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Preface

Wavelet networks are a new class of networks that combine

classic sigmoid neural networks and wavelet analysis.

Wavelet networks were proposed as an alternative to

feedforward neural networks, which would alleviate the

weaknesses associated with wavelet analysis and neural

networks while preserving the advantages of each method.

Recently, wavelet networks have gained a lot of attention

and have been used with great success in a wide range of

applications: financial modeling; engineering; system

control; short-term load forecasting; time-series prediction;

signal classification and compression; signal denoising;

static, dynamic, and nonlinear modeling; and nonlinear

static function approximation—to mention some of the most

important.

However, a major weakness of wavelet neural modeling is

the lack of a generally accepted framework for applying

wavelet networks. The purpose of this book is to present a

step-by-step guide for model identification for wavelet

networks. We describe a complete statistical model

identification framework for applying wavelet networks in a

variety of ways. Although vast literature on wavelet

networks exists, to our knowledge this is the first study that

presents a step-by-step guide for model identification for

wavelet networks. Model identification can be separated

into two parts: model selection and variable significance

testing.

A concise and rigorous treatment for constructing optimal

wavelet networks is provided. More precisely, the following

subjects are examined thoroughly: the structure of a

wavelet network; training methods; initialization



algorithms; variable significance and variable selection

algorithms; model selection methods; and methods to

construct confidence and prediction intervals. The book

links the mathematical aspects of the construction of

wavelet network to modeling and forecasting applications

in finance, chaos, and classification. Wavelet networks can

constitute a valuable tool in financial engineering since

they make no a priori assumptions about the nature of the

dynamics that govern financial time series. Although we

employ wavelet networks primarily in financial

applications, it is clear that they can be utilized in modeling

any nonlinear function. Hence, researchers can apply

wavelet networks in any discipline to model any nonlinear

problem.

Our goal has been to make the material accessible and

readable without excessive mathematical requirements: for

example, at the level of advanced M.B.A. or Ph.D. students.

There is an introduction or tutorial to acquaint

nonstatisticians with the basic principles of wavelet

analysis, and a similar but more extensive introduction to

neural networks for noncomputer scientists: first

introducing them as regression models and gradually

building up to more complex frameworks.

Familiarity with wavelet analysis, neural wavelets, or

wavelet networks will help, but it is not a prerequisite. The

book will take the reader to the level where he or she is

expected to be able to utilize the proposed methodologies

in applying wavelet networks to model various applications.

The book is meant to be used by a wide range of

practitioners:

By quantitative and technical analysts in investment

institutions such as banks, insurance companies,

securities houses, companies with intensive
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international activities, and financial consultancy firms,

as well as fund managers and institutional investors.

By those in such fields as engineering, chemistry, and

biomedicine.

By students in advanced postgraduate programs in

finance, M.B.A., and mathematical modeling courses, as

well as in computational economics, informatics,

decision science, finance, artificial intelligence, and

computational finance. It is anticipated that a

considerable segment of the readership will originate

from within the neural network application community

as well as from students in the mathematical, physical,

and engineering sciences seeking employment in the

mathematical modeling services.

By researchers in identification and modeling for

complex nonlinear systems, wavelet neural networks,

artificial intelligence, mathematical modeling, and

relevant Ph.D. programs.

Supplementary material for this book may be found by

entering ISBN 9781118592526 at booksupport.wiley.com.

During the preparation of the book, the help of my (A.K.A.)

wife, Christina Ioannidou, was significant, and we would

like to thank her for her careful reading of the manuscript.



1 

Machine Learning and Financial

Engineering

Wavelet networks are a new class of networks that combine

the classic sigmoid neural networks and wavelet analysis.

Wavelet networks were proposed by Zhang and Benveniste

(1992) as an alternative to feedforward neural networks

which would alleviate the weaknesses associated with

wavelet analysis and neural networks while preserving the

advantages of each method.

Recently, wavelet networks have gained a lot of attention

and have been used with great success in a wide range of

applications, ranging from engineering; control; financial

modeling; short-term load forecasting; time-series

prediction; signal classification and compression; signal

denoising; static, dynamic, and nonlinear modeling; to

nonlinear static function approximation.

Wavelet networks are a generalization of radial basis

function networks (RBFNs). Wavelet networks are hidden

layer networks that use a wavelet for activation instead of

the classic sigmoidal family. It is important to mention here

that multidimensional wavelets preserve the “universal

approximation” property that characterizes neural

networks. The nodes (or wavelons) of wavelet networks are

wavelet coefficients of the function expansion that have a

significant value. In Bernard et al. (1998), various reasons

were presented for why wavelets should be used instead of

other transfer functions. In particular, first, wavelets have

high compression abilities, and second, computing the

value at a single point or updating a function estimate from



a new local measure involves only a small subset of

coefficients.

In statistical terms, wavelet networks are nonlinear

nonparametric estimators. Moreover, the universal

approximation property states that wavelet networks can

approximate, to any degree of accuracy, any nonlinear

function and its derivatives. The useful properties of

wavelet networks make them an excellent nonlinear

estimator for modeling, interpreting, and forecasting

complex financial problems and phenomena when only

speculation is available regarding the underlying

mechanism that generates possible observations.

In the context of a globalized economy, companies that

offer financial services try to establish and maintain their

competitiveness. To do so, they develop and apply

advanced quantitative methodologies. Neural networks

represent a new and exciting technology with a wide range

of potential financial applications, ranging from simple

tasks of assessing credit risk to strategic portfolio

management. The fact that neural and wavelet networks

avoid a priori assumptions about the evolution in time of

the various financial variables makes them a valuable tool.

The purpose of this book is to present a step-by-step guide

for model identification of wavelet networks. A generally

accepted framework for applying wavelet networks is

missing from the literature. In this book we present a

complete statistical model identification framework to

utilize wavelet networks in various applications. More

precisely, wavelet networks are utilized for time-series

prediction, construction of confidence and prediction

intervals, classification and modeling, and forecasting of

chaotic time series in the context of financial engineering.

Although our proposed framework is examined primarily

for its use in financial applications, it is not limited to



finance. It is clear that it can be adopted and used in any

discipline in the context of modeling any nonlinear problem

or function.

The basic introductory notions are presented below. Fist,

financial engineering and its relationship to machine

learning and wavelet networks are discussed. Next,

research areas related to financial engineering and its

function and applications are presented. The basic notions

of wavelet analysis and of neural and wavelet networks are

also presented. More precisely, the basic mathematical

notions that will be needed in later chapters are presented

briefly. Also, applications of wavelet networks in finance

are presented. Finally, the basic aspects of the framework

proposed for the construction of optimal wavelet networks

are discussed. More precisely, model selection, variable

selection, and model adequacy testing stages are

introduced.

Financial Engineering

The most comprehensive definition of financial engineering

is the following: Financial engineering involves the design,

development, and implementation of innovative financial

instruments and processes, and the formulation of creative

solutions to problems of finance (Finnerty, 1988). From the

definition it is clear that financial engineering is linked to

innovation. A general definition of financial innovation

includes not only the creation of new types of financial

instruments, but the development and evolution of new

financial institutions (Mason et al., 1995). Financial

innovation is the driving force behind the financial system

in fulfilling its primary function: the most efficient possible

allocation of financial resources (Ζαπράνης, 2005).

Investors, organizations, and companies in the financial

sector benefit from financial innovation. These benefits are



reflected in lower funding costs, improved yields, better

management of various risks, and effective operation

within changing regulations.

In recent decades the use of mathematical techniques and

processes, derived from operational research, has

increased significantly. These methods are used in various

aspects of financial engineering. Methods such as decision

analysis, statistical estimation, simulation, stochastic

processes, optimization, decision support systems, neural

networks, wavelet networks, and machine learning in

general have become indispensable in several domains of

financial operations (Mulvey et al., 1997).

According to Marshall and Bansal (1992), many factors

have contributed to the development of financial

engineering, including technological advances,

globalization of financial markets, increased competition,

changing regulations, the increasing ability to solve

complex financial models, and the increased volatility of

financial markets. For example, the operation of the

derivatives markets and risk management systems is

supported decisively by continuous advances in the theory

of the valuation of derivatives and their use in hedging

financial risks. In addition, the continuous increase in

computational power while its cost is being reduced makes

it possible to monitor thousands of market positions in real

time to take advantage of short-term anomalies in the

market.

In addition to their knowledge of economic and financial

theory, financial engineers are required to possess the

quantitative and technical skills necessary to implement

engineering methods to solve financial problems. Financial

engineering is a unique field of finance that does not

necessarily focus on people with advanced technical

backgrounds who wish to move into the financial area but,



is addressed to those who wish to get involved in

investment banking, investment management, or risk

management.

There is a mistaken point of view that financial engineering

is accessible only by people who have a strong

mathematical and technical background. The usefulness of

a financial innovation should be measured on the basis of

its effect on the efficiency of the financial system, not on

the degree of novelty that introduces. Similarly, the power

of financial engineering should not be considered in the

light of the complexity of the models that are used but from

the additional administrative and financial flexibility that it

offers its users. Hence, financial engineering is addressed

to a large audience and should be considered within the

broader context of the administrative decision-making

system that it supports.

Financial Engineering and Related

Research Areas

Financial engineering is a very large multidisciplinary field

of research. As a result, researchers are often focused on

smaller subfields of financial engineering. There are two

main branches of financial engineering: quantitative

finance and financial econometrics. Quantitative finance is

a combination of two very important and popular subfields

of finance: mathematical finance and computational

finance. On the other hand, financial econometrics arises

from financial economics. Research areas related to

financial engineering are illustrated in Figure 1.1.



Figure 1.1 Research areas related to financial

engineering.

The scientific field of financial engineering is closely

related to the relevant disciplinary areas of mathematical

finance and computational finance, as all focus on the use

of mathematics, algorithms, and computers to solve

financial problems. It can be said that financial engineering

is a multidisciplinary field involving financial theory, the

methods of engineering, the tools of mathematics, and the

practice of programming. However, financial engineering is

focused on applications, whereas mathematical finance has

a more theoretical perspective.

Mathematical finance, a field of applied mathematics

concerned with financial markets, began in the 1970s. Its

primary focus was the study of mathematics applied to

financial concerns. Today, mathematical finance is an

established and very important autonomous field of

knowledge. In general, financial mathematicians study a

problem and try to derive a mathematical or numerical

model by observing the output values: for example, market

prices. Their analysis does not necessarily have a link back



to financial theory. More precisely, mathematical

consistency is required, but not necessarily compatibility

with economic theory.

Mathematical finance is closely related to computational

finance. More precisely, the two fields overlap.

Mathematical finance deals with the development of

financial models, and computational finance is concerned

with their application in practice. Computational finance

emphasizes practical numerical methods rather than

mathematical proofs, and focuses on techniques that apply

directly to economic analyses. In addition to a good

knowledge of financial theory, the background of people

working in the field of computational finance combines

fluency in fields such as algorithms, networks, databases,

and programming languages (e.g., C/C++, Java, Fortran).

Today, the disciplinary area of mathematical finance and

computational finance constitutes part of a larger,

established, and more general area of finance called

quantitative finance. In general, there are two main areas

in which advanced mathematical and computational

techniques are used in finance. One tries to derive

mathematical formulas for the prices of derivatives, the

other one deals with risk and portfolio management.

Financial econometrics is another field of knowledge

closely related (although more remote) to financial

engineering. Financial econometrics is the basic method of

inference in the branch of economics termed financial

economics. More precisely, the focus is on decisions made

under uncertainty in the context of portfolio management

and their implications to the valuation of securities (Huang

and Litzenberger, 1988). The objective is to analyze

financial models empirically under the assumption of

uncertainty in the decisions of investors and hence in

market prices. For example, the martingale model for


