Solid Mechanics and Its Applications

# Yuriy Povstenko

# Fractional Thermoelasticity

Second Edition



# **Solid Mechanics and Its Applications**

Volume 278

#### **Series Editors**

J. R. Barber, Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA

Anders Klarbring, Mechanical Engineering, Linköping University, Linköping, Sweden

The fundamental questions arising in mechanics are: Why?, How?, and How much? The aim of this series is to provide lucid accounts written by authoritative researchers giving vision and insight in answering these questions on the subject of mechanics as it relates to solids. The scope of the series covers the entire spectrum of solid mechanics. Thus it includes the foundation of mechanics; variational formulations; computational mechanics; statics, kinematics and dynamics of rigid and elastic bodies; vibrations of solids and structures; dynamical systems and chaos; the theories of elasticity, plasticity and viscoelasticity; composite materials; rods, beams, shells and membranes; structural control and stability; soils, rocks and geomechanics; fracture; tribology; experimental mechanics; biomechanics and machine design. The median level of presentation is the first year graduate student. Some texts are monographs defining the current state of the field; others are accessible to final year undergraduates; but essentially the emphasis is on readability and clarity.

Springer and Professors Barber and Klarbring welcome book ideas from authors. Potential authors who wish to submit a book proposal should contact Dr. Mayra Castro, Senior Editor, Springer Heidelberg, Germany, email: mayra. castro@springer.com

Indexed by SCOPUS, Ei Compendex, EBSCO Discovery Service, OCLC, ProQuest Summon, Google Scholar and SpringerLink.

Yuriy Povstenko

# Fractional Thermoelasticity

Second Edition



Yuriy Povstenko Department of Mathematics and Computer Science Jan Długosz University Częstochowa, Poland

ISSN 0925-0042 ISSN 2214-7764 (electronic) Solid Mechanics and Its Applications ISBN 978-3-031-64586-0 ISBN 978-3-031-64587-7 (eBook) https://doi.org/10.1007/978-3-031-64587-7

1<sup>st</sup> edition: © Springer International Publishing Switzerland 2015 2<sup>nd</sup> edition: © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2024

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

If disposing of this product, please recycle the paper.

### **Preface to the Second Edition**

If at first you don't succeed, Try, try, try again. W. E. Hickson

After the appearance of the first edition of the book *Fractional Thermoelasticity*, a growing interest in this subject has been observed, many new research articles have been published.

In comparison with the first edition, the book has been thoroughly revised and significantly extended. Although the general structure of the book resembles the first edition, most of the chapters have been enlarged, new material has been added. As the Mittag-Leffler functions and the Wright function appear in solutions of various types of equations with fractional operators, the main properties of these function have been presented in Chap. 1. The statement of the problems of fractional thermoelasticity is discussed in Chap. 2 in more details. The new problems of time-harmonic impact on the boundary have been solved in Chaps. 3 and 5. Two approaches to obtaining the space-time-fractional advection-diffusion equation are presented in Chap. 9. The second edition also contains two new chapters. In Chap. 10, cracks in the framework of fractional thermoelasticity are considered. Line cracks in a plane and circular cracks in a solid are investigated, the corresponding stress intensity factors are evaluated depending on the order of fractional derivative. Nonlocal elasticity assumes integral constitutive equation for the stress tensor, takes into account interatomic long-range forces, reduces to the classical theory of elasticity in the long wavelength limit and to the atomic lattice theory in the short wave-length limit. Often, the nonlocal kernel of a stress constitutive equation is selected as the Green function of the Cauchy problem for partial differential equation. Chapter 11 is devoted to the new theory of nonlocal elasticity in which the nonlocal modulus is the Green function of the Cauchy problem for the fractional heat conduction equation.

Several misprints have been corrected. Similarly to the first edition, the second edition of the book contains a large number of figures describing the influence of order of fractional derivatives on temperature and stress distribution in solids.

Częstochowa, Poland May 2024 Yuriy Povstenko

## **Preface to the First Edition**

Thus, when God said Let there be light, He implied, Let there also be heat – and there was heat. I. McNeil

What would physics look like without gravitation? Albert Einstein

What would physics look like without heat conduction? Yuriy Povstenko

The famous Fourier law, which states the linear dependence between the heat flux vector and the temperature gradient, was formulated by Fourier in 1822 and marked the beginning of the classical theory of heat conduction. A few years later, Fourier's disciple Duhamel coupled the temperature field and the body deformation and pioneered studies on thermoelasticity.

The classical theory of heat conduction based on the phenomenological Fourier law, which ignores processes occurring at the microscopic level, is quite acceptable for different physical situations. However, many theoretical and experimental studies of transport phenomena testify that in media with complex internal structure (amorphous, porous, random and disordered materials, fractals, polymers, glasses, dielectrics and semiconductors, etc.) the classical Fourier law and the standard parabolic heat conduction equation are no longer accurate enough, and physical processes occurring at the microscopic level, in one way or another, should be taken into account. This leads to formulation of nonclassical theories, in which the Fourier law and the parabolic heat conduction equation are replaced by more general equations. Each generalization of the heat conduction equation results in formulation of the corresponding generalized theory of thermal stresses. For example, thermoelasticity without energy dissipation proposed by Green and Naghdi [1] is based on the wave equation for temperature. Cattaneo's telegraph equation for temperature leads to the generalized thermoelasticity of Lord and Shulman [2]. This book is devoted to fractional thermoelasticity, i.e., thermoelasticity based on the heat conduction equation with differential operators of fractional order. Time-fractional differential operators describe memory effects, space-fractional differential operators deal with the long-range interaction. It should be emphasized that fractional calculus has been successfully used in physics, geology, chemistry, rheology, engineering, bioengineering, robotics, etc. The first paper on fractional thermoelasticity was published by the author in 2005. During the last decade, substantial literature on this subject has evolved, but there is no book which sums up investigations in this field. The present book, which for the major part is based on author's research, fills in such a blank.

The book is organized as follows. Chapter 1 presents essentials of fractional calculus. Different kinds of integral and differential operators of fractional order are discussed (the Riemann-Liouville fractional integrals, the Riemann-Liouville and Caputo fractional derivatives, and the Riesz fractional operators). Chapter 2 is devoted to time- and space-nonlocal generalizations of the Fourier law, the corresponding generalizations of the heat conduction equation and formulation of associated theories of fractional thermoelasticity. Different kinds of boundary conditions for the time-fractional heat conduction equation are analyzed including the conditions of perfect thermal contact and the moving interface boundary conditions at the solid-liquid interface. In Chaps. 3 and 4, the axisymmetric problems for the time-fractional heat conduction and associated thermal stresses are considered in polar and cylindrical coordinates, respectively. The central symmetric problem in spherical coordinates are studied in Chap. 5. It should be noted that the considered theory interpolates the classical theory of thermal stresses based on the parabolic heat conduction equation and the theory of thermoelasticty without energy dissipation proposed by Green and Naghdi and started from the hyperbolic wave equation for temperature. Chapter 6 presents thermoelasticity based on the space-time-fractional heat conduction equation. Chapter 7 is devoted to thermoelasticty which uses the fractional telegraph equation for temperature (fractional generalization of the wellknown theory of Lord and Shulman). In Chap. 8, we formulate equations of fractional thermoelasticity of thin shells (solids with one size being small with respect to two other sizes). The generalized boundary conditions of nonperfect thermal contact for the time-fractional heat conduction in composite medium are also formulated. It is well-known that from mathematical viewpoint, the Fourier law and the theory of heat conduction and the Fick law and the theory of diffusion are identical. Chapter 9 deals with the theory of diffusive stresses caused by fractional advection-diffusion equation.

The book contains a large number of Figures which show the characteristic features of temperature and stress distributions and represent the whole spectrum of order of fractional operators.

The corresponding sections of the book may be used by university lecturers of courses in heat and mass transfer, continuum mechanics, thermal stresses as well as in fractional calculus and its applications for graduate and postgraduate students. The book presents a picture of the state-of-the-art of fractional thermoelasticity and will also serve as a reference handbook for specialists in applied mathematics, physics, geophysics, elasticity, thermoelasticity and engineering sciences. The book provides information which puts the reader at the forefront of current research in the field of fractional thermoelasticity and is complemented with extensive references in order to stimulate further studies in this field as well as in the related areas.

Częstochowa, Poland November 2014 Yuriy Povstenko

#### References

- Green, A.E., Naghdi, P.M.: Thermoelasticity without energy dissipation. J. Elast. 31, 189–208 (1993)
- Lord, H.W., Shulman, Y.: A generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solids 15, 299–309 (1967)

## **About This Book**

The book is devoted to fractional thermoelasticity, i.e. thermoelasticity based on the heat conduction equation with differential operators of fractional order. Timefractional differential operators describe memory effects, space-fractional differential operators deal with the long-range interaction. The first paper on fractional thermoelasticity was published by the author in 2005. During the last two decades, substantial literature on this subject has evolved, but there is no book which sums up investigations in this field. The present book, which for the major part is based on author's research, fills in such a blank. The book contains a large number of Figures which show the characteristic features of temperature and stress distributions and represent the whole spectrum of order of fractional operators.

The corresponding sections of the book may be used by university lecturers of courses in heat and mass transfer, continuum mechanics, thermal stresses as well as in fractional calculus and its applications for graduate and postgraduate students. The book presents a picture of the state-of-the-art of fractional thermoelasticity and will also serve as a reference handbook for specialists in applied mathematics, physics, geophysics, elasticity, thermoelasticity and engineering sciences. The book provides information which puts the reader at the forefront of current research in the field of fractional thermoelasticity and is complemented with extensive references in order to stimulate further studies in this field as well as in the related areas.

# Contents

| 1 | Esse | ntials of  | Fractional Calculus                            | 1  |
|---|------|------------|------------------------------------------------|----|
|   | 1.1  | Riema      | nn–Liouville Fractional Integrals              | 1  |
|   | 1.2  | Riema      | nn–Liouville and Caputo Fractional Derivatives | 4  |
|   | 1.3  | Riesz F    | Fractional Operators                           | 6  |
|   | 1.4  | Mittag-    | -Leffler Functions and Wright Function         | 11 |
|   | Refe | rences .   |                                                | 16 |
| 2 | Frac | tional H   | eat Conduction and Related Theories            |    |
|   | of T | hermoela   | asticity                                       | 21 |
|   | 2.1  | Materia    | al Continuum. Balance Equations                | 21 |
|   | 2.2  | Constit    | tutive Equations                               | 26 |
|   | 2.3  | Time a     | nd Space Nonlocality                           | 29 |
|   | 2.4  | Nonloc     | cal Generalizations of the Fourier Law         | 30 |
|   | 2.5  | Theorie    | es of Fractional Thermoelasticity              | 37 |
|   | 2.6  | Initial a  | and Boundary Conditions                        | 42 |
|   | 2.7  | Repres     | entation of Thermal Stresses                   | 46 |
|   | Refe | rences .   |                                                | 49 |
| 3 | The  | rmoelasti  | icity Based on Time-Fractional Heat Conduction |    |
| C | Equ  | ation in 1 | Polar Coordinates                              | 53 |
|   | 3.1  | Fundar     | nental Solutions to Axisymmetric Problems      |    |
|   |      | for an l   | Infinite Solid                                 | 53 |
|   |      | 3.1.1      | Statement of the Problem                       | 53 |
|   |      | 3.1.2      | The First Cauchy Problem                       | 54 |
|   |      | 3.1.3      | The Second Cauchy Problem                      | 61 |
|   |      | 3.1.4      | The Source Problem                             | 61 |
|   | 3.2  | Delta-H    | Pulse at the Origin                            | 71 |
|   |      | 3.2.1      | The First Cauchy Problem                       | 71 |
|   |      | 3.2.2      | The Second Cauchy Problem                      | 73 |
|   |      | 3.2.3      | The Source Problem                             | 74 |
|   |      | 3.2.4      | Heat Source Varying Harmonically in Time       | 75 |

|     |      | 3.2.5                             | Quasi-Steady-State Solutions                      | 79  |  |
|-----|------|-----------------------------------|---------------------------------------------------|-----|--|
|     | 3.3  | Radial                            | Heat Conduction in a Cylinder and Associated      |     |  |
|     |      | Therm                             | al Stresses                                       | 86  |  |
|     |      | 3.3.1                             | Formulation of the Problem                        | 86  |  |
|     |      | 3.3.2                             | The Dirichlet Boundary Condition for Temperature  | 88  |  |
|     |      | 3.3.3                             | Time-Harmonic Impact on the Boundary              | 97  |  |
|     |      | 3.3.4                             | Heat Flux at the Surface                          | 109 |  |
|     | 3.4  | Radial                            | Heat Conduction in an Infinite Medium             |     |  |
|     |      | with a                            | Cylindrical Hole                                  | 112 |  |
|     |      | 3.4.1                             | Statement of the Problem                          | 112 |  |
|     |      | 3.4.2                             | The Dirichlet Boundary Condition for Temperature  | 114 |  |
|     |      | 3.4.3                             | Heat Flux at the Surface                          | 118 |  |
|     |      | 3.4.4                             | Time-Harmonic Heat Flux at the Boundary           | 125 |  |
|     | 3.5  | Appen                             | dix A: Integrals                                  | 128 |  |
|     | 3.6  | Appen                             | dix B: Series Involving Zeros of Bessel Functions | 131 |  |
|     | Refe | rences .                          |                                                   | 132 |  |
| 4   | Avie | vmmetri                           | ic Problems in Cylindrical Coordinates            | 137 |  |
| Ţ., | 4 1  | Therm                             | al Stresses in a Long Cylinder                    | 137 |  |
|     | 7.1  | 4 1 1                             | Statement of the Problem                          | 137 |  |
|     |      | 412                               | The Dirichlet Boundary Condition                  | 138 |  |
|     |      | 413                               | Heat Flux at the Surface                          | 143 |  |
|     | 42   | Therm                             | al Stresses in an Infinite Medium with a Long     | 115 |  |
|     |      | Cylind                            | rical Hole                                        | 147 |  |
|     |      | 4.2.1                             | Statement of the Problem                          | 147 |  |
|     |      | 4.2.2                             | The Dirichlet Boundary Condition                  | 147 |  |
|     |      | 4.2.3                             | Heat Flux at the Surface                          | 151 |  |
|     | 4.3  | Axisvr                            | nmetric Problems for a Half-Space                 | 153 |  |
|     |      | 4.3.1                             | Fundamental Solution to the Dirichlet Problem     | 153 |  |
|     |      | 4.3.2                             | Constant Boundary Value of Temperature            |     |  |
|     |      |                                   | in a Local Area                                   | 158 |  |
|     |      | 4.3.3                             | Fundamental Solution to the Physical Neumann      |     |  |
|     |      |                                   | Problem                                           | 160 |  |
|     |      | 4.3.4                             | Constant Boundary Value of the Heat Flux          |     |  |
|     |      |                                   | in a Local Area                                   | 164 |  |
|     | 4.4  | Appen                             | dix: Integrals                                    | 165 |  |
|     | Refe | rences .                          |                                                   | 167 |  |
| 5   | Tho  | mooloct                           | icity Based on Time Frentianal Heat Conduction    |     |  |
| 3   | Fou  | Faustion in Spherical Coordinates |                                                   |     |  |
|     | 5 1  | Funda                             | mental Solutions to Central Symmetric Problems    | 109 |  |
|     | 5.1  | in an I                           | nfinite Solid                                     | 160 |  |
|     |      | 511                               | Statement of the Problem                          | 160 |  |
|     |      | 512                               | The First Cauchy Problem                          | 170 |  |
|     |      | 5.1.2                             | The Second Cauchy Problem                         | 175 |  |
|     |      | 0.1.0                             |                                                   |     |  |

#### Contents

|   |           | 5.1.4              | The Source Problem                                 | 176 |  |  |
|---|-----------|--------------------|----------------------------------------------------|-----|--|--|
|   | 5.2       | Delta-P            | Pulse at the Origin                                | 184 |  |  |
|   |           | 5.2.1              | The First Cauchy Problem                           | 184 |  |  |
|   |           | 5.2.2              | The Second Cauchy Problem                          | 186 |  |  |
|   |           | 5.2.3              | The Source Problem                                 | 188 |  |  |
|   |           | 5.2.4              | Heat Source Varying Harmonically in Time           | 189 |  |  |
|   | 5.3       | Radial             | Heat Conduction in a Sphere and Associated         |     |  |  |
|   |           | Therma             | Il Stresses                                        | 195 |  |  |
|   |           | 5.3.1              | Formulation of the Problem                         | 195 |  |  |
|   |           | 5.3.2              | Fundamental Solution to the Dirichlet Problem      | 196 |  |  |
|   |           | 5.3.3              | Constant Boundary Condition for Temperature        | 202 |  |  |
|   |           | 5.3.4              | Time-Harmonic Impact on the Boundary               | 209 |  |  |
|   |           | 5.3.5              | Fundamental Solution to the Physical Neumann       |     |  |  |
|   |           |                    | Problem                                            | 217 |  |  |
|   |           | 5.3.6              | Constant Boundary Value of the Heat Flux           | 219 |  |  |
|   | 5.4       | Heat C             | onduction in a Body with a Spherical Cavity        |     |  |  |
|   |           | and Ass            | sociated Thermal Stresses                          | 220 |  |  |
|   |           | 5.4.1              | Formulation of the Problem                         | 220 |  |  |
|   |           | 5.4.2              | Fundamental Solution to the Dirichlet Problem      | 221 |  |  |
|   |           | 5.4.3              | Constant Boundary Value of Temperature             | 225 |  |  |
|   |           | 5.4.4              | Fundamental Solution to the Physical Neumann       |     |  |  |
|   |           |                    | Problem                                            | 226 |  |  |
|   |           | 5.4.5              | Constant Boundary Value of the Heat Flux           | 230 |  |  |
|   |           | 5.4.6              | Fundamental Solution to the Mathematical           |     |  |  |
|   |           |                    | Neumann Problem                                    | 231 |  |  |
|   |           | 5.4.7              | Constant Boundary Value of the Normal              |     |  |  |
|   |           |                    | Derivative of Temperature                          | 234 |  |  |
|   |           | 5.4.8              | Time-Harmonic Heat Flux at the Boundary            | 236 |  |  |
|   |           | 5.4.9              | Quasi-Steady-State Solutions                       | 242 |  |  |
|   | 5.5       | Append             | lix A: Integrals                                   | 250 |  |  |
|   | 5.6       | Append             | lix B: Trigonometric Series                        | 252 |  |  |
|   | Refer     | ences              |                                                    | 253 |  |  |
| 6 | Ther      | moelasti           | city Based on Space-Time-Fractional Heat           |     |  |  |
|   | Cond      | onduction Equation |                                                    |     |  |  |
|   | 6.1 Funda |                    | nental Solutions to Axisymmetric Problems in Polar |     |  |  |
|   |           | Coordi             | nates                                              | 257 |  |  |
|   |           | 6.1.1              | Statement of the Problem                           | 257 |  |  |
|   |           | 6.1.2              | The First Cauchy Problem                           | 258 |  |  |
|   |           | 6.1.3              | The Second Cauchy Problem                          | 260 |  |  |
|   |           | 6.1.4              | The Source Problem                                 | 265 |  |  |
|   | 6.2       | Axisym             | metric Solutions in Cylindrical Coordinates        | 267 |  |  |
|   |           | 6.2.1              | Formulation of the Problem                         | 267 |  |  |
|   |           | 6.2.2              | Fundamental Solution to the Source Problem         | 268 |  |  |
|   |           |                    |                                                    |     |  |  |

|   |               | 6.2.3 Delta-Pulse Source at the Origin                  | 270 |  |  |
|---|---------------|---------------------------------------------------------|-----|--|--|
|   | 6.3           | Fundamental Solutions to Central Symmetric Problems     |     |  |  |
|   |               | in Spherical Coordinates                                | 273 |  |  |
|   |               | 6.3.1 The First Cauchy Problem                          | 273 |  |  |
|   |               | 6.3.2 The Second Cauchy Problem                         | 276 |  |  |
|   |               | 6.3.3 The Source Problem                                | 278 |  |  |
|   | 6.4           | Appendix: Integrals                                     | 282 |  |  |
|   | Refe          | rences                                                  | 284 |  |  |
| 7 | Ther          | moelasticity Based on Fractional Telegraph Equation     | 287 |  |  |
|   | 7.1           | Time-Fractional Telegraph Equation                      | 287 |  |  |
|   |               | 7.1.1 Statement of the Problem                          | 287 |  |  |
|   |               | 7.1.2 Solution in One-Dimensional Case                  | 288 |  |  |
|   |               | 7.1.3 Fractional Telegraph Equation on a Real Line      |     |  |  |
|   |               | with Moving Time-Harmonic Source                        | 291 |  |  |
|   | 7.2           | Solution in the Axially Symmetric Case                  | 297 |  |  |
|   | 7.3           | Solution in the Central Symmetric Case                  | 303 |  |  |
|   | 7.4           | Space-Time-Fractional Telegraph Equation                | 309 |  |  |
|   | Refe          | rences                                                  | 314 |  |  |
| 8 | Frac          | Fractional Thermoelasticity of Thin Shells              |     |  |  |
|   | 8.1           | Thin Shells                                             | 317 |  |  |
|   | 8.2           | Averaged Heat Conduction Equation                       | 321 |  |  |
|   | 8.3           | Generalized Boundary Conditions of Nonperfect Thermal   |     |  |  |
|   | 0.0           | Contact                                                 | 328 |  |  |
|   | 8.4           | Fractional Heat Conduction in Two Semi-infinite Solids  | 020 |  |  |
|   | 0             | Connected by Thin Intermediate Laver                    | 332 |  |  |
|   | Refe          | rences                                                  | 338 |  |  |
| • | T             |                                                         |     |  |  |
| 9 | Frac<br>Diff. | tional Advection-Diffusion Equation and Associated      | 2/1 |  |  |
|   | 0.1           | The Fokker Dlenck Equation                              | 341 |  |  |
|   | 9.1           | Space Time Fractional Advaction Diffusion Equation      | 541 |  |  |
|   | 9.2           | in the Case of One Spatial Variable According Two       |     |  |  |
|   |               | A muse case of One Spatial variable According Two       | 247 |  |  |
|   |               | Approaches                                              | 247 |  |  |
|   |               | 9.2.1 Fundamental Solution to the Cauchy Problem        | 251 |  |  |
|   | 0.2           | 9.2.2 Fundamental Solution to the Source Problem        | 257 |  |  |
|   | 9.5           | Theory of Diffusive Stresses                            | 357 |  |  |
|   | 9.4           | Time-Fractional Advection-Diffusion Equation in a Plane | 339 |  |  |
|   |               | 9.4.1 Fundamental Solution to the Cauchy Problem        | 339 |  |  |
|   | 0.7           | 9.4.2 Fundamental Solution to the Source Problem        | 364 |  |  |
|   | 9.5           | Time-Fractional Advection-Diffusion in a Space          | 366 |  |  |
|   |               | 9.5.1 Fundamental Solution to the Cauchy Problem        | 366 |  |  |
|   |               | 9.5.2 Fundamental Solution to the Source Problem        | 370 |  |  |
|   | Refe          | rences                                                  | 371 |  |  |

| 10  | Crac  | ks in the Framework of Fractional Thermoelasticity        | 375 |  |
|-----|-------|-----------------------------------------------------------|-----|--|
|     | 10.1  | A Plane with a Line Crack                                 | 375 |  |
|     |       | 10.1.1 Statement of the Problem                           | 376 |  |
|     |       | 10.1.2 The Temperature Field                              | 378 |  |
|     |       | 10.1.3 Thermal Stresses                                   | 381 |  |
|     | 10.2  | An Infinite Plane Containing an External Crack            | 390 |  |
|     |       | 10.2.1 The Heat Conduction Problem                        | 390 |  |
|     |       | 10.2.2 Thermal Stresses                                   | 394 |  |
|     | 10.3  | A Solid with a Penny-Shaped Crack                         | 399 |  |
|     |       | 10.3.1 The Heat Conduction Problem                        | 399 |  |
|     |       | 10.3.2 Thermal Stresses                                   | 401 |  |
|     | 10.4  | An External Circular Crack in an Infinite Solid           | 411 |  |
|     |       | 10.4.1 The Heat Conduction Problem                        | 411 |  |
|     |       | 10.4.2 Thermal Stresses                                   | 415 |  |
|     | 10.5  | Appendix: Integrals                                       | 418 |  |
|     | Refer | ences                                                     | 420 |  |
| 11  | Fract | Fractional Nonlocal Elasticity                            |     |  |
|     | 11.1  | Introduction                                              | 425 |  |
|     | 11.2  | Fundamental Equations of Fractional Nonlocal Elasticity   | 427 |  |
|     |       | 11.2.1 One-Dimensional Case                               | 429 |  |
|     |       | 11.2.2 Two-Dimensional Axisymmetric Case                  | 430 |  |
|     |       | 11.2.3 Three-Dimensional Central Symmetric Case           | 431 |  |
|     | 11.3  | Screw Dislocation in the Framework of Fractional          |     |  |
|     |       | Nonlocal Elasticity                                       | 432 |  |
|     | 11.4  | Edge Dislocation in the Framework of Fractional Nonlocal  |     |  |
|     |       | Elasticity                                                | 434 |  |
|     | 11.5  | Point Defect in a Fractional Nonlocal Elastic Solid       | 437 |  |
|     | 11.6  | Appendix A: Integrals                                     | 439 |  |
|     | 11.7  | Appendix B: Laplacian of the Stress Tensor in Cylindrical |     |  |
|     |       | Coordinates                                               | 440 |  |
|     | 11.8  | Appendix C: Laplacian of the Stress Tensor in Spherical   |     |  |
|     |       | Coordinates                                               | 441 |  |
|     | Refer | rences                                                    | 442 |  |
| Ind | ex    |                                                           | 445 |  |

# **Chapter 1 Essentials of Fractional Calculus**



All the forces in the world are not so powerful as an idea whose time has come.

Victor Hugo

**Abstract** Essentials of fractional calculus are presented. Different kinds of integral and differential operators of fractional order are discussed. The notion of the Riemann–Liouville fractional integral is introduced as a natural generalization of the repeated integral written in a convolution-type form. The Riemann–Liouville fractional derivative is defined as left-inverse to the Riemann–Liouville fractional integral. The Caputo fractional derivative and the Riesz fractional operators (including the fractional Laplace operator) are considered. The cumbersome aspects of space-fractional differential operators disappear when one computes their Fourier integral transforms. In solutions of various types of equations with fractional operators, there appear the Mittag-Leffler functions and the Wright function. The main properties of the Mittag-Leffler functions and the Wright function are presented.

#### **1.1 Riemann–Liouville Fractional Integrals**

The primitive of a function f(t) (the antiderivative of a function f(t)) will be denoted as

$$I^{1}f(t) = \int_{0}^{t} f(\tau) \,\mathrm{d}\tau.$$
 (1.1)

Next, consider the twofold primitive of a function f(t)

$$I^{2}f(t) = \int_{0}^{t} d\eta \int_{0}^{\eta} f(\tau) d\tau.$$
 (1.2)

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024 Y. Povstenko, *Fractional Thermoelasticity*, Solid Mechanics and Its Applications 278, https://doi.org/10.1007/978-3-031-64587-7\_1 1

1 Essentials of Fractional Calculus

Integrating (1.2) by parts gives

$$I^{2}f(t) = \int_{0}^{t} (t - \tau) f(\tau) \,\mathrm{d}\tau.$$
 (1.3)

Similarly, integrating n - 1 times by parts the *n*-fold primitive of a function f(t)

$$I^{n}f(t) = \int_{0}^{t} dt_{1} \int_{0}^{t_{1}} dt_{2} \cdots \int_{0}^{t_{n-1}} f(t_{n}) dt_{n}, \qquad (1.4)$$

we obtain a single integral

$$I^{n}f(t) = \frac{1}{(n-1)!} \int_{0}^{t} (t-\tau)^{n-1} f(\tau) \,\mathrm{d}\tau = \frac{1}{\Gamma(n)} \int_{0}^{t} (t-\tau)^{n-1} f(\tau) \,\mathrm{d}\tau, \quad (1.5)$$

where *n* is a positive integer,  $\Gamma(n)$  is the Gamma function.

The notion of the Riemann–Liouville fractional integral is introduced as a natural generalization of the repeated integral  $I^n f(t)$  written in a convolution-type form [20, 28, 57, 68]:

$$I^{\alpha} f(t) = \frac{1}{\Gamma(\alpha)} \int_{0}^{t} (t - \tau)^{\alpha - 1} f(\tau) \, \mathrm{d}\tau, \qquad t > 0, \quad \alpha > 0.$$
(1.6)

The Laplace transform rule for the fractional integral reads

$$\mathcal{L}\left\{I^{\alpha}f(t)\right\} = \frac{1}{s^{\alpha}}f^{*}(s), \qquad (1.7)$$

where the asterisk denotes the transform, *s* is the Laplace transform variable.

The convolution-type form of the Riemann–Liouville fractional integral (1.6) can be extended to [28]

$$I_{(a+)}^{\alpha}f(x) = \frac{1}{\Gamma(\alpha)} \int_{a}^{x} (x-\xi)^{\alpha-1} f(\xi) \,\mathrm{d}\xi, \qquad x > a, \quad \alpha > 0, \tag{1.8}$$

and

$$I^{\alpha}_{(b-)}f(x) = \frac{1}{\Gamma(\alpha)} \int_{x}^{b} (\xi - x)^{\alpha - 1} f(\xi) \,\mathrm{d}\xi, \qquad x < b, \quad \alpha > 0.$$
(1.9)

#### 1.1 Riemann-Liouville Fractional Integrals

These integrals are sometimes called the left-sided and right-sided fractional integrals, respectively. It should be mentioned that, replacing t by x, we have changed notation in Eqs. (1.8) and (1.9) in comparison with Eq. (1.6) as the following consideration will concern space-fractional differential operators.

The left-sided and right-sided Liouville fractional integrals on the real axis have the form

$$I_{+}^{\alpha}f(x) = \frac{1}{\Gamma(\alpha)} \int_{-\infty}^{x} (x - \xi)^{\alpha - 1} f(\xi) \, \mathrm{d}\xi, \qquad x \in \mathbb{R}, \quad \alpha > 0, \tag{1.10}$$

and

$$I^{\alpha}_{-}f(x) = \frac{1}{\Gamma(\alpha)} \int_{x}^{\infty} (\xi - x)^{\alpha - 1} f(\xi) \, \mathrm{d}\xi, \qquad x \in \mathbb{R}, \quad \alpha > 0.$$
(1.11)

The Fourier transform rules for Liouville fractional integrals on the real axis are calculated according to the following formulae [28, 68]:

$$\mathcal{F}\left\{I_{+}^{\alpha}f(x)\right\} = \frac{1}{(-i\xi)^{\alpha}}\widetilde{f}(\xi), \qquad \alpha > 0, \tag{1.12}$$

$$\mathcal{F}\left\{I_{-}^{\alpha}f(x)\right\} = \frac{1}{(i\xi)^{\alpha}}\widetilde{f}(\xi), \qquad \alpha > 0, \tag{1.13}$$

where the tilde denotes the Fourier transform,

$$\mathcal{F}{f(x)} = \tilde{f}(\xi) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) \mathrm{e}^{ix\xi} \mathrm{d}x, \qquad (1.14)$$

$$\mathcal{F}^{-1}\{\widetilde{f}(\xi)\} = f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \widetilde{f}(\xi) \mathrm{e}^{-ix\xi} \mathrm{d}\xi, \qquad (1.15)$$

 $\xi$  is the transform variable and  $(i\xi)^{\alpha}$  means

$$(\pm i\xi)^{\alpha} = |\xi|^{\alpha} \exp\left[\pm \frac{1}{2}i\alpha\pi \operatorname{sign}\xi\right].$$
(1.16)

#### **1.2 Riemann–Liouville and Caputo Fractional Derivatives**

The Riemann–Liouville derivative of the fractional order  $\alpha$  is defined as left-inverse to the fractional integral  $I^{\alpha}$ , i.e. [20, 28, 57]:

$$D_{RL}^{\alpha}f(t) = \begin{cases} \frac{d^{n}}{dt^{n}} \left[ \frac{1}{\Gamma(n-\alpha)} \int_{0}^{t} (t-\tau)^{n-\alpha-1} f(\tau) \, d\tau \right], \\ t > 0, \quad n-1 < \alpha < n, \\ \frac{d^{n} f(t)}{dt^{n}}, \quad t > 0, \quad \alpha = n, \end{cases}$$
(1.17)

and for its Laplace transform requires knowledge of the initial values of the fractional integral  $I^{n-\alpha} f(t)$  and its derivatives of the order k = 1, 2, ..., n-1

$$\mathcal{L}\left\{D_{RL}^{\alpha}f(t)\right\} = s^{\alpha}f^{*}(s) - \sum_{k=0}^{n-1} D^{k}I^{n-\alpha}f(0^{+})s^{n-1-k}, \quad n-1 < \alpha < n.$$
(1.18)

The Caputo fractional derivative [20, 28, 57]

$$D_{C}^{\alpha}f(t) = I^{n-\alpha}D^{n}f(t) = \begin{cases} \frac{1}{\Gamma(n-\alpha)} \int_{0}^{t} (t-\tau)^{n-\alpha-1} \frac{d^{n}f(\tau)}{d\tau^{n}} d\tau, \\ & 0 \\ t > 0, \quad n-1 < \alpha < n, \\ \frac{d^{n}f(t)}{dt^{n}}, & t > 0, \quad \alpha = n, \end{cases}$$
(1.19)

has the following Laplace transform rule

$$\mathcal{L}\left\{D_{C}^{\alpha}f(t)\right\} = s^{\alpha}f^{*}(s) - \sum_{k=0}^{n-1}f^{(k)}(0^{+})s^{\alpha-1-k}, \quad n-1 < \alpha < n.$$
(1.20)

The Caputo fractional derivative is a regularization in the time origin for the Riemann–Liouville fractional derivative by incorporating the relevant initial conditions [21]. In this book we shall use the Caputo fractional derivative omitting the index C

$$D_C^{\alpha} f(t) \equiv \frac{\mathrm{d}^{\alpha} f(t)}{\mathrm{d} t^{\alpha}}.$$

The major utility of this type fractional derivative is caused by the treatment of differential equations of fractional order for physical applications, where the initial conditions are usually expressed in terms of a given function and its derivatives of integer (not fractional) order, even if the governing equation is of fractional order [42, 57]. If care is taken, the results concerning the Caputo derivative can be recast to the Riemann–Liouville version and vice versa according to the following formula [20]:

$$D_{RL}^{\alpha}f(t) = D_{C}^{\alpha}f(t) + \sum_{k=0}^{n-1} \frac{t^{k-\alpha}}{\Gamma(k-\alpha+1)} f^{(k)}(0^{+}), \quad n-1 < \alpha < n.$$
(1.21)

It should be noted that in fractional calculus, where integrals and derivatives of arbitrary (not only integer) order are considered, there is no sharp boundary between integration and differentiation. For this reason, some authors [35, 57] do not use a separate notation for the fractional integral  $I^{\alpha} f(t)$ . The fractional integral of the order  $\alpha > 0$  is denoted as  $D_{RL}^{-\alpha}$ . Sometimes, especially when describing boundary conditions for the time-fractional heat conduction equation, we will also use the notation

$$D_{RL}^{-\alpha}f(t) \equiv I^{\alpha}f(t), \qquad \alpha > 0.$$
(1.22)

The left-sided and right-sided Riemann–Liouville fractional derivatives of order  $\alpha > 0$  are defined by [28]

$$D_{RL(a+)}^{\alpha}f(x) = \frac{d^{n}}{dx^{n}} \left[ \frac{1}{\Gamma(n-\alpha)} \int_{a}^{x} (x-\xi)^{n-\alpha-1} f(\xi) \, d\xi \right],$$
  
$$x > a, \quad n-1 < \alpha < n,$$
(1.23)

$$D_{RL(b-)}^{\alpha}f(x) = \left(-\frac{\mathrm{d}}{\mathrm{d}x}\right)^{n} \left[\frac{1}{\Gamma(n-\alpha)} \int_{x}^{b} (\xi-x)^{n-\alpha-1} f(\xi) \,\mathrm{d}\xi\right],$$
$$x < b, \quad n-1 < \alpha < n.$$
(1.24)

The left-sided and right-sided fractional derivatives corresponding to the left-sided and right-sided Liouville fractional integrals on the real axis have the form

$$D^{\alpha}_{+}f(x) = \frac{\mathrm{d}^{n}}{\mathrm{d}x^{n}} \left[ \frac{1}{\Gamma(n-\alpha)} \int_{-\infty}^{x} (x-\xi)^{n-\alpha-1} f(\xi) \,\mathrm{d}\xi \right],$$
$$x \in \mathbb{R}, \quad n-1 < \alpha < n, \tag{1.25}$$

$$D^{\alpha}_{-}f(x) = \left(-\frac{\mathrm{d}}{\mathrm{d}x}\right)^{n} \left[\frac{1}{\Gamma(n-\alpha)} \int_{x}^{\infty} (\xi-x)^{n-\alpha-1} f(\xi) \,\mathrm{d}\xi\right],$$
$$x \in \mathbb{R}, \quad n-1 < \alpha < n. \tag{1.26}$$

The Fourier transform rules for the left-sided and right-sided Liouville fractional derivatives read:

$$\mathcal{F}\left\{D_{+}^{\alpha}f(x)\right\} = (-i\xi)^{\alpha}\tilde{f}(\xi), \qquad \alpha > 0, \tag{1.27}$$

$$\mathcal{F}\left\{D_{-}^{\alpha}f(x)\right\} = (i\xi)^{\alpha}\widetilde{f}(\xi), \qquad \alpha > 0.$$
(1.28)

#### **1.3 Riesz Fractional Operators**

The Riesz form of the fractional derivative is a symmetric operator with respect to *x* [22, 53, 54] (we consider this operator for  $0 < \beta < 2$ ):

$$\frac{\mathrm{d}^{\beta}f(x)}{\mathrm{d}|x|^{\beta}} = -\frac{1}{\sin(\beta\pi)} \left[ \sin\left(\frac{\beta\pi}{2}\right) D_{+}^{\beta}f(x) + \sin\left(\frac{\beta\pi}{2}\right) D_{-}^{\beta}f(x) \right].$$
(1.29)

This operator can be also written as [15, 43, 68]:

$$\frac{d^{\beta}f(x)}{d|x|^{\beta}} = \frac{\Gamma(1+\beta)}{\pi} \sin\left(\frac{\beta\pi}{2}\right) \int_{0}^{\infty} \frac{f(x+u) - 2f(x) + f(x-u)}{u^{1+\beta}} du.$$
(1.30)

For  $\beta = 1$ , the Riesz space-fractional derivative is related to the Hilbert transform (see [43]):

$$\frac{\mathrm{d}f(x)}{\mathrm{d}|x|} = -\frac{1}{\pi} \frac{\mathrm{d}}{\mathrm{d}x} \int_{-\infty}^{\infty} \frac{f(u)}{x-u} \,\mathrm{d}u. \tag{1.31}$$

The Fourier transform rule for the Riesz derivative reads

$$\mathcal{F}\left\{\frac{\mathrm{d}^{\beta}f(x)}{\mathrm{d}|x|^{\beta}}\right\} = -|\xi|^{\beta}\mathcal{F}\left\{f(x)\right\}, \qquad 0 < \beta < 2, \tag{1.32}$$

which in the case  $\beta = 2$  coincides with the standard formula

$$\mathcal{F}\left\{\frac{\mathrm{d}^2 f(x)}{\mathrm{d}x^2}\right\} = -\xi^2 \mathcal{F}\left\{f(x)\right\}.$$
(1.33)

The Riesz-Feller fractional derivative of order  $0 < \beta < 2$  and skewness  $\vartheta$  with  $\vartheta = \min\{\beta, 2 - \beta\}$  modifies the Riesz fractional derivative introducing asymmetry [22, 53, 54]

#### 1.3 Riesz Fractional Operators

$$D_{\vartheta}^{\beta}f(x) = -\frac{1}{\sin(\beta\pi)} \left\{ \sin\left[\frac{(\beta-\vartheta)\pi}{2}\right] D_{+}^{\beta}f(x) + \sin\left[\frac{(\beta+\vartheta)\pi}{2}\right] D_{-}^{\beta}f(x) \right\}$$
(1.34)

and has the following Fourier transform rule

$$\mathcal{F}\left\{D_{\vartheta}^{\beta}f(x)\right\} = -|\xi|^{\beta} \exp\left[\frac{1}{2}i\pi\vartheta\,\operatorname{sign}\xi\right]\mathcal{F}\left\{f(x)\right\}, \qquad 0 < \beta < 2.$$
(1.35)

The one-dimensional Riesz derivative is the first step in the direction of defining fractional partial operators in higher dimensions. For example, the negative powers of the Laplace operator  $(-\Delta)^{-\beta/2}$  with  $\beta > 0$  are called the Riesz potentials (integrals), and their Fourier transforms are defined as [28]

$$\mathcal{F}\left\{\left(-\Delta\right)^{-\beta/2} f(\mathbf{x})\right\} = \frac{1}{|\boldsymbol{\xi}|^{\beta}} \mathcal{F}\left\{f(\mathbf{x})\right\}, \qquad \beta > 0, \tag{1.36}$$

where **x** is a vector of variables,  $\boldsymbol{\xi}$  is a vector of transform variables. The positive powers  $(-\Delta)^{\beta/2}$ ,  $\beta > 0$ , are called the Riesz derivatives, having the Fourier transforms

$$\mathcal{F}\left\{\left(-\Delta\right)^{\beta/2}f(\mathbf{x})\right\} = |\boldsymbol{\xi}|^{\beta} \mathcal{F}\left\{f(\mathbf{x})\right\}, \quad \beta > 0.$$
(1.37)

It is obvious that (1.37) is a fractional generalization of the standard formula for the Fourier transform of the Laplace operator:

$$\mathcal{F}\left\{\left(-\Delta\right)f(\mathbf{x})\right\} = \left|\boldsymbol{\xi}\right|^{2}\mathcal{F}\left\{f(\mathbf{x})\right\}.$$
(1.38)

If the considered function of two space variables f(x, y) depends only on the radial coordinate  $r = (x^2 + y^2)^{1/2}$ , then the twofold Fourier transform

$$\widetilde{f}(\xi,\eta) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) e^{i(x\xi+y\eta)} dx dy$$
(1.39)

can be simplified.

Introducing the polar coordinates

$$\begin{aligned} x &= r \sin \theta, \quad y = r \cos \theta, \\ \xi &= \rho \sin \vartheta, \quad \eta = \rho \cos \vartheta, \end{aligned}$$
 (1.40)

1 Essentials of Fractional Calculus

we obtain

$$\widetilde{f}(\xi,\eta) = \frac{1}{2\pi} \int_{0}^{\infty} rf(r) \,\mathrm{d}r \int_{0}^{2\pi} \mathrm{e}^{ir\rho\cos(\theta-\vartheta)} \,\mathrm{d}\theta, \qquad (1.41)$$

where we have used the same letter for the functions f(x, y) and f(r). Due to the periodic character of the second integrand, the following formula

$$\int_{0}^{2\pi} e^{ir\rho\cos(\theta-\vartheta)} \,\mathrm{d}\theta = \int_{0}^{2\pi} e^{ir\rho\cos\theta} \,\mathrm{d}\theta \tag{1.42}$$

is valid. Using the integral representation of the Bessel function of the first kind of the zeroth order [1]

$$\int_{0}^{2\pi} e^{iz\cos\theta} d\theta = 2\pi J_0(z), \qquad (1.43)$$

we get [69]

$$\mathcal{F}\left\{f(x, y)\right\} = \widetilde{f}(\xi, \eta) = \mathcal{H}_{(0)}\left\{f(r)\right\} = \widehat{f}(\varrho) = \int_{0}^{\infty} rf(r) J_{0}(r\varrho) \,\mathrm{d}r, \qquad (1.44)$$

$$\mathcal{F}^{-1}\left\{\widetilde{f}(\xi,\eta)\right\} = f(x,y) = \mathcal{H}^{-1}_{(0)}\left\{\widehat{f}(\varrho)\right\} = f(r) = \int_{0}^{\infty} \varrho \,\widehat{f}(\varrho) \,J_{0}(r\varrho) \,\mathrm{d}\varrho. \quad (1.45)$$

Hence, in the case of axial symmetry the twofold Fourier transform of the classical and fractional Laplace operators with respect to the Cartesian coordinates x and y is reduced to the Hankel transform with respect to the radial coordinate r and

$$\mathcal{F}\{(-\Delta) f(x, y)\} = \mathcal{H}_{(0)}\left\{-\left[\frac{d^2 f(r)}{dr} + \frac{1}{r}\frac{df(r)}{dr}\right]\right\} = \varrho^2 \mathcal{H}_{(0)}\{f(r)\}, \quad (1.46)$$

$$\mathcal{F}\left\{(-\Delta)^{\beta/2} f(x, y)\right\} = \mathcal{H}_{(0)}\left\{(-\Delta)^{\beta/2} f(r)\right\} = \varrho^{\beta} \mathcal{H}_{(0)}\left\{f(r)\right\}.$$
 (1.47)

If the considered function of three space variables f(x, y, z) depends only on the radial coordinate  $r = (x^2 + y^2 + z^2)^{1/2}$ , then the threefold Fourier transform

$$\widetilde{f}(\xi,\eta,\zeta) = \frac{1}{(2\pi)^{3/2}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y,z) e^{i(x\xi+y\eta+z\zeta)} dx \, dy \, dz$$
(1.48)

#### 1.3 Riesz Fractional Operators

can also be simplified.

Introducing the spherical coordinates

$$x = r \sin \phi \cos \theta, \quad y = r \sin \phi \sin \theta, \quad z = r \cos \phi,$$
  
$$\xi = \rho \sin \varphi \cos \vartheta, \quad \eta = \rho \sin \varphi \sin \vartheta, \quad \zeta = \rho \cos \varphi, \quad (1.49)$$

we get

$$\widetilde{f}(\xi,\eta,\zeta) = \frac{1}{(2\pi)^{3/2}} \int_{0}^{\infty} r^2 f(r) \, \mathrm{d}r \int_{0}^{\pi} \mathrm{e}^{ir\varrho\cos\phi\cos\varphi} \, \sin\phi \, \mathrm{d}\phi$$
$$\times \int_{0}^{2\pi} \mathrm{e}^{ir\varrho\sin\phi\sin\varphi\cos(\theta-\vartheta)} \, \mathrm{d}\theta, \qquad (1.50)$$

where the same letter is used for the functions f(x, y, z) and f(r).

Due to the periodic character of the third integrand, we have

$$\int_{0}^{2\pi} e^{ir\rho\sin\phi\sin\varphi\cos(\theta-\vartheta)} \,\mathrm{d}\theta = \int_{0}^{2\pi} e^{ir\rho\sin\phi\sin\varphi\cos\theta} \,\mathrm{d}\theta.$$
(1.51)

The integral representation of the Bessel function (1.43) gives

$$\widetilde{f}(\xi,\eta,\zeta) = \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} r^{2} f(r) dr$$

$$\times \int_{0}^{\pi} \sin\phi \cos(r\rho\cos\phi\cos\varphi) J_{0}(r\rho\sin\phi\sin\varphi) d\phi$$

$$= \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} r^{2} f(r) dr \int_{0}^{1} \cos(r\rho v\cos\varphi) J_{0}\left(r\rho\sqrt{1-v^{2}}\sin\varphi\right) dv. \quad (1.52)$$

Next, we use the integral [62]

$$\int_{0}^{1} \cos(av) J_0\left(b\sqrt{1-v^2}\right) dv = \frac{1}{\sqrt{a^2+b^2}} \sin\sqrt{a^2+b^2}, \quad (1.53)$$

and for the threefold Fourier transform in the central symmetric case we arrive at the following pare of equations:

1 Essentials of Fractional Calculus

$$\mathcal{F}\left\{f(x, y, z)\right\} = \mathcal{F}\left\{f(r)\right\} = \widetilde{f}(\varrho) = \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} r f(r) \frac{\sin(r\varrho)}{\varrho} dr, \qquad (1.54)$$

$$\mathcal{F}^{-1}\left\{\widetilde{f}(\varrho)\right\} = f(r) = \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \varrho \ \widetilde{f}(\varrho) \ \frac{\sin(r\varrho)}{r} \,\mathrm{d}\varrho. \tag{1.55}$$

This result coincides with the particular case of the n-fold Fourier transform in the central symmetric case obtained by another method in the book of Sneddon [69].

Hence, in the case of central symmetry the threefold Fourier transform with respect to the Cartesian coordinates x, y and z is reduced to the sine-Fourier transform of the special type with respect to the radial coordinate r. In this case

$$\mathcal{F}\left\{-\Delta f(x, y, z)\right\} = \mathcal{F}\left\{-\left[\frac{\mathrm{d}^2 f(r)}{\mathrm{d}r^2} + \frac{2}{r}\frac{\mathrm{d}f(r)}{\mathrm{d}r}\right]\right\} = \varrho^2 \widetilde{f}(\varrho) \tag{1.56}$$

and

$$\mathcal{F}\left\{(-\Delta)^{\beta/2}f(x, y, z)\right\} = \varrho^{\beta}\widetilde{f}(\varrho).$$
(1.57)

It should be emphasized that the cumbersome aspects of space-fractional differential operators disappear when one computes their Fourier integral transforms.

Additional information about various mathematical aspects of fractional calculus can be found in the pioneering book by Oldham and Spanier [51], in the remarkably comprehensive encyclopaedic-type treatise by Samko et al. [68], in the books by Diethelm [10], Miller and Ross [48] and Podlubny [57] devoted to fractional differential equations, and in the in-depth monograph by Kilbas et al. [28] (see also the extensive detailed survey of Gorenflo and Mainardi [20] and the beneficial paper of Valerio et al. [77] as well as the corresponding volumes of Handbook of Fractional Calculus [30, 31]).

The interested reader is also referred to numerous applications of fractional calculus in different areas of physics, chemistry, biology and engineering (see, for example, the books by Atanacković et al. [3], Herrmann [23], Leszczyński [32], Magin [35], Mainardi [40], Rabotnov [63], [64], Uchaikin [75], West et al. [78], Zaslavsky [82]; the monographs [5–7, 24, 27, 55, 56, 67, 71, 72]; the extensive overviews by Mainardi [38, 39], Metzler and Klafter [46, 47], Rossikhin and Shitikova [65, 66], Tenreiro Machado [73], Zaslavsky [81]; several papers [4, 8, 9, 12, 29, 37, 74], and references therein).

#### 1.4 Mittag-Leffler Functions and Wright Function

The Mittag-Leffler functions and Wright function appear in solutions of various types of equations with fractional operators. According to Mainardi [41], the Mittag-Leffler function can be considered as "the Queen Function of the Fractional Calculus".

The Mittag-Leffler function in one parameter  $E_{\alpha}(z)$  was introduced in [49, 50]. The generalized Mittag-Leffler function in two parameters  $E_{\alpha,\beta}(z)$  was considered in [25, 26]. A comprehensive treatment of properties of the Mittag-Leffler functions can be found in [11, 16].

The Mittag-Leffler function in one parameter  $\alpha$ 

$$E_{\alpha}(z) = \sum_{k=0}^{\infty} \frac{z^k}{\Gamma(\alpha k + 1)}, \qquad \alpha > 0, \ z \in \mathbb{C},$$
(1.58)

can be considered as the extension of the exponential function

$$E_1(z) = \mathbf{e}^z = \sum_{k=0}^{\infty} \frac{z^k}{\Gamma(k+1)}, \qquad z \in \mathbb{C},$$
(1.59)

whereas the generalized Mittag-Leffler function in two parameters  $\alpha$  and  $\beta$  is defined by the series representation

$$E_{\alpha,\beta}(z) = \sum_{k=0}^{\infty} \frac{z^k}{\Gamma(\alpha k + \beta)}, \qquad \alpha > 0, \ \beta > 0, \ z \in \mathbb{C}.$$
 (1.60)

In the general case, the parameters  $\alpha$  and  $\beta$  can be treated as complex numbers with some limitations on their real parts [16], but we restrict ourselves to positive values of  $\alpha$  and  $\beta$ .

We present several particular cases of the Mittag-Leffler functions for negative values of argument used in this book

$$E_0(-x) = \frac{1}{1+x},\tag{1.61}$$

$$E_1(-x) = e^{-x}, (1.62)$$

$$E_2(-x) = \cos\sqrt{x},\tag{1.63}$$

$$E_{1/2}(-x) = e^{x^2} \operatorname{erfc}(x) = \frac{2}{\sqrt{\pi}} \int_0^\infty e^{-u^2 - 2ux} \, \mathrm{d}u, \qquad (1.64)$$

$$E_{1/2,1/2}(-x) = \frac{1}{\sqrt{\pi}} - x \,\mathrm{e}^{x^2} \mathrm{erfc}\,(x) = \frac{2}{\sqrt{\pi}} \int_0^\infty \mathrm{e}^{-u^2 - 2ux} u \,\mathrm{d}u, \qquad (1.65)$$

1 Essentials of Fractional Calculus

$$E_{1/2,3/2}(-x) = \frac{1}{x} \left[ 1 - e^{x^2} \operatorname{erfc}(x) \right], \qquad (1.66)$$

$$E_{1/2,2}(-x) = \frac{1}{x^2} \left[ \frac{2x}{\sqrt{\pi}} + e^{x^2} \operatorname{erfc}(x) - 1 \right],$$
(1.67)

$$E_{0,2}(-x) = \frac{1}{1+x},\tag{1.68}$$

$$E_{1,2}(-x) = \frac{1 - e^{-x}}{x},$$
(1.69)

$$E_{2,2}(-x) = \frac{\sin\sqrt{x}}{\sqrt{x}}.$$
(1.70)

Here erfc (x) is the complementary error function.

The essential role of the Mittag-Leffler functions in fractional calculus is connected with the formula for the inverse Laplace transform [16, 20, 57]

$$\mathcal{L}^{-1}\left\{\frac{s^{\alpha-\beta}}{s^{\alpha}+b}\right\} = t^{\beta-1} E_{\alpha,\beta}(-bt^{\alpha})$$
(1.71)

with the important particular cases for  $\beta = 1$ ,  $\beta = 2$  and  $\beta = \alpha$ 

$$\mathcal{L}^{-1}\left\{\frac{s^{\alpha-1}}{s^{\alpha}+b}\right\} = E_{\alpha}(-bt^{\alpha}), \qquad (1.72)$$

$$\mathcal{L}^{-1}\left\{\frac{s^{\alpha-2}}{s^{\alpha}+b}\right\} = t E_{\alpha,2}(-bt^{\alpha}), \qquad (1.73)$$

$$\mathcal{L}^{-1}\left\{\frac{1}{s^{\alpha}+b}\right\} = t^{\alpha-1} E_{\alpha,\alpha}(-bt^{\alpha}).$$
(1.74)

The following recurrence relations [11, 16]

$$E_{\alpha,\beta}(z) = \frac{1}{\Gamma(\beta)} + z E_{\alpha,\alpha+\beta}(z).$$
(1.75)

$$E_{\alpha,\beta}(z) = \beta E_{\alpha,\beta+1}(z) + \alpha z \, \frac{\mathrm{d}E_{\alpha,\beta+1}(z)}{\mathrm{d}z},\tag{1.76}$$

$$\frac{\mathrm{d}\left[z^{\beta-1}E_{\alpha,\beta}\left(z^{\alpha}\right)\right]}{\mathrm{d}z} = z^{\beta-2}E_{\alpha,\beta-1}\left(z^{\alpha}\right) \tag{1.77}$$

are valid for the Mittag-Leffler function.

For investigation of the convergence of integrals containing the Mittag-Leffler functions, their asymptotic representations for large negative values of argument are useful. For  $x \to \infty$ , we have

#### 1.4 Mittag-Leffler Functions and Wright Function

$$E_{\alpha}(-x) \sim \frac{1}{\Gamma(1-\alpha)x},\tag{1.78}$$

$$E_{\alpha,2}(-x) \sim \frac{1}{\Gamma(2-\alpha)x},\tag{1.79}$$

$$E_{\alpha,\alpha}(-x) \sim -\frac{1}{\Gamma(-\alpha)x^2},\tag{1.80}$$

$$E_{\alpha,\beta}(-x) \sim \frac{1}{\Gamma(\beta-\alpha)x}.$$
 (1.81)

To evaluate the Mittag-Leffler function the algorithms suggested in [17] were used; see also the MATLAB function [58] that implements these algorithms as well as the recent papers [14], [52, 76].

The Wright function was presented in [79, 80] and later on was discussed in [11, 18, 19, 28, 44, 57, 61], among others. The Wright function is defined by the series representation

$$W(\alpha,\beta;z) = \sum_{k=0}^{\infty} \frac{z^k}{k!\,\Gamma(\alpha k + \beta)}, \qquad \alpha > -1, \quad \beta \in \mathbb{C}, \quad z \in \mathbb{C}.$$
(1.82)

In particular [36, 57, 59],

$$W(0, 1; z) = e^{z},$$
 (1.83)

$$W\left(-\frac{1}{2},\frac{1}{2};-z\right) = \frac{1}{\sqrt{\pi}} \exp\left(-\frac{z^2}{4}\right),$$
 (1.84)

$$W\left(-\frac{1}{2}, 1; -z\right) = \operatorname{erfc}\left(\frac{z}{2}\right), \qquad (1.85)$$

$$W\left(1, \nu+1; -\frac{z^2}{4}\right) = \left(\frac{2}{z}\right)^{\nu} J_{\nu}(z), \qquad (1.86)$$

$$W\left(1, \nu+1; \frac{z^2}{4}\right) = \left(\frac{2}{z}\right)^{\nu} I_{\nu}(z).$$
(1.87)

Here  $J_{\nu}(z)$  is the Bessel function of the first kind,  $I_{\nu}(z)$  is the modified Bessel function of the first kind.

The Wright function satisfies the recurrence equations [11]

$$\alpha z W(\alpha, \alpha + \beta; z) = W(\alpha, \beta - 1; z) + (1 - \beta) W(\alpha, \beta; z), \qquad (1.88)$$

$$\frac{\mathrm{d}W(\alpha,\beta;z)}{\mathrm{d}z} = W(\alpha,\alpha+\beta;z). \tag{1.89}$$

The Mainardi function  $M(\alpha; z)$  [36, 37, 45, 57] is a particular case of the Wright function

$$M(\alpha; z) = W(-\alpha, 1 - \alpha; -z) = \sum_{k=0}^{\infty} \frac{(-1)^k z^k}{k! \, \Gamma[-\alpha k + (1 - \alpha)]},$$
  
0 < \alpha < 1, \quad z \in \mathbb{C}, (1.90)

$$M(\alpha; z) = \frac{1}{\alpha z} W(-\alpha, 0; -z), \quad 0 < \alpha < 1, \quad z \in \mathbb{C}.$$
 (1.91)

The Wright function occurs in the expression for the inverse Laplace transform [13, 70]

$$\mathcal{L}^{-1}\left\{s^{-\beta}\exp\left(-\lambda s^{\alpha}\right)\right\} = t^{\beta-1}W\left(-\alpha,\beta;-\lambda t^{-\alpha}\right), \quad 0 < \alpha < 1, \ \lambda > 0, \quad (1.92)$$

in particular [36, 37]:

$$\mathcal{L}^{-1}\left\{\exp\left(-\lambda s^{\alpha}\right)\right\} = \frac{\alpha\lambda}{t^{\alpha+1}}M\left(\alpha;\lambda t^{-\alpha}\right), \quad 0 < \alpha < 1, \ \lambda > 0, \tag{1.93}$$

$$\mathcal{L}^{-1}\left\{s^{\alpha-1}\exp\left(-\lambda s^{\alpha}\right)\right\} = \frac{1}{t^{\alpha}}M\left(\alpha;\lambda t^{-\alpha}\right), \quad 0 < \alpha < 1, \ \lambda > 0.$$
(1.94)

The Wright function and the Mittag-Leffler function are interconnected by the Laplace transform [11, 28, 57]

$$\mathcal{L}\left\{W(\alpha,\beta;t)\right\} = \frac{1}{s} E_{\alpha,\beta}\left(\frac{1}{s}\right), \quad \alpha > 0, \quad \beta > 0, \tag{1.95}$$

and [18]

$$\mathcal{L}\{W(\alpha,\beta;-t)\} = E_{-\alpha,\beta-\alpha}(-s), \quad -1 < \alpha < 0, \quad \beta > 0,$$
(1.96)

whereas for the Mainardi function the corresponding relation takes the form

$$\mathcal{L}\left\{M\left(\alpha;t\right)\right\} = E_{\alpha}\left(-s\right), \quad 0 < \alpha < 1.$$
(1.97)

The Mittag-Leffler function and the Wright function are also related by the Fourier cosine transform [59-61]