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Foreword by Prof. King Jet Tseng 

The rapid development of electric vehicles underscores the pressing need for 
sustainable energy solutions in our society, as well as the growing demand for 
eco-friendly modes of transportation. As the core component of electric vehicles, 
batteries, especially the lithium-ion batteries (LIBs), are considered key to promoting 
transportation electrification. Nevertheless, the performance and longevity of LIBs 
have persistently posed a significant challenge, impeding the further evolution of 
the electric vehicle industry. The solution to these challenges, to a great extent, lies 
in the innovation of battery management system (BMS). BMS is at the kernel of the 
battery system due to users’ ever-increasing concerns over the safety, efficiency, and 
longevity of user-end products. With the widespread adoption of electric vehicles, 
the significance of BMSs will continue to rise. 

As components of electrochemical energy conversion and storage, LIBs involve 
complex electrochemical reactions that are often intricate to elucidate accurately. 
Traditional BMSs predominantly rely on simplified electrochemical models and 
empirical guidelines. However, this approach exhibits limitations, particularly when 
confronted with the intricate and ever-changing battery working conditions, as well 
as dynamic charging and discharging behaviors. With the continuous advancement 
of sensing and artificial intelligence technologies, we now possess more effective 
tools and methodologies to address these challenges in battery management. The 
incorporation of AI technologies, such as deep learning, reinforcement learning, 
and data-driven modeling, empowers battery management systems to gain a deeper 
understanding of battery status, health, and predict future battery performance. 
Consequently, this leads to elevated levels of battery control and optimization. 

I take pleasure in introducing the latest monograph in the field of BMS titled 
Battery Management and Smart Battery. Dr. Wei has meticulously compiled the most 
recent advancements in BMS and smart batteries within this monograph. Special 
focuses are given to the fundamental principles of BMSs and their profound inte-
gration with AI methods. This synergy aims to enhance the performance of battery 
systems, prolong the life of batteries, and ensure a more dependable electric vehicle 
travel experience.
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This ultimate objective of this book is to amalgamate the finest practices from 
Dr. Wei’ previous works, furnishing readers with state-of-the-art knowledge in 
battery management and future smart batteries. This book summarizes the key find-
ings from Dr. Wei over these years regarding the battery management, with special 
emphasis given to the fusion of mechanism and AI-based approaches for enhanced 
management of LIBs. This book firstly overviews of the research progresses and 
future trends of battery management. Following this endeavor, some underlying 
theories and techniques of BMS have been discussed in detail. These involve some 
critical algorithms and methodologies targeted for the modeling, state estimation, 
diagnostic and prognostic, and charging control of batteries. As a significant exten-
sion to the traditional batteries and the associated management strategies, this book 
further discusses the emerging techniques like embedded multi-dimensional sensing, 
reconfigurable battery system, to illustrate the future smart battery design and its 
associated management. 

With this book, readers will acquire insights into the important topics regarding 
battery management, like battery modeling, parameter/state estimation, health prog-
nostic, fault diagnostic, optimal charging, and the future smart battery. Furthermore, 
the book explores how advanced intelligent technologies can enhance the perfor-
mance of batteries. It also provides an in-depth exploration of emerging embedded 
sensing technologies and their potential utilization in the field of battery manage-
ment. I firmly believe that this book will emerge as a seminal reference material in 
the realm of battery management, imparting valuable knowledge to researchers and 
engineers. This book will also contribute significantly to the sustainable development 
and ongoing innovation of batteries and energy storage. 

Prof. King Jet Tseng 
Singapore Institute 

of Technology (SIT) 
Singapore, Singapore



Foreword by Prof. Jun Shen 

Modern transportation is on the verge of transition in response to the climate change 
and resource scarcity, witnessed by the readily proactive deployment of electrical 
vehicles, vessels, and aircrafts, with strong growth foreseeable in the coming decades. 
In particular, electric vehicle industry in China is in a vigorous development stage, 
with the strong support of national policies and people’s increasing awareness of 
environmental protection. Along with this, the number of electric vehicles in China 
is expected to continue growing in the near future. 

The quick development of electrified transportation is enabled by the far-going 
advances in energy storage techniques toward higher volumetric and gravimetric 
energy densities. With the rapid growth of the number of EVs, the lithium-ion battery 
(LIB), as the main energy storage of NEVs, has also entered a period of vigorous 
development. However, the pursuit of utmost user experience can risk violating 
important physical limitations, which is accompanied by unexpected side reactions 
within the ESS. This will result in several unfavorable consequences like efficiency 
reduction, quick degradation, and even catastrophic safety hazards in the most severe 
case. Particularly, onboard battery systems have been identified as one of the major 
contributors to recent-reported fire accidents of EVs. Moreover, risks can accumu-
late over the life cycle and eventually spread to the second-life use. In practical 
applications, a reliable battery management system (BMS) is critical to fulfill the 
expectations on the reliability, efficiency, and longevity of LIB systems. 

This book focuses on the rapidly growing field of battery management and new 
concept of smart batteries. This book summarizes the key findings from Dr. Wei over 
these years regarding the battery management, with special emphasis given to the 
fusion of mechanism and AI-based approaches for enhanced management of LIBs. 
This book starts with a systematic overview of state-of-the-art techniques and future 
trends of battery management and smart battery. It continues with several key topics 
of modern battery management system, including the modeling, state estimation, 
health prognostic, life prediction, and optimal charging. Finally, this book introduces 
the emerging techniques on smart battery design and its associated management. 

Dr. Wei’s expertise and contributions lay in the promotion of battery management 
system toward enhanced safety and longevity of battery utilization in both electric
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vehicles and energy storage. He was a research fellow with Nanyang Technological 
University from 2016 to 2018. He came back to China with Beijing Institute of 
Technology as an associate professor in 2018. In 2019, he was promoted to a full 
professor due to his excellent contributions to the agenda of energy storage and 
EVs. During years of investigation, Dr. Wei held several projects as the principal 
investigator regarding well-focused topics of environment-adaptive BMS, embedded 
sensing and smart battery, and battery big data management. His research outcomes 
are witnessed by 100+ research articles widely cited by scholars over the world. 

This is a book that leads the audiences into the profound world of advanced 
battery management and future smart batteries. With this book in hand, the readers 
can receive key knowledge necessary for understanding the basic principles and 
mechanisms of LIBs and the associated battery management technologies. Moreover, 
recent progresses in control theory and artificial intelligence are also investigated for 
the practical utilization on the management system of LIBs. 

I highly recommend this book to students, scholars, and engineers who are 
working in the fields of battery management. The state-of-the-art overviews, system-
atic introduction, detailed theories, and methodologies, and cautiously designed case 
studies promise the book with great significance and insights to the diversified groups 
of audiences with different majors and research experiences, from graduates to expe-
rienced engineers. By deeply understanding the mechanism and operation of BMSs, 
as well as how to improve them through modeling and AI technology, the audiences 
are expected to gain necessary knowledge and to promote the progress of electric 
transportation in the near future. 

Prof. Jun Shen 
Beijing Institute of Technology 

Haidian, China



Preface 

The emerging concerns over resource depletion, climate change, and environmental 
pollution have led to a major transformation of energy system, witnessed by the 
proactive penetration of renewable energies such as wind and solar, which, unfor-
tunately, are highly intermittent and difficult to match with users’ demands. Within 
this context, energy storage system (ESS) has been recognized as a key technology 
to address such intermittency and facilitate the future penetration of renewables in a 
stable and sustainable manner. ESSs are also at the forefront of applications for the 
end-user sector electrification such as electrified transportation to pursuit an efficient 
and low-carbon society. 

Among the available energy storage technologies, lithium-ion battery (LIB) is 
recognized as the most promising, attributed to the superiority of high power and 
energy density and low self-discharge rate. Aligned with this trend, the LIB has 
entered a period of vigorous development, evidenced by the rapidly rising global 
installation capacity of LIB. In spite of the quick development, the safety and 
longevity of LIBs are still major barriers in practical applications. This is rooted in 
the intrinsic complicated electrochemical nature of LIBs. It is well known that either 
the abusive operation from the users or the hostile application environment can risk 
violating the physical limits of LIBs, which further triggers a series and even uncon-
trollable side reactions. The occurrence of unwanted side reactions further induces a 
rapid drop of overall performance, like the efficiency reduction, quick depletion, and 
even safety hazards. Motivated by this, new structural design and reliable manage-
ment techniques are essential for enhancing the performance of LIB system in both 
electrified transportation and stational energy storage. 

The battery management boils down to multiple tasks of state monitoring, 
balancing, thermal management, fault warning, and life prognostic, relying on 
onboard measured current, terminal voltage, and temperature. The development of 
high-fidelity, high environmental-adaptive, and fault-tolerant battery management 
algorithms is viewed as the most demanding technique to enhance the LIB perfor-
mance in the future. Moreover, emerging sensing techniques allowing the internal 
measurement of LIB parameters have also been viewed as promising solution for the
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future enhanced battery system. This is rooted in the fact that the LIB performance 
is dominated by the inner physics linked more closely to the inner status. This vision 
also motivates the development of “smart battery,” which can promise enhanced 
safety with the embedded sensing and cell-level diagnostic function. 

This book consolidates studies in the rapidly and foreseeably growing field of 
battery management and smart battery. The primary focus is to overview the manage-
ment of batteries with the fusion of mechanism and AI-based approaches and also 
the emerging design of new battery structures. The book is broken down into six 
chapters. The key features are described in this book as:

• The state-of-the-art techniques and future trends of battery management and smart 
battery with embedded sensing are systematically analyzed.

• The modeling of LIB is securitized, including the electrochemical, electrical, 
artificial intelligence, and hybrid approaches.

• The estimation of multiple battery states which serves as the prerequisite of 
advance battery management is discussed.

• The data-driven approaches on health prognostic and future life prediction of LIB 
are elaborated and discussed.

• The model-based and artificial intelligence-based approaches for battery fast 
charging and cold charging are discussed.

• Emerging techniques on smart battery design and its associated management are 
introduced. 

This book is meant to add new knowledge to the paradigm and attract the attention 
from academics, scientists, engineers, and practitioners. It is useful as a reference 
book for researchers and engineers working in related fields. The step-by-step guid-
ance, comprehensive introduction, and case studies make it accessible to audiences 
of different levels, from graduates to experienced engineers. 

Beijing, China Zhongbao Wei
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Chapter 1 
Overview of Battery Management 

Energy storage systems (ESSs) are playing a crucial role in future energy systems with 
high requirements for power quality and resilience. As a key component of the future 
carbon–neutral and smart society, ESSs are the kernel of electrified transportation, 
smart grid, industrial cyber-physical-social systems, and residential communities. 
This dispensability has been witnessed by the rapid growth of global energy storage 
and electric vehicle (EV) deployments, especially for the proliferation of high-density 
batteries over the past decade. 

Amongst others, lithium-ion battery (LIB) is recogniz ed as one of the most 
promising energy storage technology, attributed to the superiority of high power/ 
energy density and low self-discharge rate. Aligned with this trend, the LIB has 
entered a period of vigorous development. According to recent data, the global 
installed capacity of LIB continues to rise rapidly, reaching 137 GWh in 2020. More-
over, the global demand is expected to reach 1156 GWh by 2026 with the world-wide 
rapid growth of EVs and the stationary energy storage market (Li et al. 2022a). 

However, the safety and longevity of LIBs are still difficult to ensure, considering 
their intrinsic complicated electrochemical nature. Both the hostile environmental 
condition and the abusive operation can risk violating the physical limits of LIBs, 
leading to a chain of detrimental side reactions. Direct consequences of this include 
efficiency reduction, quick depletion, and even safety hazards. Therefore, a reliable 
battery management system (BMS) is indispensable for the practical use of LIB 
systems. 

A general architecture of the presently-used BMS can be referred to Fig. 1.1. 
Relying on onboard measured current, terminal voltage and temperature, the BMS 
is expected to complete the tasks of state monitoring, balancing, fault warning and 
life prognostic. Each of the mentioned tasks has been widely studied over the years, 
giving rise to many reviews regarding the state of the art, e.g., state estimation, fault 
diagnostic, lifetime prognostic, thermal management, cell balancing, and charging 
management.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024 
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2 1 Overview of Battery Management

Fig. 1.1 Architecture of commonly-used BMS, reprinted from Wei et al. (2023), with permission 
from IEEE 

1.1 State Estimation 

Due to the complex electrochemical dynamics and strong electrical-thermal-physical 
coupling, direct monitoring of battery states using different sensing technology such 
as current, voltage and temperature sensors is not enough for high-performance 
battery management. In this context, how to effectively estimate and capture states 
within a battery becomes crucial in all real battery applications. 

A variety of model-based and data-driven methods have been explored to estimate 
various types of battery internal states in the literature. In specific, the key battery 
internal states generally consist of state of charge (SoC), state of energy (SoE), state 
of power (SoP), temperature, and state of health (SoH). 

To be specific, SoC is a key and fundamental state to reflect the remaining amount 
of charge inside the battery during operation. Generally, SoC stands for the available 
capacity defined as the percentage of battery nominal capacity. Such information can 
provide the prior knowledge to guide battery charging or discharging, and further 
ensure battery is able to work in a safe condition. By similar definition, SoE is another 
key state to reflect the residual energy that a battery can provide during its operations. 
In real transportation applications, SoE could be used to reflect the driving mileage 
of EVs. In order to reflect the available power that a battery could supply or absorb, 
SoP is utilized. In general, SoP can be seen as the product of threshold current and 
relevant voltage, while different hard constraints during battery operations need to be 
carefully considered. During battery operation, temperature is a key factor to affect 
battery safety, efficiency, and performance. For battery SoH, this state is utilized to 
quantify battery health level with a definition of battery current capacity or internal 
resistance. In real applications, it is difficult to directly measure battery capacity or 
internal resistance by commercial sensors. As a 20% degradation of capacity or a 
100% increase of internal resistance are defined as the end-of-life (EoL) of battery in
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transportation electrification applications, it is crucial to estimate SoH for ensuring 
safe and reliable operations of LIB. 

It is noted that several states, such as SoC, SoE, and SoP, vary in a short-term 
timescale level due to the rapid-changing electrochemical parameters. In contrast, due 
to intermediate heat transfer and thermal characteristics of LIB, the battery tempera-
ture changes much more slowly with a middle-term timescale level. Furthermore, as 
the capacity degradation and the resistance increase occur slowly in the whole life 
of LIB, the SoH presents a long-term timescale property. 

1.1.1 State Estimation Within Short-Term Timescale 

For battery SoC estimation, machine learning methods such as deep neural network 
(DNN), support vector regressor (SVR), and XGBoost have been adopted to derive 
suitable data-driven models for effective battery SoC estimation (Li et al. 2021a). 
Meanwhile, some data-driven methods are also developed to estimate battery SoE. 
For instance, based on the wavelet NN-based model and particle filter estimator, 
battery SoE is estimated rapidly with good accuracy in Dong et al. (2015). After quan-
tifying the relationship between battery SoC and SoE, a dual forgetting factor-based 
adaptive extended Kalman filter (AEKF) is developed to effectively estimate battery 
SoC and SoE jointly under dynamic operating conditions for different batteries (Shri-
vastava et al. 2021). Ma et al. (2021) propose a long short-term memory (LSTM) 
DNN-based data-driven method to achieve joint estimation of battery SoC and SoE, 
where its accuracy and robustness outperform the SVR, random forest (RF) and 
simple recurrent NN. 

The SoP estimation is mostly realized with a model-based architecture. In spite 
of this, recent works have also seen the use of data-driven methods for SoP estima-
tion. A typical study on data-driven based SoP estimation is referred to Tang et al. 
(2021a). A softmax NN-based strategy is proposed to estimate the SoP for the inter-
vals between pulse tests. The AI methods like deep reinforcement learning (DRL) 
have also been used for the maximum power estimation of LIB. In particular, Wei et al. 
(2022a) proposed a multi-constrained maximum power estimation method based on 
an electrical-thermal-ageing model for data generation and the deep deterministic 
policy gradient (DDPG) algorithm for problem solution. A general framework of 
the DRL-based maximum power estimation is shown schematically in Fig. 1.2. It is  
worth noting that battery models are involved in these methods acting as an envi-
ronment for the DRL-based optimization. However, the DRL-based estimator can 
also be model-free and purely data-driven, provided that sufficient battery data are 
available in real-world applications. In the case, the data pool containing massive 
battery data acts as a “real-world environment”, so that the effort for modeling can 
be mitigated.
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Fig. 1.2 General framework of the DRL-based maximum power estimation methods, reprinted 
from Wei et al. (2023), with permission from IEEE 

1.1.2 State Estimation Within Middle-Term Timescale 

The state belonging to the middle-term timescale is generally referred to the temper-
ature of LIB. The model-based internal temperature estimation has been well studied 
in the literature, as will be discussed in the following sections. In comparison, the 
data-driven strategies to benefit battery temperature estimation are still in the nascent 
stage. An electrochemical-thermal-NN model, as illustrated in Fig. 1.3, is combined 
with the unscented Kalman filter to jointly estimate the SoC and inner temperature 
in Feng et al. (2020). A data-driven method combining the Radial Basis Function 
(RBF)-based NN and the filtering method is used to estimate the inner temperature 
with higher robustness than the linear NN model (Liu et al. 2018). A data-driven 
method combining long short term memory (LSTM) NN and transfer learning is 
proposed to estimate the inner temperature of LIB under various current profiles in 
Wang et al. (2021). Overviewing the existing works, machine learning techniques 
have been increasingly used for temperature estimation due to their independence 
to complicated thermal characterization. At the same time, their combination with 
model-based approaches can be a trend to improve the estimation performance.
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Fig. 1.3 Framework of electrochemical-thermal-NN model for joint estimation of battery SoC and 
inner temperature, reprinted from Wei et al. (2023), with permission from IEEE 

1.1.3 State Estimation Within Long-Term Timescale 

The SoH belongs to a slow-varying state and is influenced by many ageing factors. 
Since the association between these factors and battery SoH is highly nonlinear 
and difficult for quantification, data-driven solutions have become an even more 
powerful tool for SoH estimation with limited information of ageing factors. Esti-
mation methods with direct use of BMS measurements are appealing without tedious 
data pre-processing. Roman et al. (2021) developed a machine-learning pipeline for 
SoH estimation by combining parametric and non-parametric algorithms. Thirty 
feature points are extracted from the current and voltage to estimate the SoH. Tang 
et al. (2021b) established a balancing current ratio-based data-driven solution to esti-
mate the SoH, which reduced the dependence on cell-level models and thus provided 
stronger robustness. To tackle the risk of low data quality and quantity, Bamati et al. 
(2022) developed a nonlinear autoregressive with exogenous inputs recurrent NN for 
SoH estimation. The estimation accuracy was well ensured with randomly- missed 
observation data points. 

Incremental capacity analysis (ICA) and differential voltage analysis (DVA) have 
also been widely employed for the ageing analysis and SoH estimation of LIB. 
One challenge of DVA is that the peaks and valleys in DV curves cannot be easily 
identified. Moreover, the DV trajectory is referred to the capacity of LIB, which 
however fades over time. By comparison, the ICA approach transfers the voltage 
plateaus into observable peaks. Specifically, the mitigation of IC peaks and valleys 
over time can efficiently reflect the ageing mechanisms of LIB, such as the loss of 
lithium inventory (LLI) and the loss of active material (LAM). Therefore, the peak 
position, amplitude, and envelope area of the IC curve can be utilized as informative 
health indicators (HIs) to estimate the battery SoH. This can be realized by mapping 
the HIs directly to the capacity or applying fusion algorithms like Gaussian process 
regression (GPR) and the Bayesian model (Hu et al. 2015).


