
Victor V. Kotlyar
Alexey A. Kovalev
Anton G. Nalimov

Optical Hall 
Effect in 
the Sharp Focus 
of Laser Light



Optical Hall Effect in the Sharp Focus of Laser 
Light



Victor V. Kotlyar · Alexey A. Kovalev · 
Anton G. Nalimov 

Optical Hall Effect 
in the Sharp Focus of Laser 
Light



Victor V. Kotlyar 
Image Processing Systems Institute 
National Research Center 
Kurchatov Institute 
Samara, Russia 

Anton G. Nalimov 
Image Processing Systems Institute 
National Research Center 
Kurchatov Institute 
Samara, Russia 

Alexey A. Kovalev 
Department of Technical Cybernetics 
Samara National Research University 
Samara, Russia 

ISBN 978-3-031-64682-9 ISBN 978-3-031-64683-6 (eBook) 
https://doi.org/10.1007/978-3-031-64683-6 

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature 
Switzerland AG 2024 

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether 
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse 
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and 
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar 
or dissimilar methodology now known or hereafter developed. 
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication 
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant 
protective laws and regulations and therefore free for general use. 
The publisher, the authors and the editors are safe to assume that the advice and information in this book 
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or 
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any 
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional 
claims in published maps and institutional affiliations. 

This Springer imprint is published by the registered company Springer Nature Switzerland AG 
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland 

If disposing of this product, please recycle the paper.

https://orcid.org/0000-0003-1737-0393
https://orcid.org/0000-0002-0488-4267
https://doi.org/10.1007/978-3-031-64683-6


Preface 

Since ancient times, mankind has been able to focus light with the help of lenses 
and mirrors. At the focus, not only is the energy of light concentrated, but all six 
projections of the electromagnetic field vectors are added at the focus, forming 
complex three-dimensional distributions of amplitude, phase, and polarization states. 
Recently, many interesting optical effects have been discovered in a sharp focus of 
coherent laser radiation: rotation of polarization vectors only in the longitudinal 
plane—photon wheels; the presence of points and lines of polarization singularity, 
in which the direction of the linear polarization vector is not determined; the reverse 
flow of light energy, when the longitudinal projection of the Poynting vector is 
directed in the opposite direction with respect to the direction of propagation of the 
focused light; spin-orbit conversion, when a transverse energy flux is formed at the 
focus of a Gaussian beam with circular polarization, which can rotate a microparticle 
along a circular trajectory. Another interesting effect that has recently been discov-
ered in the focus of laser light is the optical Hall effect. The usual Hall effect consists 
in a transverse displacement, in different directions, in a magnetic field of charges of 
different signs or different spins, which carry an electric current. In optics, particles 
with different spins correspond to light beams with left and right circular polariza-
tions. Therefore, the optical spin Hall effect in focus consists in the formation of 
regions separated in space, in which light has a different direction of elliptical or 
circular polarization. 

The book will be of interest to a wide range of scientists, engineers working in the 
field of optics, photonics, laser physics, optoinformation technologies, and optical 
instrumentation. It can also be useful for bachelors and masters in the specialties 
applied mathematics and physics, applied mathematics and informatics, optics and 
graduate students specializing in these areas. 

Samara, Russia Victor V. Kotlyar 
Alexey A. Kovalev 
Anton G. Nalimov
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Introduction 

The Hall effect consists in the occurrence of a transverse voltage (Hall voltage) in a 
metal conductor at the edges of a sample placed in a transverse magnetic field when 
a current flows perpendicular to the field. Hall voltage was discovered by Edwin Hall 
in 1879, and the effect is named after him. Due to the many types of Hall effects, 
for clarity, the original effect is sometimes referred to as the ordinary Hall effect to 
distinguish it from other types that may have additional physical mechanisms. In 
semiconductors, the Hall effect leads to separation of electrons and holes in space. 
Note that electrons and holes have different spins. In the absence of a magnetic field 
in non-magnetic conductors, current carriers with opposite directions of spins can be 
deflected in different directions perpendicular to the electric field. This phenomenon, 
called the spin Hall effect, was theoretically predicted by Dyakonov and Perel in 1971. 
There are external and internal spin effects. The first of them is associated with spin-
dependent scattering, and the second, with spin-orbit interaction. The spin Hall effect 
is closely related to another interesting effect, the Magnus effect. The Magnus effect 
was discovered by Heinrich Magnus in 1853 and occurs when a liquid or gas flows 
around a rotating body. In this case, a force acting perpendicular to the flow acts on 
the body. This phenomenon is often used in sports, for example, a dry leaf football 
kick, as well as in a twisted serve in table tennis (a spinning tennis ball deviates from 
a straight line). In optics, an effect similar to the Magnus effect was discovered in 
multimode fibers in 1990 by Zel’dovich B. Ya. It was shown that the vortex modes 
of a fiber with left and right circular polarization propagate at different angles to the 
optical axis of the fiber. In 1992, A. V. Volyar discovered a similar Magnus effect in 
uniaxial crystals. The spin Hall effect in optics was discovered later. In 2004, Onoda 
M. et al. theoretically showed that when reflected from the interface between two 
media, linearly polarized light is divided into two beams with left and right circular 
polarization, propagating at different angles to the surface. In 2005, Kavokin A. 
experimentally observed the optical spin Hall effect during the passage of light with 
linear polarization through a multilayer structure. In the transmitted light, the regions 
with left and right circular polarizations were separated in space. The theory of optical 
effects of Magnus and Hall based on the geometric phase of Berry and spin-orbit 
interaction was developed in 2004 by Bliokh K. Y. The geometric phase of Berry
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viii Introduction

(1984) as applied to light with circular polarization consists in the fact that light 
with circular polarization, passing the same distance in a gradient medium with light 
with linear polarization, acquires an additional phase incursion. Also, between the 
light with left circular and right circular polarizations, an additional phase delay can 
occur. This leads to the fact that in a gradient (or other inhomogeneous) medium, 
light with left and right circular polarizations can propagate along different paths 
and be separated in space. The question arises: Can the optical Hall effect manifest 
itself not due to the interaction of light with the medium, but when propagating in 
free space, for example, in a sharp focus? In 1992, Allen L. et al showed that an 
individual photon has an orbital angular momentum. And in 2011, Bliokh K. et al. 
showed that spin-orbit conversion takes place in a sharp focus of light. That is, even 
at the focus, one can find the conditions under which the Hall effect occurs. 

This book is devoted to the optical Hall effect in the sharp focus of laser radiation. 
On the basis of the theory of Richards-Wolf (1959), which adequately describes the 
behavior of light at the focus, many specific examples of light fields show that both 
spin and orbital Hall effects take place near the focus. In this case, there can be many 
regions with left and right circular polarization at the focus. Their number depends 
on some parameter of the focused beam. The spin Hall effect is when local regions 
are formed in the plane of focus (or near it), in some of which the light has a right 
elliptical polarization, and in others it has a left one. In this case, in the initial plane, 
the light had linear polarization at each point. The orbital Hall effect appears when 
there are local areas in the plane of focus, in some of which the transverse energy flow 
rotates clockwise, and in others—counterclockwise. In the simplest case, the spin 
Hall effect occurs when a linearly polarized Gaussian beam is focused. In this case, 
four local regions are formed near the focus (before and after, but not in the focus 
itself), in which the light has a left-hand elliptical polarization along one diagonal, 
and a right-hand polarization along the other diagonal. The spin and orbital Hall 
effects also arise at the focus of light fields with non-uniform linear polarization, 
when at each point in the beam cross section the polarization is linear, but changes 
its direction from point to point. For such cylindrical vector fields, under certain 
conditions, the Hall effect occurs at the focus itself, and for other beam parameters, 
near the focus. For such beams, the presence or absence of the Hall effect at the focus 
is associated with the absence or presence of polarization singularity points in the 
initial light field. 

The authors are grateful for the numerical simulation by Ph.D. Stafeev S. S. and 
Ph.D. Kozlova E. S. 

The results included in the monograph were supported by the Russian Science 
Foundation grant 23-12-00236.
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Chapter 1 
Spin Hall Effect at the Focus for Light 
with Linear Polarization 

1.1 Circular Polarization Near the Tight Focus of Linearly 
Polarized Light 

Sharp focusing of laser radiation is understood as the focusing of light by lenses with 
a high numerical aperture, and it is no longer possible to neglect the vector nature 
of the light wave. In this case, to calculate the light field at the focus, it is necessary 
to take into account all the components of the strength of the electric and magnetic 
field of the light wave. The classical formulas for calculating the light field in a sharp 
focus were obtained by Richards and Wolf in [1]. 

At present, a large number of works are devoted to the sharp focusing of light. 
However, most of the works are devoted to studying the behavior of the intensity 
at the focus, for example, obtaining focal spots of various shapes [2–7]. Much less 
work is presented on the study of other characteristics of the light field, such as the 
energy flux (Poynting vector) [8–10], spin or orbital angular momentum [11–14]. 
We also note that the main attention of researchers is focused on the study of the 
behavior of light directly in focus; less attention is paid to the behavior of light at 
some distance from the plane of sharp focus. 

In this section, the sharp focusing of linearly polarized light is considered. It was 
shown that, with distance from the focal plane, regions arise in which the polarization 
ceases to be linear. In this case, when passing through the plane of focus, the direction 
of polarization in these regions changes to the opposite—in regions with right circular 
polarization, the direction changes to left circular and vice versa. 

1.1.1 Theoretical Background 

In [1], expressions were obtained for the projections of the electric field strength 
vector at the focus of the aplanatic system. The Jones vector for an initial field with
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linear polarization directed along the y-axis has the form: 

Elin = A(θ )

(
0 

1

)
(1.1) 

and the projections of the vector of the electric field strength and magnetic field 
strength near the focus for the initial field (1.1) have the form: 

Ex = −iI2,2 sin 2ϕ, 
Ey = −i

(
I0,0 − I2,2 cos 2ϕ

)
, 

Ez = −2I1,1 sin ϕ, 
Hx = i

(
I0,0 + I2,2 cos 2ϕ

)
, 

Hy = iI2,2 sin 2ϕ, 
Hz = 2I1,1 cos ϕ, (1.2) 

where 

Iν,μ =
(
4π f 

λ

) θ0∫
0 

sinν+1

(
θ 
2

)
cos3−ν

(
θ 
2

)

cos1/2 (θ )A(θ )eikz cos θ Jμ(x)dθ (1.3) 

where λ is the wavelength of light, f is the focal length of the aplanatic system, x = 
kr sinθ, J μ(x) is the Bessel function of the first kind, and NA = sinθ 0 is the numerical 
aperture. The angle ϕ in Eq. (1.2) is the conventional polar (or azimuthal) angle in 
the transverse planes, including the focal plane. A positive angle value increases 
counterclockwise from the horizontal x-axis. In the initial plane, the light field has 
only linear polarization directed along the vertical y-axis, and the Jones vector (1) 
does not depend on the polar angle ϕ. In Eqs. (1.2) and (1.3), angle θ is the tilt angle 
of the rays to the optical axis, θ0 is the maximal tilt angle, determining the numerical 
aperture NA, z is the direction of the optical axis, z = 0 is the focal plane, k is the 
wavenumber of light, (x, y) are the Cartesian coordinates in the cross sections of the 
light beam converging into the focus (x is the horizontal axis, y is the vertical axis). 
The initial amplitude function A(θ ) (suppose it is a real function) can be constant 
(plane wave) or in the form of a Gaussian beam. From (1.2), one can obtained the 
intensity distributions of each component of the electric vector 

Ix = I2 2,2 sin
2 (2ϕ), 

Iy = I2 0,0 + I2 2,2 cos
2 (2ϕ) − 2I0,0I2,2 cos(2ϕ), 

Iz = 4I2 1,1 sin
2 (ϕ). (1.4)
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We note that formulae (1.1)–(1.4) differ from the formulae obtained in [1], since 
the initial field (1.1) is polarized along the y-axis, whereas in [1] the initial field was 
polarized along the x-axis. Despite the initial light field (1.1) has only one component 
Ey, Maxwell’s equations indicate that, upon light propagation, all three components 
of the E-field appear. If the light field propagates at a small angle to the optical axis, 
then the other two field components (Ex and Ez) are small and can be neglected. At 
tight focusing, light propagates at large angles to the optical axis, so that all three 
components of the E-field (1.2) have a comparable value [15, 16]. It can be seen 
from (1.1) that the intensity distribution Ix of the horizontal projection of the electric 
vector in the plane of focus will have the form of four local maxima (light spots), the 
centers of which are located on a circle centered on the optical axis and lying on the 
rays emanating from the center at angles ϕ = π /4, 3π /4, 5π /4, 7π /4. 

The intensity distribution Iy will have the form of an almost circular spot with 
a maximum on the optical axis Iy = I2 0,0. The difference from the round shape of 
the spot arises from the fact that the distribution of intensity Iy along the vertical 

axis (ϕ = π /2) will be greater (Iy =
(
I0,0 + I2,2

)2 
) than along the horizontal axis (ϕ 

= 0, Iy =
(
I0,0 − I2,2

)2 
). Intensity distribution (1.4) at the focus of the longitudinal 

component of the electric vector Iz will have the form of two light spots, the centers 
of which lie on the vertical axis. This type of intensity distribution of electric vector 
individual components leads to the fact that the distribution of the total intensity at 
the focus has the form of an ellipse elongated along the vertical axis: 

I = Ix + Iy + Iz = I2 0,0 + I2 2,2 + 2I2 1,1 − 2
(
I2 1,1 + I0,0I2,2

)
cos(2ϕ). (1.5) 

Let us find the longitudinal component of the spin angular momentum (SAM) 
vector near the field focus (1.1) using the formula [17]: 

S =
(
c2ε0 
2ω

)
Im

(
E∗ × E

)
(1.6) 

where c is the speed of light in vacuum, ω is the angular frequency of the monochro-
matic light, ε0 is the vacuum permittivity, Im is the imaginary part of the number, 
× is the sign of vector multiplication, * is the sign of complex conjugation. Below, 
we omit the constant [(c2ε0)/(2ω)] for brevity. We note that sometimes, due to the 
electric–magnetic democracy, Eq. (1.6) is written with two terms rather than one: 
[c2/(2ω)]Im[

ε0(E∗ × E) + μ0(H∗ × H)
]
, with μ0 being the vacuum permeability 

(c2ε0 = μ−1 
0 ). However, immediately from the expression for the Poynting vector, 

only one term is obtained either for the E-vector or for the H-vector [17]. In addition, 
due to different constants, both terms will give different contribution to the compo-
nents of the SAM vector. Thus, expression (1.6) is correct. Substituting from (1.2) 
into (1.6), we will assume that integrals (1.3) are complex, since z is different from 
zero. We get: 

Sz = 2Im
(
E∗ 
x Ey

) = 2 sin(2ϕ)Im
(
I∗ 
2,2

(
I0,0 − cos(2ϕ)I2,2

))
(1.7)
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Certainly, near the tight focus, all 6 components of the E- and H-vectors (1.2) are  
significant, and none of these components can be neglected. Therefore, similarly to 
Eq. (1.7), we can write expressions for the components Sx and Sy: 

Sx = 2Im
(
E∗ 
y Ez

)
= 4 sin(ϕ)Re

(
I1,1

(
cos(2ϕ)I∗ 

2,2 − I∗ 
0,0

))
, 

Sy = 2Im
(
E∗ 
z Ex

) = 4 sin(ϕ) sin(2ϕ)Re
(
I∗ 
1,1I2,2

)
. (1.8) 

Let us single out the real and imaginary parts of the integrals included in (1.7) 
I0,0 = R0 + iI0, I2,2 = R2 + iI2. Then, instead of (1.7), we write: 

Sz = 2 sin(2ϕ)(I0R2 − I2R0) (1.9) 

The integrals R0, R2 in (1.9) include the co-multiplier cos(kzcosθ) ≈ 1 at  kz � 1, 
and the integrals I0 , I2 include the co-multiplier sin(kz cos θ ) ≈ kz cos θ at kz � 1. 
With this in mind, instead of (1.9), we write: 

Sz ≈ 2kz sin(2ϕ)
(
I0R2 − I2R0

)
. (1.10) 

In (1.10), the following notations are used: 

R0 = I0,0(z = 0), R2 = I2,2(z = 0), 
I0 = I0,0(z = 0), I 2 = I2,2(z = 0), 

I ν,μ =
(
4π f 

λ

) θ0∫
0 

sinν+1

(
θ 
2

)
cos3−ν

(
θ 
2

)
cos3/2 (θ )A(θ )eikz cos θ Jμ(x)dθ. (1.11) 

Let on a circle of some radius the expression in parentheses in (1.10) be greater 
than zero I0R2−I 2R0 > 0, and since sin(2ϕ) in (1.10) is positive in 1 and 3 quadrants, 
and negative in 2 and 4, then before the focus (z < 0) the longitudinal component 
SAM Sz in (1.10) will be positive in 2 and 4 quadrants, and negative in 1 and 3. 
And since the sign of the entire expression after focus (z > 0) will change to the 
opposite, the longitudinal component of SAM Sz in (1.9) will be positive in 1 and 
3 quadrants, and negative in 2 and 4. This means that before the focus in the 2 and 
4 quadrants the polarization vector will rotate counterclockwise (right circular or 
elliptical polarization), and after focus in these quadrants, the polarization vector 
will rotate clockwise (left circular or elliptical polarization). Recall that in the plane 
of focus, the light at each point has only linear polarization, since at z = 0 the  
longitudinal component of the SAM Sz in (1.10) is equal to zero. The defocusing 
magnitude z in Eq. (1.10) affects the size of the areas in the transverse plane, where 
polarization is not linear. At a distance z nearly equal to λ, the size of the circular 
polarization area is maximal (for NA = 0.95 it is approximately λ/2). As z tends to 
zero (i.e., in the focus), the size of the area with circular polarization decreases to 
zero.



1.1 Circular Polarization Near the Tight Focus of Linearly Polarized Light 5

Note also that the longitudinal component of the SAM is exactly equal to the third 
component of the Stokes vector: 

Sz = 2Im
(
E∗ 
x Ey

) = s3, (1.12) 

which shows the presence of circular and elliptical polarization in the light field. In the 
next section, the presented theoretical predictions will be confirmed by simulation. 
We note that the change in the rotation direction of the polarization vector to the 
opposite beyond the focal plane, as follows from Eq. (1.10), can be explained by the 
angular momentum (AM) conservation law. Since polarization in the initial plane 
and in the focal plane is locally linear, Sz = 0. Therefore, if there are areas with 
left-handed circular polarization before the focus, then beyond the focus, circular 
polarization in these areas should become right-handed. However, the presence of 
such areas near the focus does not follow from the AM conservation. 

1.1.2 Simulation by Richards-Wolf Formula 

In this work, using the Richards-Wolf formulas, focusing of a linearly polarized plane 
wave (wavelength 633 nm) was simulated by choosing a lens with NA = 0.95. The 
field near the tight focus was calculated using the integrals [1]: 

U(ρ,  ψ,  z) = −  
if 

λ 

θ0∫
0 

2π∫
0 

B(θ,  ϕ)T (θ )P(θ,  ϕ) 

× exp{ik[ρ sin θ cos(ϕ − ψ) + z cos θ ]} 
sin θd θd ϕ, (1.13) 

where U(ρ, ψ, z) is the strength of the electric or magnetic field, B (θ, ϕ) is the electric 
or magnetic field at the input of the wide-aperture system in coordinates of the exit 
pupil (θ is the polar angle, ϕ is the azimuthal angle), T (θ ) is the lens apodization 
function, f is the focal length, k = 2π /λ is the wavenumber, λ is the wavelength 
(in the simulation it was considered equal to 633 nm), θ 0 is the maximum polar 
angle determined by the numerical aperture of the lens (NA = sinθ 0), P (θ, ϕ) is the  
polarization vector, for the strength of the electric and magnetic fields has the form: 

P(θ,  ϕ) = 

⎡ 

⎣ 
1 + cos2 ϕ(cos θ − 1) 
sin ϕ cos ϕ(cos θ − 1) 

− sin θ cos ϕ 

⎤ 

⎦a(θ,  ϕ) 

+ 

⎡ 

⎢⎣ 
sin ϕ cos ϕ(cos θ − 1) 
1 + sin2 ϕ(cos θ − 1) 
− sin θ sin ϕ 

⎤ 

⎥⎦b(θ,  ϕ), (1.14)
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where a (θ, ϕ) and b (θ, ϕ) are functions describing the polarization state of the 
x- and y-components intensities of the focused beam. In contrast to formulae (1.2) 
and (1.3), we gave Eqs. (1.13) and (1.14) in a general form to show that further 
modeling is carried out by the general formulae (1.13), (1.14) and that the simulation 
results confirm the theoretical conclusions, following from the expressions (1.11), 
(1.12). After calculating the components of the electric field, the behavior of the 
components of the Stokes vector near the sharp focus was calculated. The Stokes 
vector components are calculated using the formulas: 

s0 = ExE
∗ 
x + EyE

∗ 
y , 

s1 = ExE
∗ 
x − EyE

∗ 
y , 

s2 = 2Re
(
E∗ 
x Ey

)
, 

s3 = 2Im
(
E∗ 
x Ey

)
. (1.15) 

Similarly to the expressions (1.7)–(1.9), substitution of Eq. (1.2) into Eq. (1.15) 
allows obtaining explicit expressions for the Stokes components s1 and s2 near the 
focus. For instance, more simple expression is derived for s2 at kz � 1: 

s2 ≈ 2 sin(2ϕ)R2
(
R0 − R2 cos(2ϕ)

)
. (1.16) 

At small kz � 1, the second Stokes component (1.16) does not depend on z and 
therefore does not change sign when passing through the focus (z = 0). Below, this 
is confirmed by simulation. Similarly, the first Stokes component s1 in Eq. (1.15), 
expressed via the components of the E-vector (1.2), is also independent of z near the 
focus. 

To estimate the relative contribution of individual polarization components, it 
is convenient to use the Stokes vector components normalized to the transverse 
intensity: (S1, S2, S3) =

(
s1

/
s0, s2

/
s0, s3

/
s0

)
. It is known that when focusing light 

of linear polarization at the focus, all three components of the electric field strength 
are observed [18]. Figure 1.1 illustrates the distribution of the total intensity and 
its individual components in the focus of an aplanatic lens with NA = 0.95 when 
focusing a plane wave with a wavelength of 633 nm and polarization along the y-axis. 
To estimate the effect of defocusing, Fig. 1.2 shows the same distributions of the total 
intensity and of the individual intensity components as in Fig. 1.1, but at a distance 
λ from the focal plane. The intensity distributions have the same shape at the same 
distance before and after the focus.

Figure 1.1 shows that the initial component makes the main contribution to the 
focal spot formation, but the longitudinal component of the intensity also begins to 
make a significant contribution. The component perpendicular to the input polariza-
tion is rather small but present, while the light at the focus is still linearly polarized. 
Note that the distributions of the total intensity at the focus and the intensity of indi-
vidual components in Fig. 1.1 confirm the theoretical predictions that follow from
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Fig. 1.1 Distribution of the total intensity Ix + Iy + Iz (a) and individual components of the 
intensity Ix (b), Iy (c), Iz (d) in the plane of focus 

Fig. 1.2 Distribution of the total intensity Ix + Iy + Iz (a) and individual components of the 
intensity Ix (b), Iy (c), Iz (d) at a distance λ after the focus
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Fig. 1.3 Distribution of the Stokes vector components s1 (a), s2 (b) and  s3 (c) at a distance λ after 
the focus 

Fig. 1.4 Distribution of the components of the normalized Stokes vector S1 (a), S2 (b) and  S3 (c) at  
a distance λ after the focus 

expressions (1.4) and (1.5). Figure 1.2 indicates that a small shift from the focal plane 
(by a distance λ) leads to decrease of the maximum intensity 5 times. 

The distribution of the components of the Stokes vector (s1, s2, s3) and the normal-
ized components of the Stokes vector (S1, S2, S3) at the distance z = λ after the focus 
is shown in Figs. 1.3 and 1.4, respectively. 

From Figs. 1.3 and 1.4, it can be seen that the polarization after focus is predom-
inantly linear. In the center of the focal spot in Fig. 1.3a, a minimum is observed, 
which indicates that the polarization at the focus is directed along the y-axis. This 
is also confirmed by Fig. 1.4a: for a wave fully polarized along the y-axis S1 = −1. 
From Fig. 1.4a can be seen that the polarization does not change its direction at the 
focus and along the x and y axes, but along the straight lines located at an angle of ± 
45° to the axes, the deviation from the initial polarization turns out to be maximum. 
From Figs. 1.3 and 1.4, it is also seen that the diverging beam contains regions with 
circular polarization. Recall that there are no such regions at the focus itself—the 
light is linearly polarized. From Fig. 1.4c it is seen that the contribution of circular 
polarization in such regions is quite noticeable—for S3 = ±1 the polarization is 
completely circular, but here in some regions S3 reaches values of ± 0.8. 

Figures 1.5and 1.6 similarly show the distribution of the Stokes vector and 
normalized Stokes vector at a distance of one wavelength in front of the focus.

Comparison of Figs. 1.4 and 1.6 shows that the first two components of the Stokes 
vector describing linear polarization have not changed, and the third has changed its 
sign to the opposite. After passing the plane of the focus, the direction of circular 
(elliptical) polarization is reversed—for example, in the first quarter, the light in front
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Fig. 1.5 Stokes vector components s1 (a), s2 (b), and s3 (c) at a distance λ before the focal plane 

Fig. 1.6 Distribution of the components of the normalized Stokes vector S1 (a), S2 (b) and  S3 (c) at  
a distance λ before the focal plane

of the focus plane was with left circular polarization, and after focus—with right 
polarization. Before the focus, the right circular (elliptical) polarization appears in 
the 2nd and 4th quadrants and the left circular polarization appears in the 1st and 3rd 
quadrants (Fig. 1.6c). It agrees with the theoretical prediction based on expression 
(1.10). And the change in the direction of rotation of the polarization vector in these 
quadrants after passing through the focus also follows from (1.10). 

Below we show how the distribution of S3 changes with the distance from the focal 
plane. Figure 1.7 shows the intensity distribution (Fig. 1.7a) and the longitudinal 
Stokes component S3 (Fig. 1.7b) in the longitudinal plane yz along the z-axis, rotated 
by an angle ϕ = 45° (i.e., passing through the S3 maximum in Fig. 1.6). 

Figure 1.7 demonstrates that in the focal plane, the light field is linearly polar-
ized. However, directly beyond the focal plane, areas with elliptical polarization are 
generated (red areas in Fig. 1.7). It is also interesting that as we move away from the

Fig. 1.7 Distributions of the intensity and of the third Stokes component in the longitudinal plane 
yz along the z-axis (by an angle 45°) 
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focus, direction of rotation of the polarization vectors changes to the opposite (blue 
areas in Fig. 1.7). Figure 1.7b also shows how the size of the area with elliptical 
polarization changes with the distance z. 

1.1.3 Modeling the Formation of Circular Polarization Using 
the FDTD Method 

To check the correctness of calculations by the Richards-Wolf formulas, an additional 
simulation was performed using the FDTD method. Focusing of a linearly polarized 
plane wave (λ = 633 nm) by a Fresnel zone plate with a focal length of f = 500 nm 
and a diameter of 7.9 μm was considered. The numerical aperture of such a lens is 
NA = 0.99. Focusing was simulated using the FDTD method implemented in the 
FullWave software. Note that the FDTD method implemented in FullWave makes it 
possible to calculate the values of the electromagnetic field components at individual 
moments of time. To calculate the complex amplitude on the basis of individual 
instantaneous values of the field amplitudes, the method proposed in [19] was used. 
Figure 1.8 shows the distribution of the components of the normalized Stokes vector 
at a distance of one wavelength after the focus. 

From Fig. 1.8, it can be seen that simulating using the FDTD method confirms 
the results obtained using the Richards-Wolf formulas. In particular, Fig. 1.8a shows  
that light is predominantly linearly polarized along the y-axis, and Fig. 1.8c shows  
that quadrants 1 and 3 contain right-handed circular polarization, and quadrants 2 
and 4—left. 

Comparison of Figs. 1.4 and 1.8 indicates that although the structures of both 
patterns are similar, there are also significant differences. This is because the simu-
lations by the Richards-Wolf method [1] and by the FDTD method [19] were carried 
out under different conditions. In the latter case, tight focusing of light was simulated 
by passing the light field through a real Fresnel zone plate with a focal length equal 
to the wavelength ( f = λ) and with a numerical aperture NA = 0.99. At the same 
time, the Richards-Wolf formalism adequately describes the light field at the focus of 
an ideal spherical lens if f � λ. Thus, the Richards-Wolf formalism approximately

Fig. 1.8 Components of the Stokes vector S1 (a), S2 (b) and  S3 (c) when calculating using the 
FullWAVE software at a distance of z = 0.65 μm after the actual focus 
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Fig. 1.9 Distribution of the components of the normalized Stokes vector S1 (a), S2 (b) and  S3 
(c) for a lens with a numerical aperture NA = 0.6 

describes the behavior of light near the focus, whereas the FDTD method, based on 
a rigorous solution of the Maxwell equations, adequately describes the behavior of 
light at the focus near the surface of the focusing zone plate. Therefore, modeling by 
the FDTD method expands the boundaries of the discovered optical phenomenon: 
generation of local areas with circular (elliptical) polarization near the tight focus of 
light with initially linear polarization. 

1.1.4 Reducing the Contribution of Circular Polarization 
with Decreasing Numerical Aperture of the Lens 

Let us now consider the contribution of reducing the numerical aperture of the lens 
to NA = 0.6 (corresponding to a standard 40 × aplanatic lens). The result is shown in 
Fig. 1.9. Figure 1.9 shows that the maximum S3 has decreased by 2 times. And from 
Fig. 1.9a, it can be seen that the relative contribution of linear polarization (along the 
y-axis) increased significantly: the maximum in Fig. 1.4 was equal to − 0.5, and in 
Fig. 1.9a to  − 0.92. Recall that for S1 = ±1, the polarization is completely linear. 

1.1.5 Calculation of the Moment of Forces Acting 
on a Dielectric Microparticle Near the Focus 

Let us calculate a force and a torque, acting onto a microbed from the light field. The 
force F and the torque M relative to an arbitrary point A, are equal to [20, 21]. 

F = −
∮
S 

(σ · n)dS (1.17) 

M =
∮
S 

[r × (σ · n)]dS (1.18)
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Fig. 1.10 Intensity pattern (a) and a spherical bed with radius R = 0.3 μm. The position of the 
bed is xp = 0.3 μm, yp = 0.3 μm. Shown at the right are a schematic position of the bed (b) and  
directions of the positive torques values along x, y and z axis (c) 

where r is the radius-vector from the point A(x, y, z) to the point of integration on 
the surface S, n is an external normal vector to the surface S, A is the point relative to 
which the torque M is calculated, and σ is the Maxwell stress tensor, the components 
of which in the CGS system can be written [22] 

σik = 
1 

4π

( |E|2 + |H|2 
2 

δik − EiEk − HiHk

)
(1.19) 

where Ei, Hi are the electric and magnetic field components and δik is the Kronecker 
symbol (δi=k = 1, δi �=k = 0). 

Shown in Fig. 1.10 is a simulation result of the torque and force calculation acting 
on the spherical microbed. 

Calculations show that for the position of the particle xp = 0.3 μm, yp = 0.3 μm 
the force projections are Fx = 2.79 pN, Fy = 3.7 pN, Fz = 8.78 pN. The torque 
projections are Mx = 2.81 · 10−19 Nm, My = −5.55 × 10−19, Mz = 1.73 × 10−19 

Nm. If shift the bed at the position xp = 0.3 μm, yp = −0.3 μm, then the result 
force projections will be Fx = 2.66 pN, Fy = –3.58 pN, Fz = 8.9 pN, and the torque 
projections will be Mx = −3.0×10−19 Nm, My = −5.9×10−19, Mz = −1.5×10−19 

Nm. Figure 1.10 shows that in the first quadrant the axial moment of forces is positive 
(Mz = 1.73 × 10−19), and in the fourth quadrant the moment of forces is negative 
(Mz = −1.5 × 10−19). This proves that the longitudinal projection of the SAM is 
positive in the first quadrant and negative in the fourth (Figs. 1.8 and 1.9). 

In this section, theoretically, using the Richards-Wolf formalism and using two 
different modeling methods, it was shown that with sharp focusing of light with linear 
polarization in the planes before and after the focus, there are regions that arise in pairs 
in even and odd quadrants, and in which light is circularly or elliptically polarized
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(e.g., even to the right and to the odd to the left) [22]. Moreover, after passing through 
the focus in these areas, the direction of rotation of the polarization vector changes 
to the opposite (in even quadrants, it is now left-handed, and in odd quadrants, it is 
right-handed circular or elliptical polarization). This result allows the use of linearly 
polarized light to rotate microparticles (the size of the circularly polarized region is 
about 0.6 μm by 0.6  μm) around its center of mass. We note that a similar result 
has been obtained in [23]. It has been shown that certain structures allow generating 
before the focus and beyond the focus two conjugate optical vortices with opposite-
sign topological charges and with longitudinal axial polarization. In our work, we 
have not used any additional structures. 

1.2 Focusing a Vortex Laser Beam with Polarization 
Conversion 

When strongly focusing a circularly polarized Gaussian beam, a near-focus orbital 
energy flow has been generated thanks to spin-orbital conversion [24–30]. In the 
original plane, such a beam has no orbital angular momentum (OAM), only having 
a non-zero on-axis projection of the spin angular momentum (SAM) vector thanks 
to circular polarization. However, a non-zero longitudinal component of the elec-
tric vector that occurs in the strong focus leads to the generation of a transverse 
energy flow, which produces the non-zero longitudinal OAM component. Behav-
ioral patterns of SAM and OAM in the tight focus of optical vortices were studied in 
[31–35]. On the other hand, there have been publications concerned with a reverse 
energy flow in the tight focus of optical vortices [1, 10, 36, 37] and some laser beams, 
like vector X-waves [38], non-paraxial Airy beams [39], Weber beams [40], vector 
Bessel beams [41], and fractional Bessel vortex beams [42]. 

In this section, using Richards-Wolf formulae, we derive analytical relationships 
to describe projections of the Poynting vector (the energy flow) and the SAM vector 
when tightly focusing a linearly polarized optical vortex with the topological charge 
2. In the original plane, all SAM vector components of such a beam are zero, but they 
all become non-zero near the strong focus. This can be explained by the effect inverse 
to the spin-orbital conversion. Thus, in the case under study, thanks to the orbital-
spin conversion, the original linearly polarized vortex beam generates a circularly 
polarized vortex beam in the tight focus. It is important to mention that a vortex beam 
with the topological charge (TC) m = 2 has a specific feature—that of generating 
an on-axis reverse energy flow in the tight focus (characterized by the negative 
longitudinal projection of the Poynting vector). Besides, there will be non-zero on-
axis intensity. At any m > 2, except for m = 1 and m = 2, both the on-axis intensity 
of light and energy flow are zero. 

We note that for spin-orbital coupling to occur the beam needs to propagate 
in a medium and because of this throughout the text below, we use the notion of 
spin-orbital conversion. Thanks to the beam rays converging to the focus, there
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appears a non-zero longitudinal projection of the electric field vector that, combined 
with the transverse components, produces a transverse energy flow (although the 
original energy flow has only a longitudinal component), which, in turn, produces a 
longitudinal projection of the OAM vector. In the focus, two transverse projections 
of the electric field vector have a relative phase shift of π /2, generating a circularly 
polarized beam, which, in turn, generates the longitudinal component of the SAM 
vector. 

1.2.1 Energy Flow and SAM in the Strong Focus 

Previously, relationships to describe projections of the electric and magnetic fields in 
the vicinity of the tight focus of an original linearly polarized optical vortex with an 
arbitrary integer TC m have been derived [29]. In this case, a near-axis reverse energy 
flow in the focus was shown to occur at any m ≥ 2. However, with the reverse energy 
flow being maximal on the optical axis only at m = 2, below, we look into focusing a 
linearly polarized optical vortex with TC m = 2. Based on the Richards-Wolf theory 
[1], it is possible to derive projections of the electric field vector in the tight focus of 
an aplanatic optical system. If the original light field is given by 

E = A(θ )ei2ϕ
(
1 

0

)
, H = A(θ )ei2ϕ

(
0 

1

)
(1.20) 

where E and Н are the electric and magnetic field of Jones vectors, projections of 
the electric field vector in the focal plane will be given by [29] 

Ex = ie2iϕ
(
I0,2 + 

1 √
2 
e2iϕ I2,4 + 

1 √
2 
e−2iϕ I2,0

)
, 

Ey = −e2iϕ
(

− 
1 √
2 
e2iϕ I2,4 + 

1 √
2 
e−2iϕ I2,0

)
, 

Ez = 2e2iϕ
(

1 √
2 
eiϕ I1,3 − 

1 √
2 
e−iϕ I1,1

)
, (1.21) 

where 

Iν,μ =
(
4π f 

λ

) θ0∫
0 

sinν+1

(
θ 
2

)
cos3−ν

(
θ 
2

)
cos1/2 (θ )A(θ )eikz cos θ Jμ(x)dθ,  (1.22) 

and λ is the incident wavelength, f is the focal length of the aplanatic system, x  
= krsinθ, Jμ(x) is the first-kind Bessel function, and NA = sinθ 0 is the numerical 
aperture. Assuming the initial amplitude A(θ ) to be a real function, it can be given 
by a constant (plane wave) or a Gaussian beam
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A(θ ) = exp
(−γ 2 sin2 θ 

sin2 θ0

)
(1.23) 

where γ is constant. We seek to derive projections of the SAM vector 

S = 
1 

2 
Im

[
E∗ × E

]
(1.24) 

where Im is the imaginary part of the number, E* denotes complex conjugation of the 
electric field vector, ×—vector multiplication sign. Substituting (1.21) into (1.24) 
yields expressions for projections of the SAM vector in the focal plane (z = 0) for 
an initially linearly polarized optical vortex (m = 2), Eq. (1.20): 

Sx =
(
I1,1I2,0 − I1,3I2,4

)
sin ϕ + (

I1,1I2,4 − I1,3I2,0
)
sin 3ϕ, 

Sy = −(
I1,1I2,0 − I1,3I2,4

)
cos ϕ− 

− (
I1,1I2,4 − I1,3I2,0

)
cos 3ϕ − 

√
2I2,0

(
I1,1 − I1,3

)
cos ϕ, 

Sz = 
1 

2

(
I2,0 − I2,4

)(
I2,0 + I2,4 +

√
2I0,2 cos 2ϕ

)
. (1.25) 

From Eq. (1.25), the on-axis longitudinal projection of the SAM vector is seen to 
be non-zero and positive: 

Sz(r = z = 0) = 
1 

2 
I2 2,0. (1.26) 

This means that the light wave in the focus near the optical axis has right-handed 
circular polarization (electric vector rotates anticlockwise). From the last equation in 
(1.25) the light is also seen to be inhomogeneously polarized in the focal plane. For 
instance, light will be linearly polarized on the radii where the inequality I2,0 = I2,4 
holds, because Sz = 0. Meanwhile, in the regions where Sz < 0, the light wave will 
be left-handed circularly polarized. Along the rays in the focal plane outgoing from 
the center at angles ϕ: π /4, 3π /4, 5π /4, and 7π /4, alternating polarization states will 
occur: being right-handed circular at I2 2,0 > I2 2,4, linear at I2 2,0 = I2 2,4, and left-handed 
circular at I2 2,0 < I2 2,4. From the first two equations of Eq. (1.25), it is seen that at ϕ 
= πn, n = 1, 2, … Sx = 0 and at ϕ = π /2 + πn, n = 1, 2, … Sy = 0. This means 
that in the longitudinal planes yz and xz, light is circularly (or elliptically) polarized 
near the strong focus. 

Next, let us consider expressions for projections of the Poynting vector (energy 
flow) P = 1 2 Re

[
E∗ × H

]
in the focal plane when focusing an optical vortex (m = 2) 

with linear original polarization (1.20): 

Px = −Q(r) sin ϕ, 
Px = Q(r) cos ϕ,


