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Preface 

The main goal of this modern book is to introduce several powerful techniques and fun-
damental ideas involving block matrices of operators (matrices) as well as matrices with 
entries in a C∗-algebra A . These techniques and ideas can be used to solve problems 
that are difficult to address in A itself. In particular, 2 × 2 operator matrices provide 
important mathematical inequalities in many areas of operator theory and matrix anal-
ysis. We employ these matrices to simplify problems. For example, the classical proof 
of the Putnam–Fuglede theorem is based on 2 × 2 matrix techniques. Moreover, such 
methods are applied to investigate n-positive maps, completely positive maps, operator 
means, nonlinear positive maps, and various operator and norm inequalities. In recent 
decades, operator matrices in quantum information and computing theories have received 
significant attention. 

This book is suitable as a textbook for an advanced undergraduate or graduate course 
or as a supplement for researchers and students in mathematics and physics who have a 
basic knowledge of linear algebra, functional analysis, and operator theory. The book pro-
vides detailed arguments and relevant technical material for most results. Some portions 
are drawn from various sources and presented in a self-contained, unified, and logically 
consistent manner. 

By addressing existing literature, we ensure that readers can effectively understand our 
aim and derive essential techniques for working with block matrices in a clear, coherent, 
and integrated manner. This approach allows us to enrich the book with a deep contextual 
background and established methods. 

This book is divided into five chapters. 
Chapter 1 introduces the reader to basic concepts and theorems from functional anal-

ysis, operator theory, and matrix analysis. These concepts and results serve as essential 
tools for the subsequent chapters. 

Chapter 2 is the heart of the book. It introduces the concept of block matrices of 
operators through the isomorphism Mn(B(H )) ≃ B(H ⊕n). This chapter provides a 
comprehensive exposition of dilation theory, presenting numerous characterizations of 

the positivity of 2 × 2 operator matrices of the form

[
A X  

X∗ B

]
. It also investigates the

vii



viii Preface

properties of 2 × 2 matrices with entries in a C∗-algebra. In addition, operator matrices 
are used to derive several inequalities related to the eigenvalues and unitarily invariant 
norms of matrices. 

Chapter 3 is devoted to the study of operator monotone and operator convex functions, 
along with a thorough investigation of their foundational characteristics. In this chapter, 
we establish connections between operator monotone functions and operator means using 
the Kubo–Ando theory. We also address the verification of positive, n-positive, weakly 
n-positive, and completely positive maps. 

Chapter 4 extends the concepts of variance and covariance beyond classical probability 
theory to a noncommutative framework. In this context, we provide upper bounds for 
unitarily invariant norms of the covariance of bounded linear operators and matrices. 

Chapter 5 is concerned with the topic of nonlinear positive maps. We examine Lieb 
maps and their essential properties, explore the concept of 3-positivity in nonlinear maps, 
and investigate the continuity of 3-positive maps. Throughout this chapter, we extensively 
utilize block techniques to facilitate our analysis. 

At the end of each chapter, readers can expect a variety of exercises and problems with 
references to the relevant literature. Some of these problems involve open questions, while 
others are challenging and provide suggestions for future research. The book also includes 
an extensive bibliography with about 230 references. It is worth noting that several results 
are due to esteemed mathematicians in the field such as Tsuyoshi Ando, Rajendra Bhatia, 
Jean-Christophe Bourin, Man-Duen Choi, Fuad Kittaneh, Vern I. Paulsen, and others. 
In addition, the book includes our favorite strategies involving block matrices. However, 
readers may find techniques in the literature other than those covered in this book. 

The authors would like to express their gratitude to Jean-Christophe Bourin, Ali 
Dadkhah, Masatoshi Fujii, Fumio Hiai, Minghua Lin, Pei Yuan Wu, and Qingxiang Xu 
for their valuable comments and suggestions. 

Mashhad, Iran 
Kyoto, Japan 
Spring 2024 

Mohammad Sal Moslehian 
Hiroyuki Osaka
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1Matrices and Hilbert Space Operators 

We introduce basic concepts and key results from functional analysis, operator theory, and 
matrix analysis. These concepts and results will play a central role as indispensable tools in 
the upcoming chapters. 

1.1 Fundamental Information 

Throughout the book, all vector spaces are considered to be complex vector spaces, and all 
operators are assumed to be linear and bounded unless explicitly stated otherwise. A capital 
letter stands for an operator, a matrix, or an element of a .C∗-algebra. We use the following 
notations: 

A normed space is a vector space.X equipped with a so-called norm . || · || : X → [0, ∞)

satisfying the following properties: (i).||x|| = 0 if and only if.x = 0; (ii).||λx|| = |λ| ||x||; (iii) 
.||x + y|| ≤ ||x|| + ||y|| for all .x, y ∈ X and all scalars. λ in the field. C of complex numbers. 
If (i) replaced by .||x|| = 0 if .x = 0, then .|| · || is called a seminorm. 

If a normed space.(X , || · ||), endowed with the metric.d(x, y) := ||x − y||, is a complete 
metric space, in the sense that every Cauchy sequence in .X converges to some vector in . X , 
then it is called a Banach space. The  dual space .X ' of a normed space .X is defined as the 
Banach space consisting of all continuous linear functionals . f : X → C. 

Every finite-dimensional normed space .X is a Banach space and any two norms 
.|| · ||1 and .|| · ||2 on it are equivalent. This means that there exist positive numbers . α
and .β such that .α||x||2 ≤ ||x||1 ≤ β||x||2 for all .x ∈ X . The space .Mn of .n × n matri-
ces with complex entries together with any one of the norms .||[ai j ]||σ = ∑n

i, j=1 |ai j | and 
.||[ai j ]||max = max1≤i, j≤n |ai j | is a Banach space. Hilbert spaces are significant examples of 
Banach spaces as defined below. 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024 
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2 1 Matrices and Hilbert Space Operators

Suppose that.H is a vector space. A function.⟨·, ·⟩ : H × H → C is called a semi-inner 
product if 

(i) .⟨x + λy, z⟩ = ⟨x, z⟩ + λ⟨y, z⟩, 
(ii) .⟨y, x⟩ = ⟨x, y⟩, 
(iii) . ⟨x, x⟩ ≥ 0

for all .x, y, z ∈ H and all scalars .λ ∈ C. Then, the pair .(H , ⟨·, ·⟩) is called a semi-inner 
product space and .||x|| = √

< x, x > gives a seminorm. In such a space, it holds that 

.⟨x, y⟩ = 1

4

3∑

k=0

i k||x + i k y||2 (x, y ∈ H ) (1.1.1) 

which is called the polarization identity. 
If.x = 0whenever.⟨x, x⟩ = 0, then.H is called an inner product space and. ||x|| = ⟨x, x⟩ 1

2

can be shown to be a norm on .H by using the following Cauchy–Schwarz inequality: 

Theorem 1.1.1 (Cauchy–Schwarz inequality) In a semi-inner product space . H , it holds  
that 

. |⟨x, y⟩| ≤ ⟨x, x⟩1/2⟨y, y⟩1/2 (x, y ∈ H ).

If the norm .|| · || is complete, then .H is called a Hilbert space. It is known that every 
Hilbert space is of the form .L2(Ω, μ), which is the space of square integrable functions 
(by identifying functions that are equal almost everywhere) in a measure space .(Ω, μ). In  
particular, the space.l2 consists of square summable sequences.(xn) equipped with the inner 
product 

. ⟨(xn), (yn)⟩ =
∞∑

n=1

xn yn .

Also, the closed subspace .C
n of .l2 is known as .n-dimensional Euclidean space. 

A vector .x ∈ H is called orthogonal to .y ∈ H if .⟨x, y⟩ = 0. The set .M⊥ consists 
of all .x ∈ H that are orthogonal to every element in a subset .M of .H , and it is called 
the orthogonal complement of .M. Two vectors are called orthonormal if they are unit 
vectors (that is, of norm. 1) and orthogonal to each other. An orthonormal basis for .H is an 
orthonormal set .(e j ) j∈J of vectors such that 

. x =
∑

j

⟨x, e j ⟩e j

for every .x ∈ H . Also,  
.||x||2 =

∑

j

|⟨x, e j ⟩|2
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is called the Parseval identity. The Gram–Schmidt process is a method used to create orthog-
onal vectors from a finite number of linearly independent vectors in a Hilbert space. Employ-
ing Zorn’s lemma along with the Gram–Schmidt process, we can show that every Hilbert 
space admits an orthonormal basis. The standard basis for .l2 is composed of the vectors 
.en = (δ1n, δ2n, δ3n, . . .) for.n = 1, 2, . . ., where. δ represents the Kronecker delta defined as 

. δi j =
⎧
⎨

⎩

1 if i = j

0 if i /= j .

A linear map .A : H → H is called a bounded operator if 

. sup{||Ax|| : x ∈ H , ||x|| = 1} < ∞.

In this case, its operator norm is defined by 

. ||A|| = sup{||Ax|| : x ∈ H , ||x|| = 1}.

The space .B(H ) of all bounded linear operators on a complex Hilbert space .H equipped 
with the operator norm.|| · || is a Banach space. The identity operator in.B(H ) is denoted by. I . 
We can turn the space.B(H ) into an algebra by defining the multiplication of. A, B ∈ B(H )

as the composition .AB := A ◦ B. 
On .B(H ), we can define the weak operator topology by the convergence of nets 

as .Aα
WOT−→ A (or .w− lim Aα = A) whenever .⟨Aαx, y⟩ → ⟨Ax, y⟩ for all .x, y ∈ H . We  

can also define the strong operator topology by .Aα
SOT−→ A (or .s− lim Aα = A) whenever 

.Aαx → Ax for all .x ∈ H . 
We denote the range, kernel, and rank of an operator . A by .ran A, .ker A, and . rank(A) =

dim(ran A). The closure of a set.D in the norm topology is denoted by. D . The restriction of 
an operator . A to a set .D is presented as .A|D. A linear map between Hilbert spaces is called 
bounded below if there is a positive number . c such that .||Ax|| ≥ c||x|| for all .x ∈ H . In  
general, a bounded below linear map may not be bounded. For example, the map. A : l2 → l2

defined by .A(x1, x2, x3, . . .) = (x1, 2x2, 3x3, . . .) is bounded below since 

. ||A(x1, x2, x3, . . .)||22 =
∞∑

n=1

n2|xn|2 ≥
∞∑

n=1

|xn|2 = ||(x1, x2, x3, . . .)||.

However, it is not bounded since .||A(en)|| = n. 
If.dimH = n, we can identify.B(H )with the matrix algebra.Mn . We denote the identity 

of .Mn as . In , or simply . I if there is no ambiguity. Therefore, a matrix can be viewed as an 
operator. The standard system of matrix units for .Mn is the family.(Ei j )1≤i, j≤n . The.(i, j)-
entry of.Ei j is one, while all other entries are zero. In fact, we can express.Ei j = e∗

i e j , where  
.ei is the . i th vector in the standard basis of .Cn . A matrix obtained by deleting certain rows 
or columns from a given matrix is called a submatrix of the original matrix. A principal
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submatrix is a specific type of submatrix where the remaining row indices are identical to 
the remaining column indices. 

Let us recall the tensor product of matrices .A = [ai j ] ∈ Mm and .B = [bpq ] ∈ Mn . Let 
.(e1, e2, . . . , em) and .( f1, f2, . . . , fn) be the standard orthonormal bases for .Cm and .Cn , 
respectively. The tensor product of matrices .A and .B is the matrix .A ⊗ B represented 
relative to the basis elements .ei ⊗ f p of the tensor product .Cm ⊗ C

n via 

. ⟨(A ⊗ B) (e j ⊗ fq), ei ⊗ f p⟩ = ⟨Ae j ⊗ B fq , ei ⊗ f p⟩ = ⟨Ae j , ei ⟩⟨B fq , f p⟩ = ai j bpq .

It is easy to see that the tensor product of positive semidefinite matrices is positive semidef-
inite. 

The following result is commonly used. To prove that two operators .A, B ∈ B(H ) are 
equal it is sufficient to use it and show that .⟨Ax, x⟩ = ⟨Bx, x⟩ for all .x ∈ H . 

Proposition 1.1.2 An operator .A ∈ B(H ) is the zero operator . 0 if and only if . ⟨Ax, x⟩ = 0
for all .x ∈ H . 

Proof Suppose that .⟨Ax, x⟩ = 0 for all .x ∈ H . It follows from (1.1.1) that 

. ⟨Ax, y⟩ = 1

4

3∑

k=0

i k⟨A(x + i k y), (x + i k y)⟩

that .⟨Ax, y⟩ = 0 for all .x, y ∈ H . Set  .y = Ax to get .||Ax||2 = ⟨Ax, Ax⟩ = 0. Hence, 
.A = 0. The reverse assertion is clear. □

The following theorem characterizes the dual of a Hilbert space. 

Theorem 1.1.3 (Riesz representation theorem) Let .H be a Hilbert space and . f : H →
C be a bounded linear functional. Then there exists a unique element .z ∈ H such that 
.||z|| = || f || and . f (x) = ⟨x, z⟩ for all .x ∈ H . 

Proof If . f = 0, then taking  .z = 0 is sufficient. Let’s assume that . f /= 0. Thus,  .ker f is a 
proper closed subspace. This implies that .H = Cz' ⊕ ker f for some .z' ∈ H with . z' ⊥
ker f . We can assume that . f (z') = 1. Then, .x − f (x)z' ∈ ker f and 

. ⟨x, z'⟩ = ⟨x − f (x)z', z'⟩ + ⟨ f (x)z', z'⟩ = f (x)||z'||2.

By choosing .z = z'
||z'||2 , we obtain . f (x) = ⟨x, z⟩. If there exist two vectors .z1 and .z2 such 

that. f (x) = ⟨x, z1⟩ = ⟨x, z2⟩, then.⟨x, z1 − z2⟩ = 0 for all.x ∈ H . Setting.x = z1 − z2, we  
deduce that .⟨z1 − z2, z1 − z2⟩ = 0, which ensures that .z1 = z2. This confirms the unique-
ness assertion. □
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For each .A ∈ B(H ) and .y ∈ H , we can use the Riesz representation Theorem 1.1.3 
to the bounded linear functional .x |→ ⟨Ax, y⟩ to find a unique vector denoted by . A∗y
satisfying .||A∗y|| ≤ ||A||||y|| and .⟨Ax, y⟩ = ⟨x, A∗y⟩ for all .x ∈ H . Therefore, we get a 
bounded linear operator .y |→ A∗y on .H . Thus, the so-called adjoint operation . A |→ A∗
can be defined. The algebra .B(H ) endowed with the adjoint operation can be considered 
as a .∗-algebra, which means an algebra endowed with an involution . ∗ that satisfies the 
following properties: 

• .(A + λB)∗ = A∗ + λB∗; 
• .(AB)∗ = B∗ A∗; 
• .(A∗)∗ = A. 

For matrices, if.A = [ai j ], then.A∗ = [a ji ]. The matrix.At = [a ji ] is said to be the transpose 
of . A. 

A .C∗-algebra is a complex .∗-algebra .A , which is at the same time a Banach space and 
satisfies the submultiplicative property .||AB|| ≤ ||A|| ||B|| and the .C∗-condition 

.||A∗ A|| = ||A||2 (1.1.2) 

for all .A, B ∈ A . The identity element of a .C∗-algebra .A is denoted by . I . It is easy to  
verify that.B(H ) is a.C∗-algebra. In addition, if. Ω is any compact Hausdorff space, then the 
algebra.C(Ω) of all continuous complex-valued functions on. Ω equipped with the sup-norm 
.|| f ||∞ = supx∈Ω | f (x)| and the .∗-operation . f |→ f̄ is a .C∗-algebra. Here, . f̄ (x) := f (x)

for all .x ∈ Ω. 
The .C∗-subalgebra generated by a subset of .A is defined as the intersection of all 

.C∗-subalgebras of .A containing the subset. Especially, the.C∗-algebra generated by a self-
adjoint element .A ∈ A and the identity operator . I , denoted by .C∗(A, I ), is the closure of 
all polynomials in. A, and so it is commutative. We use.A and.B to denote.C∗-algebras and 
.ϕ and .Ψ for arbitrary (linear or nonlinear) maps between .C∗-algebras. 

By a .∗-homomorphism .π : A → B, we mean a linear map that satisfies the multi-
plicative property .π(AB) = π(A)π(B) and the .∗-preserving property .π(A∗) = π(A)∗. A  
.∗-homomorphism .π : A → B(H ) is called a representation. An  irreducible representa-
tion is a representation .π : A → B(H ), where the algebra .π(A ) has no invariant closed 
subspace other than. 0 and itself. Recall that a closed subspace.K of.H is called an invariant 
subspace for a subset . S of .B(H ) if for each operator .A ∈ S we have .A(K ) ⊆ K . 

Every .C∗-algebra can be regarded as a norm-closed .∗-subalgebra of .B(H ) for some 
Hilbert space.H . This representation is known as the Gelfand–Naimark–Segal representa-
tion; refer to [176, Theorem 3.4.1]. 

A one-to-one surjective.∗-homomorphism is called a.∗-isomorphism. If a .C∗-algebra. A

is .∗-isometric to a .C∗-algebra . B, then we write .A ≃ B. It is well-known [176, Theorem 
3.1.5] that every .∗-isomorphism .π : A → B between .C∗-algebras is isometric, that is, 
.||π(A)|| = ||A|| for all .A ∈ A .
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The Gelfand–Naimark–Segal representation enables us to naturally define various types 
of operators such as self-adjoint operators, normal operators, contractions, isometries, 
coisometries partial isometries, unitaries, idempotents, and projections for elements of a 
.C∗-algebra. An operator . A in a .C∗-algebra .A is said to be 

– self-adjoint (Hermitian matrix) if .A∗ = A; 
– normal if .A∗ A = AA∗; 
– contraction if .||A|| ≤ 1; 
– isometry if .A∗ A = I ; 
– coisometry if .A∗ is an isometry; 
– partial isometry if .AA∗ A = A; 
– unitary if .A∗ A = AA∗ = I ; 
– idempotent if .A2 = A; 
– nilpotent if .An = 0 for some. n in the set of natural numbers . N; 
– (orthogonal) projection if it is a self-adjoint idempotent. 

For a closed subspace.M , it holds that.H = M ⊕ M⊥, which means that every element 
.x ∈ H can be uniquely expressed as .x = y + z where .y ∈ M and .z ∈ M⊥. The map 
.x |→ y gives a projection, denoted by.PM , on.H whose range is.M . Conversely, for every 
projection .P ∈ B(H ), the range of .P is a closed subspace of .H . In fact, there exists 
a one-to-one correspondence between the set of all closed subspaces of .H and the set of 
projections in.B(H ). Given two projections. P and. Q, the projection onto. ran(P) ∩ ran(Q)

is denoted as .P ∧ Q. 
If .A is a partial isometry, then .A∗ A (.AA∗, respectively) is a projection and its range is 

called the initial space (final space, respectively) of . A. 
The Cartesian decomposition of an element.A ∈ A is.A = B + iC ,where. B = Re(A) :=

(A + A∗)/2 and.C = Im(A) := (A − A∗)/(2i) are self-adjoint and called the real part and 
imaginary part of . A. The real linear space of all self-adjoint elements of .A is denoted by 
.Asa(H ). In particular, the set of self-adjoint operators on a Hilbert space.H is denoted by 
.Bsa(H ). 

The spectrum of an operator.A ∈ B(H ) refers to the set.sp(A) of all complex numbers. λ
such that .A − λI is not invertible in .B(H ). It is a compact and nonempty set. When. A is a 
matrix in .Mn , the set of its eigenvalues is exactly .sp(A). The  spectral radius of an operator 
. A is defined as 

. r(A) = max{|λ| : λ ∈ sp(A)}.
The Gelfand–Beurling formula states that 

. r(A) = inf
n

||An||1/n = lim
n

||An||1/n .

In particular, .r(A) ≤ ||A||. For .A, B ∈ B(H ), 

.sp(AB) ∪ {0} = sp(B A) ∪ {0}, (1.1.3)
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and so .r(AB) = r(B A). The equality (1.1.3) follows from the relation 

. 

[
I A
0 I

]−1 [
AB 0
B 0

] [
I A
0 I

]

=
[
0 0
B B A

]

.

Example 1.1.4 Suppose that .A =
[
0 0
1 0

]

and .B =
[
0 1
0 0

]

. Then  

(i) .A2 = 0, so  .r(A) = inf
n

||An|| 1
n = 0, but  .||A|| = 1. Hence, equality may not hold in 

.r(A) ≤ ||A|| ([134, Theorem 3.2.3]). 
(ii) .r(AB) > r(A)r(B) and.r(A + B) > r(A) + r(B). Thus, the spectral radius is neither 

submultiplicative nor subadditive in general; see [134, Proposition 3.2.10]. 

Example 1.1.5 Let .A =
[

1 −1
−1 2

]

and .B =
[
0 0
0 1

]

. Then .sp(A + B) is not a subset of 

.sp(A) + sp(B). It is notable that if .A and .B commute, then . sp(A + B) ⊆ sp(A) + sp(B)

[134, Proposition 3.2.10]. 

Let .A ∈ B(H ). The set .W (A) = {⟨Ax, x⟩ : ||x|| = 1} is said to be the numerical range 
of . A and .w(A) = sup{|λ| : λ ∈ W (A)} is called the numerical radius of . A. 

It is known that .W (A) is convex, according to the Toeplitz-Hausdorff theorem. It is 
invariant under unitary similarity, which means that .W (A) = W (U∗ AU ) for all .A and all 
unitaries . U . In addition, thus the convex hull of .sp(A) is contained in the closure of .W (A). 
However, the numerical range does not have similarity invariance. To illustrate this, consider 
the matrix 

. Aλ =
[
0 λ

0 0

]

.

Then, .W (Aλ) = λW (A1), which is the closed disc centered at the origin with radius .|λ|. 
Thus, .W (Aλ)’s are distinct sets. However, for .λ /= 0, the matrix .Aλ is similar to .A1. This 

can be seen by considering .Bλ =
[
λ 0
0 1

]

, which satisfies .Aλ = Bλ A1B−1
λ ; see [207]. Inter-

estingly, .w(·) is a norm on .B(H ) that is equivalent to the operator norm. More precisely, 

.
1

2
||A|| ≤ w(A) ≤ ||A|| (1.1.4) 

holds for each .A ∈ B(H ). 

Theorem 1.1.6 If .A ∈ Bsa(H ), then 

(i) .r(A) = ||A||;
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(ii) sp(A) is a subset of the set . R of real numbers; 
(iii) at least one of .||A|| or .−||A|| is in .sp(A) and .sp(A) ⊆ [−||A||, ||A||]; 
(iv) 

. ||A|| = w(A).

Proof (i) .||A2n || = ||A||2n
for all . n, so  

. r(A) = lim
n

||An||1/n = lim
n

||A2n ||1/2n = lim
n

||A|| = ||A|| .

(ii) Let.λ = α + iβ ∈ sp(A), where. α and. β are real numbers. Assume that.β /= 0. For each 
. n, put .An = A − (α − inβ)I . Then .i(n + 1)β ∈ sp(An) and 

. (n + 1)2β2 = |i(n + 1)β|2 ≤ r(An)2 ≤ ||An||2 = ||A∗
n An||

= ||(A − (α + inβ)I )(A − (α − inβ)I )|| = ||(A − α I )2 + n2β2 I||
≤ ||A − α I||2 + n2β2 ,

whence .n ≤ 1
2

(||A − α I||2/β2 − 1
)
for all . n, which is impossible. Hence, .λ = α ∈ R. 

(iii) It follows from (i) and compactness of .sp(A) that .||A|| ∈ {|λ| : λ ∈ sp(A) ⊆ R}. Thus, 
.||A|| or .−||A|| is in .sp(A). In addition, .sp(A) ⊆ [−||A||, ||A||], since .r(A) ≤ ||A||. 
(iv) Since .r(A) ≤ w(A) ≤ ||A||, it follows from (i) that 

.||A|| = w(A). □

There is a valuable formula in which the numerical radius of an operator is expressed in 
terms of the norm of specific operators as follows. 

Corollary 1.1.7 ([233, p. 85]) Let .A ∈ B(H ). Then  

.w(A) = sup
θ∈R

||Re(eiθ A)|| = 1

2
sup
θ∈R

||A + e−2iθ A∗||. (1.1.5) 

Proof Since .Re(eiθ A) is self-adjoint, we have 

. sup
θ∈R

||Re(eiθ A)|| = sup
θ∈R

w
(
Re(eiθ A)

)
= sup

θ∈R
sup

||x||=1
|⟨Re(eiθ A)x, x⟩|

= sup
||x||=1

sup
θ∈R

|Re
(

eiθ ⟨Ax, x⟩
)

| = sup
||x||=1

|⟨Ax, x⟩| = w(A).

The last equality is concluded from the definition of the real part of an operator. □

An element.A ∈ A is called positive if it is self-adjoint and its spectrum is contained in the 
interval .[0, ∞). In this case, we write .A ≥ 0. We say. A is strictly positive (positive definite
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in the setting of matrices) and write .A > 0 if it is positive and invertible. For self-adjoint 
elements (Hermitian matrices, respectively). A and. B, we say.B ≥ A (.B > A, respectively) 
if .B − A ≥ 0 (.B − A > 0, respectively). This order is known as the Löwner order. The  
Schur product theorem states that the Hadamard product or Schur product . A ◦ B = [ai j bi j ]
of two positive semidefinite matrices .A = [ai j ] and.B = [bi j ] is also positive semidefinite; 
see [116, Theorem 2.18]. 

The (continuous) functional calculus for a self-adjoint operator provides a powerful tool 
for establishing connections between continuous functions and bounded linear operators. 
Let us consider an operator .A ∈ Bsa(H ). If we take a function. f in the space .C(sp(A)) of 
all continuous functions defined on the spectrum of . A, we can find a unique operator . f (A)

in.B(H ). This operator possesses a special property: if we have a sequence of polynomials 
.(pn) such that .limn→∞ pn = f in sup-norm on .C(sp(A)), then it follows that . f (A) =
limn→∞ pn(A) in operator norm on .B(H ). 

This function-to-operator map, denoted as . f |→ f (A), represents a unique isometric 
.∗-isomorphism from the space of continuous functions defined on the spectrum of .A to 
the .C∗-subalgebra of .B(H ) generated by . A and the identity operator . I . Notably, this map 
assigns the function . f (t) = t to the operator .A and the constant function . f (t) = 1 to the 
identity operator . I . Consequently, if we have two functions . f and . g in .C(sp(A)) such that 
. f (t) ≤ g(t) for all .t ∈ sp(A), then it follows that . f (A) ≤ g(A). In addition, . f (A) is self-
adjoint if and only if. f (t) = f (t) for all.t ∈ sp(A) or, equivalently, the range of. f is a subset 
of . R. 

The spectral theorem further asserts that .sp( f (A)) = f (sp(A)) for any .A ∈ A . 
Since .A is self-adjoint, .sp(A) ⊆ R. By the compactness of the spectrum, there are real 

numbers.m, M such that.sp(A) ⊆ [m, M]. By functional calculus, this is equivalent to. m I ≤
A ≤ M I or simply .m ≤ A ≤ M . 

Let .A ∈ Bsa(H ). Consider the continuous functions . f+(t) = max{t, 0} and . f−(t) =
max{−t, 0}. These functions satisfy. f = f+ − f−, f+ f− = 0, | f±| ≤ | f |. Using the func-
tional calculus for . A, we get two positive operators .A+, A− ∈ B(H ) such that . A = A+ −
A−, A+ A− = 0 = A− A+, ||A±|| ≤ ||A||. The decomposition.A = A+ − A− is called the 
Jordan decomposition, and.A+ and.A− are called the positive part and the negative part of 
. A, respectively. 

Let us consider the case where.A ∈ B(H ) is a normal operator and.B is the.C∗-algebra 
generated by .A and . I . Then, there exists a .∗-isometrically isomorphism between .B and 
.C(sp(A)), which maps . A to the inclusion map of .sp(A) in . C. Consequently, if .sp(A) ⊆ R, 
then .z = z̄ on .sp(A), implying that . A is self-adjoint. 

We can use the aforementioned fact to show that if .P1 and .P2 are projections such 
that .P1P2 is normal, then .P1 and .P2 commute. To see this, note that . sp(P1P2) ∪ {0} =
sp(P1P2P2) ∪ {0} = sp(P2P1P2) ∪ {0} ⊆ R since .P2P1P2 is self-adjoint. Hence, .P1P2 is 
self-adjoint, and thus .P1P2 = (P1P2)

∗ = P2P1. 
A von Neumann algebra .A acting on a Hilbert space.H is a.∗-subalgebra of the algebra 

.B(H ) such that .A = (A c)c. Here, the commutant of a set .D ⊆ B(H ) is defined by
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.Dc = {Y ∈ B(H ) : XY = Y X for all X ∈ D}. Equivalently, a von Neumann algebra is 
a .C∗-algebra .A that is the dual of a Banach space .A∗. The latter space is indeed the 
space of all normal linear functionals on.A . A bounded linear functional is called a normal 
linear functional when for a bounded increasing net of self-adjoint operators.(Aα), we have  
. f (supα Aα) = supα f (Aα). Here, .supα Aα means the least upper bound of the self-adjoint 
operators .Aα’s with respect to the Löwner order. 

Projections.P and.Q are called Murray–von Neumann equivalent, denoted as.P ∼ Q, if  
there is a partial isometry .U such that .U∗U = P and .UU∗ = Q. A von Neumann algebra 
is said to be properly infinite if there exist projections .P1 and.P2 such that .P1 ∼ I , .P2 ∼ I , 
and .P1P2 = 0. 

The spectral representation for a self-adjoint operator .A ∈ Bsa(H ) states that if . m =
min {λ : λ ∈ sp (A)} and let .M = max {λ : λ ∈ sp(A)}, then there exists a certain family of 
projections .{Eλ}λ∈R known as the spectral family of . A, which has the following properties 

(a) .Eλ ≤ Eλ' for . λ ≤ λ';
(b) .Em−0 = 0, EM = I and .Eλ+ = Eλ for all .λ ∈ R; 
(c) .A = ∫ M

m−0 λd Eλ; 
(d) for every continuous complex-valued function . f defined on . R, the Riemann–Stieltjes 

operator-valued integral 

. f (A) =
M∫

m−0

f (λ) d Eλ

holds. This integral means that for every .ε > 0 there exists a .δ > 0 such that 

. 

||
||
||
||
||

f (A) −
n∑

k=1

f
(
λ'

k

) (
Eλk − Eλk−1

)
||
||
||
||
||

≤ ε

when.λ0 < m = λ1 < · · · < λn−1 < λn = M ,.λk − λk−1 ≤ δ for 1 ≤ k ≤ n, and. λ'
k ∈

(λk−1, λk) for 1 ≤ k ≤ n. 

If.dimH = n, then. A can be considered as a Hermitian matrix in.Mn . The Schur decom-
position for matrices states that there exists a unitary matrix.U ∈ Mn such that.A = U∗ DU , 
where .D = diag(λ1, . . . , λn) is a diagonal matrix whose diagonal entries are the eigenval-
ues.λ j (1 ≤ j ≤ n) of. A. If.E j = U∗diag(1, 1, . . . , 1

~ ~~ ~
j terms

, 0, . . . , 0)U , then we get the spectral 

representation of . A as follows: 

.A = U∗ DU =
n∑

j=1

λ jΔE j ,
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where.ΔE j = E j − E j−1 and.E0 = 0 are pairwise orthogonal projections; see also [116, p.  
18]. Also, if. f is a real-valued continuous function on an interval containing the eigenvalues 
of . A, then 

. f (A) =
n∑

j=1

f (λ j )ΔE j .

Here . f (A) is understood as . f (A) defined by functional calculus, or simply as . f (A) =
U∗ D'U , where .D' = diag( f (λ1), . . . , f (λn)) . 

Now, we present a fundamental theorem. 

Theorem 1.1.8 Let .A ∈ B(H ). The following assertions are equivalent: 
(a) . A is positive; 
(b) . A is of the form . B2 for some positive operator .B ∈ B(H ); 
(c) . A is of the form .B∗ B for some .B ∈ B(H ); 
(d) .⟨Ax, x⟩ ≥ 0 holds for every .x ∈ H . 

Proof .(a) =⇒ (b). Since.sp(A) ⊆ [0, ∞), the function.t1/2 is continuous on.sp(A). Using  
the functional calculus for . A, we get the positive operator.A1/2 satisfying.A = (A1/2)A1/2. 
So we reach (b) with .B = A1/2. 
.(b) =⇒ (c). It is clear. 
.(c) =⇒ (d). We have  

. ⟨Ax, x⟩ = ⟨B∗ Bx, x⟩ = ⟨Bx, Bx⟩ = ||Bx||2 ≥ 0 .

.(d) =⇒ (a). It follows from.⟨Ax, x⟩ ≥ 0 that 

. ⟨Ax, x⟩ = ⟨x, Ax⟩ = ⟨x, Ax⟩ = ⟨A∗x, x⟩ .

Hence, .⟨(A − A∗)x, x⟩ = 0 for all .x ∈ H . It follows from Proposition 1.1.2 that . A =
A∗. Let .A = A+ − A− be the Jordan decomposition of . A. Since  .⟨Ax, x⟩ ≥ 0, we have  
.⟨A−x, x⟩ ≤ ⟨A+x, x⟩. Replacing. x with.A−x in the latter inequality, we get. 0 ≤ ⟨A3−x, x⟩ =
⟨A2−x, A−x⟩ ≤ ⟨A+ A−x, A−x⟩ = 0, because .A+ A− = 0. By Proposition 1.1.2, we have  
.A3− = 0. Applying functional calculus, we infer that .A− = 0. Therefore, . A = A+ − A− =
A+ ≥ 0. □

The operator . B in Part (b) of the above theorem is unique and called the positive square 
root of .A and is denoted by .A1/2. In addition, for each operator .A ∈ B(H ), the positive 
square root of the positive operator .A∗ A is denoted by .|A| and is called absolute value of 
. A. 

Let.A ∈ Bsa(H ). Then. A is positive if there is a nonnegative real number. c such that. ||A −
cI|| ≤ c, since by utilizing the functional calculus for. A, this norm inequality is equivalent to 
.supt∈sp(A) |t − c| ≤ c, which yields .t ≥ 0 and this, in turn, implies that .A ≥ 0. Conversely,
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in the same way, we observe that if .A ≥ 0, then .||A − cI|| ≤ c for all nonnegative real 
numbers .c ≥ ||A||/2. 

The following properties of the Löwner order and positive operators are frequently used 
without being referred to. 

Theorem 1.1.9 Let .A, B ∈ B(H ) be self-adjoint. Then, 
(i) if .A ≥ 0 and .t ∈ [0, ∞), then .t A ≥ 0; 

(ii) if . A and . B are positive, then so is .A + B; 
(iii) If .−B ≤ A ≤ B, then .||A|| ≤ ||B||; 
(iv) if .A ≤ B, then .X∗ AX ≤ X∗ B X for all .X ∈ B(H ); 
(v) .0 < A if and only if there is .m > 0 such that .0 < m ≤ A; 

(vi) if .0 < A ≤ B, then . B is invertible and .B−1 ≤ A−1; 
(vii) the set of positive operators is closed in .B(H ); 

(viii) if .A, B ∈ B(H ) are positive and .AB = B A, then .AB ≥ 0; 
(ix) if .A, B ∈ B(H ) are positive, then .sp(AB) ⊆ [0, ∞). 

Proof (i) It is deduced from.sp(t A) = t sp(A). 
(ii) By the note preceding this theorem, we have.||A − ||A|||| ≤ ||A|| and.||B − ||B|||| ≤ ||B||. 
Hence 

. ||(A + B) − (||A|| + ||B||)|| ≤ ||A − ||A|||| + ||B − ||B|||| ≤ ||A|| + ||B|| ,

from which we conclude, from the note preceding this theorem, that .A + B ≥ 0. 
(iii) By making use of (ii), we infer that. ≤ is a partial order on.Bsa(H ). It follows from. t ≤
supt∈sp(A) |t | and the functional calculus for . C that .C ≤ ||C||I for any self-adjoint operator 
. C . Thus, .−||B||I ≤ A ≤ B ≤ ||B||I . By the functional calculus for . B, . −||B|| ≤ t ≤ ||B||
for all .t ∈ sp(A). Thus, .supt∈sp(A) |t | ≤ ||B||, whence .||A|| ≤ ||B||. 
(iv) Since .0 ≤ A ≤ B, we have .B − A ≥ 0, so  

. X∗(B − A)X = X∗(B − A)1/2(B − A)1/2X = ((B − A)1/2X)∗((B − A)1/2X) ≥ 0,

from which we conclude that .X∗ AX ≤ X∗ B X . 
(v) Let. A be a positive invertible operator. Hence,.sp(A) ⊆ (0, ∞). The spectrum of any oper-
ator is compact, so there is a real positive number .m such that .0 < m ≤ t for all .t ∈ sp(A). 
Applying the functional calculus for . A, we get.m ≤ A. The proof of the reverse assertion is 
similar. 
(vi) Since .0 < m ≤ A ≤ B we infer that .B is invertible. Using the functional calcu-
lus for . B, we observe that the operator .B−1/2 corresponding to the continuous func-
tion .t−1/2 is well-defined. Employing (iv), we deduce from .A ≤ B that . B−1/2AB−1/2 ≤
B−1/2B B−1/2 = I . Using the functional calculus for .B−1/2AB−1/2 we see that .t ≤ 1 for 
all .t ∈ sp(B−1/2AB−1/2). Hence, .t−1 ≥ 1 for all .t ∈ sp(B−1/2AB−1/2). Another use of


