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Preface to the Second Edition 

If at first you don’t succeed, 

Try, try, try again. 

W. E. Hickson 

After the appearance of the first edition of the book Fractional Thermoelasticity, a  
growing interest in this subject has been observed, many new research articles have 
been published. 

In comparison with the first edition, the book has been thoroughly revised and 
significantly extended. Although the general structure of the book resembles the first 
edition, most of the chapters have been enlarged, new material has been added. As the 
Mittag-Leffler functions and the Wright function appear in solutions of various types 
of equations with fractional operators, the main properties of these function have been 
presented in Chap. 1. The statement of the problems of fractional thermoelasticity 
is discussed in Chap. 2 in more details. The new problems of time-harmonic impact 
on the boundary have been solved in Chaps. 3 and 5. Two approaches to obtaining 
the space-time-fractional advection-diffusion equation are presented in Chap. 9. The  
second edition also contains two new chapters. In Chap. 10, cracks in the framework 
of fractional thermoelasticity are considered. Line cracks in a plane and circular 
cracks in a solid are investigated, the corresponding stress intensity factors are eval-
uated depending on the order of fractional derivative. Nonlocal elasticity assumes 
integral constitutive equation for the stress tensor, takes into account interatomic 
long-range forces, reduces to the classical theory of elasticity in the long wave-
length limit and to the atomic lattice theory in the short wave-length limit. Often, the 
nonlocal kernel of a stress constitutive equation is selected as the Green function of 
the Cauchy problem for partial differential equation. Chapter 11 is devoted to the new 
theory of nonlocal elasticity in which the nonlocal modulus is the Green function of 
the Cauchy problem for the fractional heat conduction equation.
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vi Preface to the Second Edition

Several misprints have been corrected. Similarly to the first edition, the second 
edition of the book contains a large number of figures describing the influence of 
order of fractional derivatives on temperature and stress distribution in solids. 

Częstochowa, Poland 
May 2024 

Yuriy Povstenko



Preface to the First Edition 

Thus, when God said 

Let there be light, He implied, 

Let there also be heat – 

and there was heat. 

I. McNeil 

What would physics look like without gravitation? 

Albert Einstein 

What would physics look like without heat conduction? 

Yuriy Povstenko 

The famous Fourier law, which states the linear dependence between the heat flux 
vector and the temperature gradient, was formulated by Fourier in 1822 and marked 
the beginning of the classical theory of heat conduction. A few years later, Fourier’s 
disciple Duhamel coupled the temperature field and the body deformation and 
pioneered studies on thermoelasticity. 

The classical theory of heat conduction based on the phenomenological Fourier 
law, which ignores processes occurring at the microscopic level, is quite accept-
able for different physical situations. However, many theoretical and experimental 
studies of transport phenomena testify that in media with complex internal structure 
(amorphous, porous, random and disordered materials, fractals, polymers, glasses, 
dielectrics and semiconductors, etc.) the classical Fourier law and the standard 
parabolic heat conduction equation are no longer accurate enough, and physical 
processes occurring at the microscopic level, in one way or another, should be 
taken into account. This leads to formulation of nonclassical theories, in which the 
Fourier law and the parabolic heat conduction equation are replaced by more general 
equations.
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viii Preface to the First Edition

Each generalization of the heat conduction equation results in formulation of 
the corresponding generalized theory of thermal stresses. For example, thermoelas-
ticity without energy dissipation proposed by Green and Naghdi [1] is based on the 
wave equation for temperature. Cattaneo’s telegraph equation for temperature leads 
to the generalized thermoelasticity of Lord and Shulman [2]. This book is devoted 
to fractional thermoelasticity, i.e., thermoelasticity based on the heat conduction 
equation with differential operators of fractional order. Time-fractional differential 
operators describe memory effects, space-fractional differential operators deal with 
the long-range interaction. It should be emphasized that fractional calculus has been 
successfully used in physics, geology, chemistry, rheology, engineering, bioengi-
neering, robotics, etc. The first paper on fractional thermoelasticity was published 
by the author in 2005. During the last decade, substantial literature on this subject 
has evolved, but there is no book which sums up investigations in this field. The 
present book, which for the major part is based on author’s research, fills in such a 
blank. 

The book is organized as follows. Chapter 1 presents essentials of fractional 
calculus. Different kinds of integral and differential operators of fractional order 
are discussed (the Riemann-Liouville fractional integrals, the Riemann-Liouville 
and Caputo fractional derivatives, and the Riesz fractional operators). Chapter 2 is 
devoted to time- and space-nonlocal generalizations of the Fourier law, the corre-
sponding generalizations of the heat conduction equation and formulation of associ-
ated theories of fractional thermoelasticity. Different kinds of boundary conditions 
for the time-fractional heat conduction equation are analyzed including the condi-
tions of perfect thermal contact and the moving interface boundary conditions at 
the solid-liquid interface. In Chaps. 3 and 4, the axisymmetric problems for the 
time-fractional heat conduction and associated thermal stresses are considered in 
polar and cylindrical coordinates, respectively. The central symmetric problem in 
spherical coordinates are studied in Chap. 5. It should be noted that the considered 
theory interpolates the classical theory of thermal stresses based on the parabolic 
heat conduction equation and the theory of thermoelasticty without energy dissipa-
tion proposed by Green and Naghdi and started from the hyperbolic wave equation for 
temperature. Chapter 6 presents thermoelasticity based on the space-time-fractional 
heat conduction equation. Chapter 7 is devoted to thermoelasticty which uses the 
fractional telegraph equation for temperature (fractional generalization of the well-
known theory of Lord and Shulman). In Chap. 8, we formulate equations of fractional 
thermoelasticity of thin shells (solids with one size being small with respect to two 
other sizes). The generalized boundary conditions of nonperfect thermal contact for 
the time-fractional heat conduction in composite medium are also formulated. It is 
well-known that from mathematical viewpoint, the Fourier law and the theory of 
heat conduction and the Fick law and the theory of diffusion are identical. Chapter 9 
deals with the theory of diffusive stresses caused by fractional advection-diffusion 
equation. 

The book contains a large number of Figures which show the characteristic 
features of temperature and stress distributions and represent the whole spectrum 
of order of fractional operators.



Preface to the First Edition ix

The corresponding sections of the book may be used by university lecturers of 
courses in heat and mass transfer, continuum mechanics, thermal stresses as well as 
in fractional calculus and its applications for graduate and postgraduate students. The 
book presents a picture of the state-of-the-art of fractional thermoelasticity and will 
also serve as a reference handbook for specialists in applied mathematics, physics, 
geophysics, elasticity, thermoelasticity and engineering sciences. The book provides 
information which puts the reader at the forefront of current research in the field of 
fractional thermoelasticity and is complemented with extensive references in order 
to stimulate further studies in this field as well as in the related areas. 

Częstochowa, Poland 
November 2014 

Yuriy Povstenko 
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About This Book 

The book is devoted to fractional thermoelasticity, i.e. thermoelasticity based on 
the heat conduction equation with differential operators of fractional order. Time-
fractional differential operators describe memory effects, space-fractional differ-
ential operators deal with the long-range interaction. The first paper on fractional 
thermoelasticity was published by the author in 2005. During the last two decades, 
substantial literature on this subject has evolved, but there is no book which sums up 
investigations in this field. The present book, which for the major part is based on 
author’s research, fills in such a blank. The book contains a large number of Figures 
which show the characteristic features of temperature and stress distributions and 
represent the whole spectrum of order of fractional operators. 

The corresponding sections of the book may be used by university lecturers of 
courses in heat and mass transfer, continuum mechanics, thermal stresses as well as 
in fractional calculus and its applications for graduate and postgraduate students. The 
book presents a picture of the state-of-the-art of fractional thermoelasticity and will 
also serve as a reference handbook for specialists in applied mathematics, physics, 
geophysics, elasticity, thermoelasticity and engineering sciences. The book provides 
information which puts the reader at the forefront of current research in the field of 
fractional thermoelasticity and is complemented with extensive references in order 
to stimulate further studies in this field as well as in the related areas.
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Chapter 1 
Essentials of Fractional Calculus 

All the forces in the world are not so powerful as an idea whose 
time has come. 

Victor Hugo 

Abstract Essentials of fractional calculus are presented. Different kinds of inte-
gral and differential operators of fractional order are discussed. The notion of the 
Riemann–Liouville fractional integral is introduced as a natural generalization of 
the repeated integral written in a convolution-type form. The Riemann–Liouville 
fractional derivative is defined as left-inverse to the Riemann–Liouville fractional 
integral. The Caputo fractional derivative and the Riesz fractional operators (includ-
ing the fractional Laplace operator) are considered. The cumbersome aspects of 
space-fractional differential operators disappear when one computes their Fourier 
integral transforms. In solutions of various types of equations with fractional oper-
ators, there appear the Mittag-Leffler functions and the Wright function. The main 
properties of the Mittag-Leffler functions and the Wright function are presented. 

1.1 Riemann–Liouville Fractional Integrals 

The primitive of a function. f (t) (the antiderivative of a function. f (t)) will be denoted 
as 

.I 1 f (t) =
tʃ

0

f (τ ) dτ. (1.1) 

Next, consider the twofold primitive of a function . f (t)

.I 2 f (t) =
tʃ

0

dη

ηʃ

0

f (τ ) dτ. (1.2) 
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Integrating (1.2) by parts gives 

.I 2 f (t) =
tʃ

0

(t − τ) f (τ ) dτ. (1.3) 

Similarly, integrating.n − 1 times by parts the. n–fold primitive of a function. f (t)

.I n f (t) =
tʃ

0

dt1

t1ʃ

0

dt2 · · ·
tn−1ʃ

0

f (tn) dtn , (1.4) 

we obtain a single integral 

.I n f (t) = 1

(n − 1) !
tʃ

0

(t − τ)n−1 f (τ ) dτ = 1

Γ (n)

tʃ

0

(t − τ)n−1 f (τ ) dτ, (1.5) 

where . n is a positive integer, .Γ (n) is the Gamma function. 
The notion of the Riemann–Liouville fractional integral is introduced as a natural 

generalization of the repeated integral.I n f (t)written in a convolution-type form [ 20, 
28, 57, 68]: 

.I α f (t) = 1

Γ (α)

tʃ

0

(t − τ)α−1 f (τ ) dτ, t > 0, α > 0. (1.6) 

The Laplace transform rule for the fractional integral reads 

.L {I α f (t)} = 1

sα
f ∗(s), (1.7) 

where the asterisk denotes the transform, . s is the Laplace transform variable. 
The convolution-type form of the Riemann–Liouville fractional integral (1.6) can 

be extended to [ 28] 

.I α(a+) f (x) = 1

Γ (α)

xʃ

a

(x − ξ)α−1 f (ξ) dξ, x > a, α > 0, (1.8) 

and 

.I α(b−) f (x) = 1

Γ (α)

bʃ

x

(ξ − x)α−1 f (ξ) dξ, x < b, α > 0. (1.9)
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These integrals are sometimes called the left-sided and right-sided fractional inte-
grals, respectively. It should be mentioned that, replacing . t by . x , we have changed 
notation in Eqs. (1.8) and (1.9) in comparison with Eq. (1.6) as the following con-
sideration will concern space-fractional differential operators. 

The left-sided and right-sided Liouville fractional integrals on the real axis have 
the form 

.I α+ f (x) = 1

Γ (α)

xʃ

−∞
(x − ξ)α−1 f (ξ) dξ, x ∈ R, α > 0, (1.10) 

and 

.I α− f (x) = 1

Γ (α)

∞ʃ

x

(ξ − x)α−1 f (ξ) dξ, x ∈ R, α > 0. (1.11) 

The Fourier transform rules for Liouville fractional integrals on the real axis are 
calculated according to the following formulae [ 28, 68]: 

.F {I α+ f (x)
} = 1

(−iξ)α
~f (ξ), α > 0, (1.12) 

.F {I α− f (x)
} = 1

(iξ)α
~f (ξ), α > 0, (1.13) 

where the tilde denotes the Fourier transform, 

.F{ f (x)} = ~f (ξ) = 1√
2π

∞ʃ

−∞
f (x)ei xξdx, (1.14) 

.F −1{~f (ξ)} = f (x) = 1√
2π

∞ʃ

−∞

~f (ξ)e−i xξdξ, (1.15) 

. ξ is the transform variable and .(iξ)α means 

.(± iξ)α = |ξ |α exp
[
± 1

2
iαπ sign ξ

]
. (1.16)
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1.2 Riemann–Liouville and Caputo Fractional Derivatives 

The Riemann–Liouville derivative of the fractional order. α is defined as left-inverse 
to the fractional integral .I α , i.e. [ 20, 28, 57]: 

.Dα
RL f (t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dn

dtn

⎡
⎣ 1

Γ (n − α)

tʃ

0

(t − τ)n−α−1 f (τ ) dτ

⎤
⎦ ,

t > 0, n − 1 < α < n,
dn f (t)

dtn
, t > 0, α = n,

(1.17) 

and for its Laplace transform requires knowledge of the initial values of the fractional 
integral .I n−α f (t) and its derivatives of the order . k = 1, 2, . . . , n − 1

.L {Dα
RL f (t)

} = sα f ∗(s) −
n−1∑
k=0

Dk I n−α f (0+)sn−1−k, n − 1 < α < n. (1.18) 

The Caputo fractional derivative [ 20, 28, 57] 

.Dα
C f (t) = I n−αDn f (t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1

Γ (n − α)

tʃ

0

(t − τ)n−α−1 d
n f (τ )

dτ n
dτ,

t > 0, n − 1 < α < n,
dn f (t)

dtn
, t > 0, α = n,

(1.19) 

has the following Laplace transform rule 

.L {Dα
C f (t)

} = sα f ∗(s) −
n−1∑
k=0

f (k)(0+)sα−1−k, n − 1 < α < n. (1.20) 

The Caputo fractional derivative is a regularization in the time origin for the 
Riemann–Liouville fractional derivative by incorporating the relevant initial condi-
tions [ 21]. In this book we shall use the Caputo fractional derivative omitting the 
index . C

. Dα
C f (t) ≡ dα f (t)

dtα
.

The major utility of this type fractional derivative is caused by the treatment of differ-
ential equations of fractional order for physical applications, where the initial condi-
tions are usually expressed in terms of a given function and its derivatives of integer 
(not fractional) order, even if the governing equation is of fractional order [ 42, 57].
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If care is taken, the results concerning the Caputo derivative can be recast to the 
Riemann–Liouville version and vice versa according to the following formula [ 20]: 

.Dα
RL f (t) = Dα

C f (t) +
n−1∑
k=0

t k−α

Γ (k − α + 1)
f (k)(0+), n − 1 < α < n. (1.21) 

It should be noted that in fractional calculus, where integrals and derivatives of 
arbitrary (not only integer) order are considered, there is no sharp boundary between 
integration and differentiation. For this reason, some authors [ 35, 57] do not use a 
separate notation for the fractional integral.I α f (t). The fractional integral of the order 
.α > 0 is denoted as .D−α

RL . Sometimes, especially when describing boundary condi-
tions for the time-fractional heat conduction equation, we will also use the notation 

.D−α
RL f (t) ≡ I α f (t), α > 0. (1.22) 

The left-sided and right-sided Riemann–Liouville fractional derivatives of order 
.α > 0 are defined by [ 28] 

. Dα
RL(a+) f (x) = dn

dxn

⎡
⎣ 1

Γ (n − α)

xʃ

a

(x − ξ)n−α−1 f (ξ) dξ

⎤
⎦ ,

x > a, n − 1 < α < n, (1.23) 

. Dα
RL(b−) f (x) =

(
− d

dx

)n
⎡
⎣ 1

Γ (n − α)

bʃ

x

(ξ − x)n−α−1 f (ξ) dξ

⎤
⎦ ,

x < b, n − 1 < α < n. (1.24) 

The left-sided and right-sided fractional derivatives corresponding to the left-sided 
and right-sided Liouville fractional integrals on the real axis have the form 

. Dα
+ f (x) = dn

dxn

⎡
⎣ 1

Γ (n − α)

xʃ

−∞
(x − ξ)n−α−1 f (ξ) dξ

⎤
⎦ ,

x ∈ R, n − 1 < α < n, (1.25) 

. Dα
− f (x) =

(
− d

dx

)n
⎡
⎣ 1

Γ (n − α)

∞ʃ

x

(ξ − x)n−α−1 f (ξ) dξ

⎤
⎦ ,

x ∈ R, n − 1 < α < n. (1.26)
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The Fourier transform rules for the left-sided and right-sided Liouville fractional 
derivatives read: 

.F {Dα
+ f (x)

} = (−iξ)α ~f (ξ), α > 0, (1.27) 

.F {Dα
− f (x)

} = (iξ)α ~f (ξ), α > 0. (1.28) 

1.3 Riesz Fractional Operators 

The Riesz form of the fractional derivative is a symmetric operator with respect to. x
[ 22, 53, 54] (we consider this operator for .0 < β < 2): 

.
dβ f (x)

d|x |β = − 1

sin(βπ)

[
sin

(
βπ

2

)
Dβ

+ f (x) + sin

(
βπ

2

)
Dβ

− f (x)

]
. (1.29) 

This operator can be also written as [ 15, 43, 68]: 

.
dβ f (x)

d|x |β = Γ (1 + β)

π
sin

(
βπ

2

) ∞ʃ

0

f (x + u) − 2 f (x) + f (x − u)

u1+β
du. (1.30) 

For.β = 1, the Riesz space-fractional derivative is related to the Hilbert transform 
(see [ 43]): 

.
d f (x)

d|x | = − 1

π

d

dx

∞ʃ

−∞

f (u)

x − u
du. (1.31) 

The Fourier transform rule for the Riesz derivative reads 

.F
{
dβ f (x)

d|x |β
}

= −|ξ |βF { f (x)} , 0 < β < 2, (1.32) 

which in the case .β = 2 coincides with the standard formula 

.F
{
d2 f (x)

dx2

}
= −ξ 2F { f (x)} . (1.33) 

The Riesz–Feller fractional derivative of order .0 < β < 2 and skewness . ϑ with 
.ϑ = min{β, 2 − β} modifies the Riesz fractional derivative introducing asymme-
try [ 22, 53, 54]
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. Dβ

ϑ f (x) = − 1

sin(βπ)

{
sin

[
(β − ϑ)π

2

]
Dβ

+ f (x)

+ sin

[
(β + ϑ)π

2

]
Dβ

− f (x)

}
(1.34) 

and has the following Fourier transform rule 

.F
{
Dβ

ϑ f (x)
}

= −|ξ |β exp
[
1

2
iπϑ sign ξ

]
F { f (x)} , 0 < β < 2. (1.35) 

The one-dimensional Riesz derivative is the first step in the direction of defining 
fractional partial operators in higher dimensions. For example, the negative powers of 
the Laplace operator.(−∆)−β/2 with.β > 0 are called the Riesz potentials (integrals), 
and their Fourier transforms are defined as [ 28] 

.F {(−∆)−β/2 f (x)
} = 1

|ξ |β F { f (x)} , β > 0, (1.36) 

where . x is a vector of variables, . ξ is a vector of transform variables. 
The positive powers.(−∆)β/2, .β > 0, are called the Riesz derivatives, having the 

Fourier transforms 

.F {(−∆)β/2 f (x)
} = |ξ |β F { f (x)} , β > 0. (1.37) 

It is obvious that (1.37) is a fractional generalization of the standard formula for 
the Fourier transform of the Laplace operator: 

.F {(−∆) f (x)} = |ξ |2 F { f (x)} . (1.38) 

If the considered function of two space variables . f (x, y) depends only on the 
radial coordinate .r = (

x2 + y2
)1/2

, then the twofold Fourier transform 

.~f (ξ, η) = 1

2π

∞ʃ

−∞

∞ʃ

−∞
f (x, y) ei(xξ+yη) dx dy (1.39) 

can be simplified. 
Introducing the polar coordinates 

. x = r sin θ, y = r cos θ,

ξ =  sin ϑ, η =  cosϑ, (1.40)
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we obtain 

.~f (ξ, η) = 1

2π

∞ʃ

0

r f (r) dr

2πʃ

0

eir cos(θ−ϑ) dθ, (1.41) 

where we have used the same letter for the functions . f (x, y) and . f (r). Due to the 
periodic character of the second integrand, the following formula 

.

2πʃ

0

eir cos(θ−ϑ) dθ =
2πʃ

0

eir cos θ dθ (1.42) 

is valid. Using the integral representation of the Bessel function of the first kind of 
the zeroth order [ 1] 

.

2πʃ

0

ei z cos θdθ = 2π J0(z), (1.43) 

we get [ 69] 

.F { f (x, y)} = ~f (ξ, η) = H(0) { f (r)} =  f ( ) =
∞ʃ

0

r f (r) J0(r ) dr, (1.44) 

.F−1
{~f (ξ, η)} = f (x, y) = H−1

(0)

{ f ( )} = f (r) =
∞ʃ

0

  f ( ) J0(r ) d . (1.45) 

Hence, in the case of axial symmetry the twofold Fourier transform of the classical 
and fractional Laplace operators with respect to the Cartesian coordinates. x and. y is 
reduced to the Hankel transform with respect to the radial coordinate . r and 

.F {(−∆) f (x, y)} = H(0)

{
−
[
d2 f (r)

dr
+ 1

r

d f (r)

dr

]}
=  2 H(0) { f (r)} , (1.46) 

.F {(−∆)β/2 f (x, y)
} = H(0)

{
(−∆)β/2 f (r)

} =  β H(0) { f (r)} . (1.47) 

If the considered function of three space variables. f (x, y, z) depends only on the 
radial coordinate .r = (

x2 + y2 + z2
)1/2

, then the threefold Fourier transform 

.~f (ξ, η, ζ ) = 1

(2π)3/2

∞ʃ

−∞

∞ʃ

−∞

∞ʃ

−∞
f (x, y, z) ei(xξ+yη+zζ )dx dy dz (1.48)
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can also be simplified. 
Introducing the spherical coordinates 

. x = r sin φ cos θ, y = r sin φ sin θ, z = r cosφ,

ξ =  sin ϕ cosϑ, η =  sin ϕ sin ϑ, ζ =  cosϕ, (1.49) 

we get 

. ~f (ξ, η, ζ ) = 1

(2π)3/2

∞ʃ

0

r2 f (r) dr

πʃ

0

eir cosφ cosϕ sin φ dφ

×
2πʃ

0

eir sin φ sin ϕ cos(θ−ϑ) dθ, (1.50) 

where the same letter is used for the functions . f (x, y, z) and . f (r). 
Due to the periodic character of the third integrand, we have 

.

2πʃ

0

eir sin φ sin ϕ cos(θ−ϑ) dθ =
2πʃ

0

eir sin φ sin ϕ cos θ dθ. (1.51) 

The integral representation of the Bessel function (1.43) gives  

. ~f (ξ, η, ζ ) = 1√
2π

∞ʃ

0

r2 f (r) dr

×
πʃ

0

sin φ cos (r cosφ cosϕ) J0 (r sin φ sin ϕ) dφ

=
/

2

π

∞ʃ

0

r2 f (r) dr

1ʃ

0

cos (r v cosϕ) J0
(
r 
√
1 − v2 sin ϕ

)
dv. (1.52) 

Next, we use  the integral [  62] 

.

1ʃ

0

cos (av) J0
(
b
√
1 − v2

)
dv = 1√

a2 + b2
sin
√
a2 + b2, (1.53) 

and for the threefold Fourier transform in the central symmetric case we arrive at the 
following pare of equations:



10 1 Essentials of Fractional Calculus

.F { f (x, y, z)} = F { f (r)} = ~f ( ) =
/

2

π

∞ʃ

0

r f (r)
sin(r )

 
dr, (1.54) 

.F−1
{ ~f ( )} = f (r) =

/
2

π

∞ʃ

0

 ~f ( ) sin(r )
r

d . (1.55) 

This result coincides with the particular case of the .n-fold Fourier transform in 
the central symmetric case obtained by another method in the book of Sneddon [ 69]. 

Hence, in the case of central symmetry the threefold Fourier transform with respect 
to the Cartesian coordinates . x , . y and . z is reduced to the sine-Fourier transform of 
the special type with respect to the radial coordinate . r . In this case 

.F {−∆ f (x, y, z)} = F
{
−
[
d2 f (r)

dr2
+ 2

r

d f (r)

dr

]}
=  2 ~f ( ) (1.56) 

and 
.F {(−∆)β/2 f (x, y, z)

} =  β ~f ( ) . (1.57) 

It should be emphasized that the cumbersome aspects of space-fractional differ-
ential operators disappear when one computes their Fourier integral transforms. 

Additional information about various mathematical aspects of fractional calculus 
can be found in the pioneering book by Oldham and Spanier [ 51], in the remarkably 
comprehensive encyclopaedic-type treatise by Samko et al. [ 68], in the books by 
Diethelm [ 10], Miller and Ross [ 48] and Podlubny [ 57] devoted to fractional differ-
ential equations, and in the in-depth monograph by Kilbas et al. [ 28] (see also the  
extensive detailed survey of Gorenflo and Mainardi [ 20] and the beneficial paper of 
Valerio et al. [ 77] as well as the corresponding volumes of Handbook of Fractional 
Calculus [ 30, 31]). 

The interested reader is also referred to numerous applications of fractional cal-
culus in different areas of physics, chemistry, biology and engineering (see, for 
example, the books by Atanacković et al.  [  3], Herrmann [ 23], Leszczyński [ 32], 
Magin [ 35], Mainardi [ 40], Rabotnov [ 63], [ 64], Uchaikin [ 75], West et al. [ 78], 
Zaslavsky [ 82]; the monographs [ 5– 7, 24, 27, 55, 56, 67, 71, 72]; the extensive 
overviews by Mainardi [ 38, 39], Metzler and Klafter [ 46, 47], Rossikhin and Shi-
tikova [ 65, 66], Tenreiro Machado [ 73], Zaslavsky [ 81]; several papers [ 4, 8, 9, 12, 
29, 37, 74], and references therein).
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1.4 Mittag-Leffler Functions and Wright Function 

The Mittag-Leffler functions and Wright function appear in solutions of various types 
of equations with fractional operators. According to Mainardi [ 41], the Mittag-Leffler 
function can be considered as “the Queen Function of the Fractional Calculus”. 

The Mittag-Leffler function in one parameter .Eα (z) was introduced in [ 49, 50]. 
The generalized Mittag-Leffler function in two parameters .Eα,β (z) was considered 
in [ 25, 26]. A comprehensive treatment of properties of the Mittag-Leffler functions 
can be found in [ 11, 16]. 

The Mittag-Leffler function in one parameter . α

.Eα(z) =
∞∑
k=0

zk

⎡(αk + 1)
, α > 0, z ∈ C, (1.58) 

can be considered as the extension of the exponential function 

.E1(z) = ez =
∞∑
k=0

zk

⎡(k + 1)
, z ∈ C, (1.59) 

whereas the generalized Mittag-Leffler function in two parameters. α and. β is defined 
by the series representation 

.Eα,β(z) =
∞∑
k=0

zk

⎡(αk + β)
, α > 0, β > 0, z ∈ C. (1.60) 

In the general case, the parameters . α and. β can be treated as complex numbers with 
some limitations on their real parts [ 16], but we restrict ourselves to positive values 
of . α and . β. 

We present several particular cases of the Mittag-Leffler functions for negative 
values of argument used in this book 

. E0(−x) = 1

1 + x
, (1.61) 

. E1(−x) = e−x , (1.62) 

. E2(−x) = cos
√
x, (1.63) 

. E1/2(−x) = ex
2
erfc (x) = 2√

π

∞ʃ

0

e−u2−2ux du, (1.64) 

. E1/2,1/2(−x) = 1√
π

− x ex
2
erfc (x) = 2√

π

∞ʃ

0

e−u2−2uxu du, (1.65)
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. E1/2,3/2(−x) = 1

x

[
1 − ex

2
erfc (x)

]
, (1.66) 

. E1/2,2(−x) = 1

x2

[
2x√
π

+ ex
2
erfc (x) − 1

]
, (1.67) 

. E0,2(−x) = 1

1 + x
, (1.68) 

. E1,2(−x) = 1 − e−x

x
, (1.69) 

. E2,2(−x) = sin
√
x√

x
. (1.70) 

Here .erfc (x) is the complementary error function. 
The essential role of the Mittag-Leffler functions in fractional calculus is con-

nected with the formula for the inverse Laplace transform [ 16, 20, 57] 

.L−1

{
sα−β

sα + b

}
= tβ−1 Eα,β(−btα) (1.71) 

with the important particular cases for .β = 1, .β = 2 and . β = α

. L−1

{
sα−1

sα + b

}
= Eα(−btα), (1.72) 

. L−1

{
sα−2

sα + b

}
= t Eα,2(−btα), (1.73) 

. L−1

{
1

sα + b

}
= tα−1 Eα,α(−btα). (1.74) 

The following recurrence relations [ 11, 16] 

. Eα,β(z) = 1

⎡(β)
+ zEα,α+β(z). (1.75) 

. Eα,β(z) = βEα,β+1(z) + αz
dEα,β+1(z)

dz
, (1.76) 

.
d
[
zβ−1Eα,β (zα)

]
dz

= zβ−2Eα,β−1 (z
α) (1.77) 

are valid for the Mittag-Leffler function. 
For investigation of the convergence of integrals containing the Mittag-Leffler 

functions, their asymptotic representations for large negative values of argument are 
useful. For .x → ∞, we have
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.Eα(−x) ∼ 1

⎡(1 − α)x
, (1.78) 

.Eα,2(−x) ∼ 1

⎡(2 − α)x
, (1.79) 

.Eα,α(−x) ∼ − 1

⎡(−α)x2
, (1.80) 

.Eα,β(−x) ∼ 1

⎡(β − α)x
. (1.81) 

To evaluate the Mittag-Leffler function the algorithms suggested in [ 17] were  
used; see also the MATLAB function [ 58] that implements these algorithms as well 
as the recent papers [ 14], [ 52, 76]. 

The Wright function was presented in [ 79, 80] and later on was discussed in [ 11, 
18, 19, 28, 44, 57, 61], among others. The Wright function is defined by the series 
representation 

.W (α, β; z) =
∞∑
k=0

zk

k!⎡(αk + β)
, α > −1, β ∈ C, z ∈ C. (1.82) 

In particular [ 36, 57, 59], 

. W (0, 1; z) = ez, (1.83) 

. W

(
−1

2
,
1

2
;−z

)
= 1√

π
exp

(
− z2

4

)
, (1.84) 

. W

(
−1

2
, 1;−z

)
= erfc

( z
2

)
, (1.85) 

. W

(
1, ν + 1;− z2

4

)
=
(
2

z

)ν

Jν(z), (1.86) 

. W

(
1, ν + 1; z

2

4

)
=
(
2

z

)ν

Iν(z). (1.87) 

Here .Jν(z) is the Bessel function of the first kind, .Iν(z) is the modified Bessel 
function of the first kind. 

The Wright function satisfies the recurrence equations [ 11] 

.αzW (α, α + β; z) = W (α, β − 1; z) + (1 − β)W (α, β; z), (1.88) 

.
dW (α, β; z)

dz
= W (α, α + β; z). (1.89)
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The Mainardi function.M(α; z) [ 36, 37, 45, 57] is a particular case of the Wright 
function 

. M(α; z) = W (−α, 1 − α;−z) =
∞∑
k=0

(−1)k zk

k!⎡[−αk + (1 − α)] ,

0 < α < 1, z ∈ C, (1.90) 

.M(α; z) = 1

αz
W (−α, 0;−z), 0 < α < 1, z ∈ C. (1.91) 

The Wright function occurs in the expression for the inverse Laplace trans-
form [ 13, 70] 

.L−1 {s−β exp (−λsα)
} = tβ−1W

(−α, β;−λt−α
)
, 0 < α < 1, λ > 0, (1.92) 

in particular [ 36, 37]: 

.L−1 {exp (−λsα)} = αλ

tα+1
M
(
α; λt−α

)
, 0 < α < 1, λ > 0, (1.93) 

.L−1
{
sα−1 exp (−λsα)

} = 1

tα
M
(
α; λt−α

)
, 0 < α < 1, λ > 0. (1.94) 

The Wright function and the Mittag-Leffler function are interconnected by the 
Laplace transform [ 11, 28, 57] 

.L {W (α, β; t)} = 1

s
Eα,β

(
1

s

)
, α > 0, β > 0, (1.95) 

and [ 18] 

.L {W (α, β;−t)} = E−α,β−α (−s) , −1 < α < 0, β > 0, (1.96) 

whereas for the Mainardi function the corresponding relation takes the form 

.L {M (α; t)} = Eα (−s) , 0 < α < 1. (1.97) 

The Mittag-Leffler function and the Wright function are also related by the Fourier 
cosine transform [ 59– 61]


