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Preface

There has been significant progress in the development of single-photon avalanche
diodes (SPADs) since their inception in the 1970s, yet their use in mainstream
applications has lagged behind. In fact, as of the writing of this manuscript,
manufacturers of traditional image sensors are only timidly exploring the com-
mercial space for SPADs. Therefore, it is safe to say that despite the advances
we have witnessed in the past decades, SPAD technology still has much to
prove. Particularly, their integration in complementary metal-oxide semiconductor
(CMOS) processes is still an active area of research with many unmet challenges.

Our aim with the present monograph is to contribute to that specific body of
knowledge. Therefore, our discussion is restricted solely to CMOS SPADs and to
their associated readout and processing circuits. The monograph’s scope mirrors that
of a tutorial we delivered at the 29th IEEE International Conference on Electronics,
Circuits, and Systems (ICECS 2022) held in Glasgow, UK, in December 2022.
There, we presented the current state of CMOS SPAD research, and we particularly
focused on our own efforts developing perimeter-gated SPADs (pg-SPADs) in
standard CMOS technologies. This experience catalyzed this book project, and
we are delighted to finally present a monograph that covers SPAD technology
from the bottom-up, i.e., starting from fundamental topics like phototransduction
and reaching advanced topics like silicon photomultiplier (SiPM) architectures and
CMOS imaging with pg-SPADs.

Our target audience includes the curious engineer who has no background in
SPAD technology. It also includes SPAD researchers who are eager to explore novel
ideas in this field. Each of the book’s chapters may be read individually, providing
an in-depth view about a particular aspect of CMOS SPAD technology.

Chapter 1 briefly discusses the fundamental notions underpinning photon detec-
tion in semiconductor devices. It covers photo-electron emission in semiconductors,
noise, and typical photosensor front-end architectures, including Geiger mode front-
ends, which include SPAD devices. Chapter 2 covers the issue of premature edge
breakdown in SPADs implemented CMOS technologies, and it presents perimeter
gating as a viable alternative to mitigate this issue. Chapter 3 focuses on the
optoelectronic characterization of CMOS SPADs, covering instrumentation and
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viii Preface

measurement strategies. Chapter 4 covers the implementation of a perimeter-
gated SPAD imager in a standard CMOS technology. Chapters 5 covers a novel
application for SPADs, namely their use in hardware security applications. Chap-
ter 6 discusses silicon photomultipliers, and Chap. 7 reviews readout architectures.
Chapter 8 covers dead time correction models. We conclude the book in Chap. 9,
summarizing key findings and briefly describing the foreseeable future of pg-SPAD
research and development. All throughout, the reader will find a myriad of topics
relating to SPADs and photon counting systems in general.

In closing, we hope that the reader will truly enjoy this book and its fresh take
on this emerging field. Lastly, we thank our numerous colleagues and students
for contributing to this material; they are acknowledged more appropriately in the
following Acknowledgments section.

Pittsburgh, PA, USA Marc Dandin
Knoxville, TN, USA Nicole McFarlane
May 2024
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Chapter 1 ®
Fundamentals of Phototransduction Chock or
in Semiconductors

1.1 Introduction

The study of the interaction of light with semiconductors is extensive; in this chapter
we provide only the fundamental notions that are necessary to understand the
operation of a photosensor.! Our discussion begins with the physical mechanism
underlying the conversion of photons to free carriers in a semiconductor material.
This process, which is referred to as photogeneration or photoelectric emission, is at
the core of imaging science, and a thorough understanding of its nature is required
when designing the front end and the readout chain [1].

We then center our discussion on the concept of phototransduction and on a set
of system-level performance metrics, namely, the SNR, the noise equivalent power
(NEP), and the spectral responsivity (S(1)). Taken together, these figures of merit
provide important insights into device performance by allowing the identification,
at the design stage, of the trade-offs that exist between various circuit parameters.
To illustrate this fact and also to understand the operation of the SPADs and pg-
SPADs featured in this book, we focus on three distinct photosensor configurations,
namely, the photodiode, the avalanche photodiode, and the single-photon avalanche
photodiode configuration.

! Here, the term photosensor is used to designate the front-end (i.e., the detector) and the readout
circuit (ROC).

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025 1
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2 1 Fundamentals of Phototransduction in Semiconductors

1.2 Photoelectron Emission in Semiconductors

1.2.1 Absorption Coefficient

The transmission of light through a semiconductor is governed by the Beer-
Lambert law (shown below) [2]. It states that within the material, an incident
light beam (of intensity I;y) is attenuated by an exponential factor that depends
on the material’s thickness (d) and on a wavelength-dependent parameter «, the
absorption coefficient. Thus, the exiting light beam (of intensity /oy ) has a smaller
intensity than the incident beam. Figure 1.1 shows the absorption coefficient data for
commonly used semiconductors.

Ioyr = IIve™™. (1.1)
If the incident photons have enough energy, they will cause the valence electrons
to migrate to the conduction band. These band-to-band transitions occur only

when the incoming photons have energies that exceed the band gap energy of the
semiconductor [2]; otherwise, the photons pass through the material.
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Fig. 1.1 Absorption coefficient of different semiconductor materials as a function of photon
energy and wavelength. The asterisk indicates the data for silicon, the material with which the
detectors featured in this book were fabricated. (Figure adapted from ref. [2])
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1.2.2 Quantum Efficiency

Once photons are absorbed, they generate charge with an efficiency factor denoted
n. This quantum efficiency is an important metric in detector design. It is the ratio
of the number of photoelectrons generated to the number of photons incident on
the material. Since photon absorption is wavelength-dependent as shown above,
so is 7.2 Moreover, it also depends on the reflection coefficient (R) of the
interface formed by the medium in which the incident light originates and the
semiconductor’s surface [4].

1.2.3 Noise

Here we cursorily introduce the concept of noise. We refer to noise as the sum of
the effects of secondary physical processes that contribute to the detector’s signal,
the primary process here being the absorption and transduction of the photons of
interest. Such secondary processes may include the thermal generation of carriers,
band-to-band tunneling, or releases from trapped carriers. There are also sources
of noise in the readout chain, and these do also contribute to the overall noise
associated with the phototransduction process. Furthermore, the uncertainty in the
impinging light itself may give rise to a noisy signal; this process is termed shot
noise, and it is described in detail below.

For ease of analysis, we focus only on the detector front end for now, i.e., we do
not consider readout noise processes. Let us first consider how carriers are generated
in the detector during phototransduction; this happens via photoelectric emission in
which electrons jump from the valence to the conduction band.

An ensemble measurement of the number of photogenerated carriers will show
a spread around a mean value. This uncertainty is the aggregate result of several
noise phenomena originating from one or more of the processes mentioned above.
In a traditional detector, the two most important source of noise can be the inherent
randomness in the impinging light quanta, i.e., the shot noise, and the random
motion of charges due to thermal energy [4].

While the latter effect can be mitigated by cooling the detector and actively
regulating the ambient temperature, the former cannot be suppressed. Shot noise is
the fundamental noise limit of photodetection, and it sets a lower bound to the noise
figure of optical sensing circuits [3, 4]. Because of its importance, we spend some

21f the incoming light is modulated, the quantum efficiency also depends on the modulation
frequency. This dependence is not fundamental; rather it is related to circuit and device parameters
(see [3]). Thus, for completeness, the quantum efficiency is denoted n(x, w), where XA is the
photon’s wavelength and w the modulation frequency.
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time in the following section analyzing its origin, and we formulate a relationship
for it, which we will use in our front-end models in the remainder of this chapter.
The analysis featured is credited to Davenport and Root [5], and although a vacuum
diode was used as a model for arriving at the result, the analysis extends well to all
photosensor front ends.

1.2.3.1 Shot Noise

In an optical sensor front end, the photogenerated current exhibits random fluctua-
tions that are independent of the ROC noise sources and of thermal energy. These
fluctuations are known as the shot noise, and they arise from the discrete and random
removal of energy quanta from the incident radiation field. For this reason, shot
noise is a quantum mechanical random process, and it is the fundamental noise
which underlies all light detection and measurement applications.

In a detector that integrates photogenerated charge, like an active pixel sensor
(APS), for example, the shot noise manifests itself as an uncertainty in the source
follower-buffered voltage of the integration node. On the other hand, in a detector
that performs photoelectric counting, like the pg-SPAD, it can be estimated from the
uncertainty in the count rate.

Thus, the number of photoelectrons generated in a detector is a random process,
irrespective of the detector’s mode of operation and architecture. The distribution
that describes this random process can be derived by considering photoelectron
emission in an ideal vacuum photocathode (shown in Fig. 1.2).

1.2.3.2 Single-Electron Current in a Vacuum Diode
In Fig. 1.2a the plate (or anode) is biased at a constant voltage denoted V4 and

the photocathode is held at ground. This system is governed by the following
electrostatic and classical kinematic equations:

F,, = ma (1.2)
Ai
b
) 2
N
=V,
vacuum 3>
T ;

Fig. 1.2 (a) Vacuum photodiode. (b) Single-electron current pulse
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F, = —qE (1.3)
E=-VV (1.4)
V2 = —g (1.5)

J=pv (1.6)

Here, F,, is the Newtonian force that a moving electron is subjected to as a result
of its acceleration through the electric field E resulting from the potential difference
between the two electrodes, p is the charge density, J the current density, and v the
velocity of the electron. F; is the Lorentz force in the absence of a magnetic field
(B =0).

We first solve for the potential as a function of distance. We restrict our analysis
to only one dimension, that is, the y and z components of the E-field are zero.
We further assume that temperature is constant and that there are no space charge
effects. The latter assumption means that the electron does not interact with other
electrons during its motion and that its initial velocity, in comparison to its terminal
velocity (at the plate), is negligible. Consequently, Poisson’s equation (1.5) sim-
plifies to Laplace’s equation (VZV = O). This yields the boundary value problem
(Egs. 1.7, 1.8, and 1.9) whose solution is shown in Eq. 1.10:

52_v =0 (1.7)

Sx2 ’

V(0)=0 (1.8)
V(d)=Vy (1.9)
V) = %x (1.10)

The electric field is obtained using Eq. 1.4. In Eq. 1.11, the vector 1 indicates the
basis vector in the x-direction in a Cartesian reference frame:
Vaz

E=—— 1.11
7] (1.11)

We may now find a second-order differential that describes the motion of the
electron by using a force balance equation. This is done by equating the Lorentz
force to the Newtonian force. This yields

F; = F,, (1.12)



