artificial neural networks can map relationships between two datasets by reducing a
cost or error function and then predicting the future behavior of the target system.

Several scientific disciplines, such as computer vision and image recognition, self-driving
cars, natural language processing, website recommendations, solid-state materials science,



xx Preface

finance, bioinformatics, and chemistry, to name a few, have adopted machine learning
algorithms in the past decade or so. Thanks to their general applicability to different appli-
cations, data-driven models are computationally attractive for use in the medical sciences
and the healthcare industry, where they are becoming increasingly popular. Examples of
recent studies using data-driven neural network models include better image classification
of coronary angiography X-rays, localization of brain tumors from MRI image slices, and
strabismus recognition. Support vector machines have assisted in the detection of common
pneumothorax by analyzing binary patterns in chest X-ray images, as well as in the pre-
diction of fractures in hip bones and vertebrates using datasets acquired from random and
cluster-based under-sampling methods. Blood pressure has been predicted using principal
component analysis. The application of fuzzy logic and ontological reasoning allows for
more precise, personalized recommendations of antidiabetic drugs for individual patients.
Projects like IBM’s Watson Oncology, Microsoft’s Hanover, and Google’s DeepMind are only
a few examples of the many programs that companies are developing to leverage big data
in the healthcare industry.

This book provides an overview of the current state of the art in the use of artificial intel-
ligence in medicine and biology. It collects chapters written by international experts in the
field of medical and biological research. Their studies are the result of years of interdisci-
plinary collaborations with clinicians as well as computer scientists, mathematicians, and
engineers. The aim of the book is to demonstrate the efforts made in the fields of computa-
tional biology and medical sciences to design and implement robust, accurate, and efficient
computer algorithms for modeling the behavior of complex biological systems much faster
than using traditional modeling approaches solely based on theory. Through the authors’
contributions in the various chapters, we aim to highlight the difference between traditional
computational approaches to data processing (those of mathematical biology) and the new
way knowledge is extracted from data, and the experiment-data-theory-model-validation
cycle is being implemented. The style of the book is not that of a typical textbook. We believe
that understanding these new trends, the difficulties that have arisen as a result of these
changes, and the potential future directions these changes may take, directly through the
authors’ reports of scientific work expressed in simple but rigorous language, may add a
remarkable breadth. It may be of great benefit not only to professional scholars but also to
MSc or PhD program students who are the future and those who will take up the baton to
continue the race in scientific and technological research.

Bruno Carpentieri and Paola Lecca
The Editors

Bolzano
8 July 2023
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1

Introduction
Bruno Carpentieri and Paola Lecca

Faculty of Engineering, Computer Science and Artificial Intelligence Institute, Free University of Bozen-Bolzano,
Bolzano, Italy

The concept of intelligent machines is frequently attributed to Alan Turing, who published
a seminal paper titled “Computing Machinery and Intelligence” in 1950, in which he devel-
oped a simple test known as the “Turing test” to assess whether a machine can demonstrate
human-like intelligence. Six years later, in 1956, during the Dartmouth Conference, an
influential event in the history of AI, the term “artificial intelligence” (AI) was coined by
emeritus Stanford Professor John McCarthy, known as the “Father of AI” to characterize
“the science and engineering of creating intelligent machines.” The Turing test has had a
significant impact on the development of modern AI by establishing a standard for measur-
ing progress in AI research. Nevertheless, AI encompasses a broader spectrum of methods,
concepts, and technologies. Using techniques, such as machine learning (ML), natural lan-
guage processing (NLP), computer vision, and others, entail the study and development of
systems that can perform tasks that typically require human intelligence. Early basic AI
systems relied on explicitly coded rules based on a simple set of “if, then” or symbolic rea-
soning approaches, in which particular conditions would trigger specific actions to make
judgments and to perform tasks. These early models necessitated considerable manual rule
programming, which was time-consuming and difficult to scale to complex problems. As
a result of these limitations, widespread adoption of early AI models proved difficult, par-
ticularly in complicated domains such as medicine. Advances in AI research have led to
the development of more sophisticated algorithms that function similarly to the human
brain and have helped address some of these challenges and opened up new possibilities
for AI applications. ML has evolved into a field known as deep learning (DL), which con-
sists of techniques for creating and training artificial neural networks (ANNs) with multiple
layers of interconnected nodes, also known as neurons, capable of learning and making
decisions independently, similar to the human brain. These neural networks are inspired
by the structure and operation of biological neural networks in the human brain, although
they do not completely replicate the human brain’s complexities and mechanisms. By iter-
atively adjusting the weights and biases of the interconnected neurons, DL algorithms are
able to recognize complex patterns, extract meaningful representations from large amounts
of raw data, and make decisions or predictions across multiple domains. This has produced
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extraordinary progress in numerous fields, including computer vision, NLP, speech recog-
nition, and medical sciences.

The significant breakthroughs of DL methods can be attributed to the early 2000s owing to
the availability of large datasets, increased computational power, and advancements in par-
allel computing, in particular with the advent of graphics processing units (GPUs), which
played a crucial role in training deep neural networks on a larger scale. DL is now a domi-
nant approach at the forefront of AI research, with applications in a variety of disciplines.
In the medical field, it has shown the potential to revolutionize healthcare and pave the
way for personalized medicine (Gilvary et al. 2019). The use of predictive models, advanced
data analytics, and DL algorithms can provide valuable insights for healthcare applications
such as diagnosis, treatment selection, and therapy response prediction. The ability to ana-
lyze vast quantities of patient data, including medical records, genetic information, imaging
data, and real-time sensor data, is one of the primary benefits of AI in medicine (Zeng
et al. 2021; Liu et al. 2021b; Ahmad et al. 2021; Hamet and Tremblay 2017). This data can
guide interventions and preventive measures to reduce risks and promote proactive health-
care, enhance clinical workflow, and procedure precision. On the basis of the analysis of
multiple risk factors, it can be possible to assess an individual’s likelihood of developing
specific diseases. In the context of medicine and healthcare, however, data-driven mod-
els present significant computational challenges. When the model is too complex or the
training dataset is too small relative to the model’s capacity, it may begin to capture noise or
oddities that are specific to the training data, and perform exceptionally well on the training
data but poorly on new, unseen data. Such models are called “overfit.” Noise and unpre-
dictability are common features of complex healthcare datasets. A DL model that overfits
to these details when applied to new patient data may produce erroneous or unreliable
predictions. In healthcare, researchers are actively investigating methods to reduce overfit-
ting and to ensure the robustness and dependability of DL models across diverse patient
populations and situations. The availability of larger datasets, transfer learning techniques,
and advances in model architecture and regularization methods are important factors to
mitigate overfitting concerns and facilitate the adoption of DL in the medical field.

Convolutional neural networks (CNNs) were an additional significant advancement
and a subclass of DL algorithms used in image processing that were designed specifically
for analyzing visual data, such as images. Inspired by the structure and operation of the
human visual cortex, they imitate the activity of networked neurons by employing layers
of interconnected nodes, known as “convolutional layers,” which learn spatial hierarchies
of features from the input data. Convolutional layers apply filters or kernels to input
images, extracting and preserving local features and spatial relationships. In subsequent
layers, these extracted features are combined and further processed to capture increasingly
complex patterns and structures. Typically, the final layers of a CNN are composed of fully
connected layers and are responsible for making predictions based on the learned features.
CNNs have revolutionized image processing and computer vision tasks, outperforming
traditional machine learning approaches in image classification, object detection, segmen-
tation, and other tasks. Their ability to automatically acquire features from raw image
data has made them extremely valuable in numerous applications, including autonomous
vehicles, surveillance and medical imaging, and others. One of the first successful CNN
architectures was LeNet-5 (LeCun et al. 1998), introduced by Yann LeCun et al. in 1998,
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primarily designed for handwritten digit recognition. Other popular CNN models are
AlexNet (Krizhevsky et al. 2017) (developed by Alex Krizhevsky et al.), that made a
breakthrough in the field by significantly lowering error rates; VGGNet (Simonyan and
Zisserman 2014) (developed at the University of Oxford by the Visual Geometry Group);
GoogLeNet (Szegedy et al. 2015) (introduced by Christian Szegedy et al. from Google), that
used parallel convolutional operations at different scales; ResNet (He et al. 2016) (proposed
by Kaiming He et al.), that enabled the successful training of networks with hundreds or
even thousands of layers; DenseNet (Huang et al. 2017) proposed by Gao Huang et al., and
MobileNet (Howard et al. 2017) introduced by Andrew G. Howard et al. in 2017. These
are only a few examples of popular CNN architectures. Numerous other CNN models
have been developed over the years to address various applications, performance demands
and computational constraints, and demonstrate great potential in the field of medicine.
Their ability to analyze and interpret medical images, such as X-rays, computerized
tomography (CT) scans, magnetic resonance imaging (MRI), and pathology slides, can
assist in the diagnosis, planning of treatment, and monitoring of disease. In recent years,
CNNs have been used for a variety of medical imaging applications, including image
classification (classify medical images to identify different types of tumors, lesions, or
diseases), segmentation (segment medical images to identify regions or specific structures
of interest, such as organs, tumors, or blood vessels with the purpose of surgical planning,
radiation therapy, disease progression study), object detection (for detecting abnormalities,
nodules, or lesions within medical images), and disease prediction and prognosis (predict
the likelihood of disease occurrence and its progression based on medical images and other
clinical data), only to name a few.

As a result of these advancements, today, we are entering a new era in medicine
in which risk assessment models can be implemented in clinical practice to improve
diagnostic accuracy and operational efficiency. Kaul et al. coined the acronym “AIM”
which stands for “Artificial Intelligence in Medicine” in a paper published in 2020 on
gastrointestinal endoscopy, titled “History of artificial intelligence in medicine” (Kaul
et al. 2020), an eloquent fact of the emergence of a new strand in computational sci-
ence applied to the life sciences. According to Kaul and coauthors in that research, the
critical advances came in the last two decades although AIM has undergone significant
change during the last five decades. Watson, an open-domain question–answering system
developed by IBM in 2007, competed against human contestants on the television game
show Jeopardy! in 2011. Unlike conventional systems, which relied on either forward
reasoning (following rules from data to conclusions), backward reasoning (following
rules from conclusions to data), or manually created “if-then” rules, this technology,
known as DeepQA (Ferrucci et al. 2010), used NLP and a variety of searches to analyze
data over unstructured content and produce likely answers. This approach was less
complicated and less expensive to use, and easier to maintain. Using IBM Watson,
a novel RNA-binding protein that was changed in amyotrophic lateral sclerosis, was
successfully discovered by Bakkar et al. in 2017. DeepQA technology could be applied
to give evidence-based medicine solutions using data from a patient’s electronic medical
record and other electronic sources. This opened up new opportunities for evidence-based
clinical decision-making. Digitalized medicine became more widely accessible thanks
to advances in computer hardware and software, and AIM rapidly expanded as a result
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of this momentum. Chatbots were originally created for surface-level communication
(Eliza), but NLP has transformed them into useful conversation-based interfaces. This
technology was utilized to create Apple’s Siri and Amazon’s Alexa in 2011 and 2014,
respectively. Mandy was launched in 2017 as an automated patient intake technology for
a primary care practice, while Pharmabot was created in 2015 to assist with medication
instruction for pediatric patients and their parents (Ni et al. 2017; Comendador et al.
2015).

The use of AI in the medical field is rapidly expanding. CardioAI (the first Arterys
product (Arterys 2018)) analyses cardiac MRI and provides details like the car-
diac ejection percent. The tool incorporates non-contrast CT pictures of the head,
chest, and musculoskeletal systems, as well as liver and lung imaging. In 2017, the
US Food and Drug Administration approved Arterys (currently acquired by Tem-
pus Radiology) as the first clinical cloud-based DL application in healthcare. DL
can help to locate lesions, make differential diagnoses, and generate automated
medical reports. With fivefold cross-validation, Gargeya and Leng (2017) employed
DL to screen for diabetic retinopathy in 2017, reaching a 94% sensitivity and 98%
specificity (area under the curve). Esteva et al. similarly trained a CNN to differen-
tiate between nonmelanoma and melanoma skin cancers, and the results indicate
that the CNN’s performance is comparable to that of specialists. Weng et al. (2017)
demonstrated that a CNN can be utilized to predict cardiovascular risk in cohort
populations. Astonishingly, AI has been found to improve the accuracy of cardio-
vascular risk prediction compared to the standard methodology specified by the
American College of Cardiology. It was also used to consistently predict the pro-
gression of Alzheimer disease by analyzing amyloid imaging data and precisely
predicting drug therapy response in this disease (Mathotaarachchi et al. 2017; Fleck
et al. 2017).

The literature is so extensive, despite the recent emergence of AI in this field, that it is dif-
ficult to compile an exhaustive and summarizing compendium. There are numerous review
and perspective articles, blog posts, and journal portfolios that discuss the medical appli-
cations of AI, see e.g. Liu et al. (2021b), Suh et al. (2022), Briganti and Le Moine (2020),
and Malik et al. (2019). The majority of these meta-reviews identify four application areas:
(i) disease diagnose; (ii) drug development; (iii) personalized therapies; and (iv) gene edit-
ing, as depicted in Figure 1.1 and suggested, for instance, by Markus Schmitt, head of data
science at Data Revenue (https://datarevenue.com).

1.1 Disease Diagnoses

For accurate disease diagnosis, years of medical training are required. Even so, the process
of diagnosis is frequently laborious and lengthy. In many fields, the demand for expertise
greatly exceeds the available supply. Consequently, doctors are under pressure, and critical
patient diagnoses are frequently delayed. Recent advances in machine learning, particu-
larly in DL algorithms, have significantly enhanced the accuracy and accessibility of disease
diagnosis. Using machine learning, algorithms can learn to recognize patterns in the same
way that doctors do. An important distinction, however, is that learning algorithms require

https://datarevenue.com
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Figure 1.1 The four main applications of artificial intelligence in knowledge extraction and
interpretation of biological and biochemical data for applications in the clinic and medicine.
The rapid advancement of AI technologies will add further application domains in the near future,
formalizing AI as an integral part of modern healthcare.

thousands of concrete examples. In addition, because robots cannot read between the lines
in textbooks, these examples must be neatly digitalized. Consequently, machine learning
(including DL) is particularly advantageous in fields where the diagnostic data a doctor
considers has already been digitized, such as:

● utilizing CT images to diagnose strokes and lung cancer (Chiu et al. 2022; Aydín et al.
2021; Zhou and Xin 2022),

● evaluating the risk of sudden cardiac death or other heart disorders using cardiac MRI
and electrocardiogram (ECG) data (Haq et al. 2020; Klein et al. 2022; Ledziński and
Grześk 2023; Martínez-Sellés and Marina-Breysse 2023; Karatzia et al. 2022; Yasmin
et al. 2021; Kabra et al. 2022; Madan et al. 2022; Argentiero et al. 2022; Jone et al. 2022),

● identifying skin disorders from photographic images (Goyal et al. 2020; Thieme et al.
2023; Son et al. 2021; Ahmad et al. 2023; Combalia et al. 2022; Liopyris et al. 2022; Nigar
et al. 2022; Sreekala et al. 2022),

● and recognizing diabetic retinopathy in photographs of the eyes (Sheng et al. 2022; Huang
et al. 2022; Padhy et al. 2019; Bader Alazzam et al. 2021; Lim et al. 2023; Mohan et al. 2022;
Babenko et al. 2022; Muchuchuti and Viriri 2023; Sun et al. 2023).

Because there is a vast quantity of reliable data available in these medical areas,
algorithms are enhancing their diagnostic capabilities to match those of specialists. The
algorithm’s ability to generate conclusions in a fraction of a second and its economic
replicability on a global scale make up the difference. On this basis, it is anticipated that
everyone, everywhere will soon have access to affordable radiological diagnostic services
of the same high quality. More sophisticated AI diagnosis is being developed. Machine
learning in diagnostics is still in its early stages; more ambitious systems will combine
a number of data sources (such as CT, MRI, genomics, proteomics, patient data, and
even handwritten documents) to evaluate an illness or its progression. It is important to
recognize, however, that it is unlikely that AI will completely replace doctors. Instead,
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AI tools will assist the doctors to focus on signal interpretation, e.g. to identify potentially
malignant tumors and hazardous cardiac patterns.

1.2 Drug Development

Understanding a disease’s fundamental causes (technically, “the pathways”) and resistance
mechanisms is the first step toward designing a treatment. This earliest stage of drug
discovery is also known as “target identification.” Methods for identifying targets, such
as genes involved in disease pathophysiology, include genome-wide association studies
(GWAS), risk gene identification, and data mining of published literature. The next phase
is to identify effective disease targets (typically proteins). The amount of data available for
identifying feasible target pathways has significantly expanded thanks to the widespread
use of high-throughput methods like short hairpin RNA (shRNA) screening and deep
sequencing. However, integrating a huge number and variety of data sources, and then
identifying relevant patterns, remains difficult using traditional methods. All of the
available data can be analyzed more easily by machine learning algorithms, which can
even be trained to recognize good target proteins automatically (You et al. 2022; Zeng et al.
2020; Najm et al. 2021; Xu et al. 2021; Liu et al. 2021a; Dezsö and Ceccarelli 2020). After
identifying a drug’s target, the next stage is to find a substance that can interact with the
target molecule in the appropriate manner. This entails screening a large number of can-
didate compounds for their affinity toward the target as well as their toxicity (unintended
side effects). These substances may be synthetic, bioengineered, or natural.

It requires a significant amount of time to eliminate false positives and inaccuracies,
which may result in a large number of undesired recommendations (false positives).
Machine learning techniques can be beneficial in this scenario because they can be
trained to predict the suitability of a molecule using structural fingerprints and molecular
descriptors (Arnold 2023; Paul et al. 2021; Brown et al. 2020). Then, scientists rapidly sift
through millions of potential molecules to identify the most promising candidates – those
with the fewest adverse effects. Ultimately, this expedites the drug design process. Finally,
it is important to note that machine learning may speed up clinical trials by autonomously
selecting qualified applicants and ensuring the correct distribution among participant
groups. Using algorithms, one can identify patterns that distinguish between excellent
and bad candidates. In addition, they can serve as an early warning system for a clinical
study that is not producing reliable results, allowing researchers to intervene sooner, and
potentially save the development of the drug.

1.3 Personalized Medicine

Precision medicine is regarded as crucial for the treatment of complex diseases, including
systemic autoimmune diseases such as rheumatoid arthritis (RA), systemic lupus ery-
thematosus (SLE), and psoriatic arthritis (PsA). Despite the remarkable number of novel
molecules being developed for the treatment of these diseases, the growing understanding
of their pathogenesis, and the advances in early diagnosis, it is clear that the clinical and
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serological heterogeneity of these diseases, as well as the large number of comorbidities
that can affect them, continue to limit the ability to tailor the treatment for these patients.
There are often few therapy options available for these disorders, even when many
organs are involved. Treat-to-target therapy is one of the available therapeutic modalities,
and it remains the optimal approach for the majority of rheumatic disorders. However,
patients have varying responses to medications and treatment plans. Therefore, there is an
enormous potential for personalized care to lengthen patients’ lives. One issue is that it is
extremely difficult to determine which characteristics should influence therapy selection.
ML can automate this tedious statistical work by cross-referencing similar patients and
comparing their treatments and outcomes to determine a patient’s likely response to a
particular therapy (Peng et al. 2021; Fröhlich et al. 2018; Quazi 2022; Papadakis et al. 2019;
Emmert-Streib and Dehmer 2019; Gaur et al. 2022; Sahu et al. 2022). The resultant outcome
projections make it much simpler for clinicians to formulate the optimal treatment plan.
In a recent perspective paper by Sebastiani et al. (2022), it is highlighted, for instance, that
treatment and identification of immune-mediated disorders have undergone significant
advancements over the past decade. For the treatment of these conditions, an increasing
number of novel monoclonal antibodies and small compounds have been developed.
Parallel to this, a large number of novel genetic or serological markers have been identified
that enhance our ability to detect autoimmune diseases at an early stage. Due to advances
in AI and ML, the treatment and follow-up of certain diseases, including cancer, have
significantly improved over the past decade. However, the authors of Sebastiani et al.
(2022) caution that our understanding of autoimmune systemic diseases is still quite
limited. Despite the significant progress in our understanding, it is currently believed that
we are still a long way from providing patients with true precision medicine.

1.4 Gene Editing

Clustered regularly interspaced short palindromic repeats (CRISPR), and more specifically
the CRISPR-Cas9 system for gene editing, represents an important development in our
ability to accurately and economically modify DNA, much like a surgeon. This technique
uses short guide RNAs (sgRNA) to target and modify a specific region of DNA. However,
the guide RNA can bind to multiple DNA sites, which may have undesired consequences
(off-target effects). The careful selection of guide RNA with minimal negative side effects is
one of the primary obstacles to the widespread use of the CRISPR system. ML techniques
have been shown to make the best predictions for a specific sgRNA’s level of guide-target
interactions and off-target effects (Liu et al. 2020; Das et al. 2023; Vora et al. 2022; Fong and
Wong 2023; Abadi et al. 2017; Aktas et al. 2019; Wang et al. 2020).

Aim of the book is to offer a portrait of the current state of the use of AI methodology in
medicine and biology, of the new contributions in terms of techniques and algorithms, and
of their integration with traditional disciplines and philosophies of thought typical of other
fields such as mathematics and the more classical algorithmic approaches of computer sci-
ence. Recently, AI techniques have now innervated these domains to the extent that they
have become integral elements of them, described, narrated, and hence, conceptualized
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in terms of an AI-specific language and pattern of thought. The chapters dealing specif-
ically with algorithmic techniques and methodological approaches address the following
two consolidated topics.

1) Data-driven and knowledge-driven modeling: Fuzzy Logic for Knowledge-Driven
and Data-Driven Modeling in Biomedical Sciences by Paolo Cazzaniga, Simone Spolaor,
Caro Fuchs, Marco S. Nobile, and Daniela Besozzi; Application of Machine Learning
Algorithms to Diagnosis and Prognosis of Chronic Wounds by Mai Dabas and Amit Gefen;
Deep Learning Techniques for Gene Identification in Cancer Prevention by Eleonora
Lusito; and Deep Learning-Based Reduced Order Models for Cardiac Electrophysiology
by Stefania Fresca, Luca Dedè, and Andrea Manzoni.

2) Data analytics: technologies and methods for data interpretation and new
knowledge inference: Deep Learning for Network Biology by Eleonora Lusito; Analysis
Pipelines and a Platform Solution for Next Generation Sequencing Data by Víctor
Duarte, Alesandro Gómez, and Juan Manuel Corchado; The Potential of Microbiome Big
Data in Precision Medicine: Predicting Outcomes Through Machine Learning by Silvia
Turroni and Simone Rampelli; Hybrid Data-Driven and Numerical Modeling of Articular
Cartilage by Seyed Shayan Sajjadinia, Bruno Carpentieri, and Gerhard A. Holzapfel; A
Hybrid of Differential Evolution and Minimization of Metabolic Adjustment for Succinic
and Ethanol Production by Zhang Neng Hor, Mohd Saberi Mohamad, Yee Wen Choon,
Muhammad Akmal Remli, and Hairudin Abdul Majid; Predictive Patient Stratification
Using Artificial Intelligence and Machine Learning by Thanh-Phuong Nguyen, Thanh
Trung Giang, Quang Trung Pham, and Dang Hung Tran.

There is no need to emphasize how the fields of data analytics and data modeling are
intertwined and cooperate to accelerate industrial and decision-making processes in the
fields of medicine, biology, pharmacology, and recently, medicinal chemistry (Struble et al.
2020; Bajorath 2021; Tyrchan et al. 2022). Alongside the relevant areas of data science in
informatics and mathematics, the book contains an innovative counterpoint pertinent to
the increasing support that AI techniques and methodologies are providing to the field
of biomedical engineering, e.g. the chapter Using AI to Steer Brain Regeneration: The
Enhanced Regenerative Medicine Paradigm by Gabriella Panuccio, Narayan Puthanmadam
Subramaniyam, Angel Canal-Alonso, Juan Manuel Corchado, and Carlo Ierna. The book
also offers new visions and perspectives on the current state of the art, performance, and
industrial applications of AI techniques in the life sciences, e.g. in the chapters Toward
Better Ways to Assess Predictive Computing in Medicine: On Reliability, Robustness and
Utility by Federico Cabitza and Andrea Campagner; Artificial Intelligence: From Drug
Discovery to Clinical Pharmacology by Paola Lecca.

Alongside the undisputed benefits that the use of AI is bringing to medicine and health-
care, there are also new problems. A recent review by Naik et al. (2022) outlines the most
pressing ones stating that privacy and surveillance, interpretability of the results, bias or
discrimination, and potentially the philosophical problem are among the legal and ethi-
cal issues that society faces as a result of AI (Ahmad et al. 2021; Gruson et al. 2019). As a
result of their use, there are concerns that modern digital technologies will become a new
source of inaccuracy and data breaches. The deployment of CNN architectures in medicine
requires rigorous validation, regulatory compliance, and ethical considerations. Medical


