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Preface

Micro- and nanoplastics are the degradation products of large plastic compounds. These 
degraded polymers enter into the natural environment including air, water, and food, which 
leads to various significant threats to human health. The nature of these micro- and nano-
plastics is persistent and consequently accumulates in the exposed person’s body. Research 
into microplastics has shown that these particles accumulate in various human organs and 
impart detrimental effects on humans. To safeguard human health, analysis and remedia-
tion strategies are necessary. 

This book provides a comprehensive overview on the source, distribution, life cycle 
assessment strategies, physico-chemical interactions, methods of analysis, toxicological 
investigation, and remediation strategies of micro- and nanoplastics. It is an invaluable 
resource for academics, researchers, post-doctoral and Ph.D. students, the polymer indus-
try, environment agencies, food and beverage professionals, etc. 

Chapter 1 explains the effect of natural processes that microplastics undergo in the envi-
ronment (e.g., radiation, physical abrasion, chemical reactions, and biodegradation), which 
causes an increase in their ability to adsorb other pollutants and transport them. The chapter 
also outlines the analytical techniques used to evaluate the chemical and physical changes.

Chapter 2 presents life cycle analysis and its stages as applied to new materials called 
“biobased,” which have emerged as an alternative to replace the use of plastics. The main 
focus of this chapter is to assess the environmental impacts of bioplastics versus petrochem-
ical plastics and their sustainability.

Chapter 3 discusses micro- and nanoplastics as an invisible threat to human health. It 
reviews the various routes of exposure, the phenomenon of microplastics in nourishment 
and nutrients, and the impact of microplastics and nanoplastics on mammalian health and 
their effect on marine life.

Chapter 4 explains how the small plastic particles known as micro- and nanoplastics 
have become a significant environmental concern due to their widespread presence in var-
ious ecosystems. The toxic effects of these particles on the environment, food, and human 
health are a growing concern that requires more attention and action from governments, 
industries, and individuals. Reducing plastic waste and promoting the use of more sustain-
able alternatives can help mitigate this issue and protect our planet and health.

Chapter 5 discusses the probable sources of micro- and nanoplastics, and details their 
hazardous effects on different environments, including terrestrial, aqueous, atmosphere, 
wastewater treatment plants, and their resident organisms. It also explains the journey of 
these particles from their production source to their final destination.

Chapter 6 covers the routes through which micro- and nanoplastics can become part of 
our food and their possible toxic effects on human bodies and the food chain. Two primary 
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ways that these plastic particles enter food products is through plastic food packaging or 
by being ingested by animals and absorbed into plants. This chapter explains how the side 
effects of MPs and NPs on human lives depend on numerous factors, such as plastic chem-
ical functionality and biocompatibility, size, and amount of plastic ingested. 

Chapter 7 discusses the microplastic, properties, types, and their impact on the envi-
ronment in detail. Great attention is paid to various methods of eliminating microplas-
tics. The chapter also includes goals and initiatives taken by the United Nations Sustainable 
Development Goal (SDG 14).

Chapter 8 analyzes the presence of micro- and nanoplastics in different types of bever-
ages. It presents the classification of the analyzed beverages; the methods used for the quan-
tification of micro- and nanoplastics; the characteristics of the particles; and their origin. 
Human exposure from the consumption of these products is also discussed.

Chapter 9 focuses on the effect of micro- and nanoplastics that end up in the terrestrial 
environment. It looks at their interaction with soil and plants while outlining their migra-
tion and accumulation inside the plant, and calculating their potential effect. The chapter 
also discusses the impact of micro- and nano plastics on terrestrial communities, including 
microbes and humans.

Chapter 10 addresses the presence of microplastics in personal care products (PCPs). 
The information is organized by three topics: the characterization of PM extracted from 
PCPs, their interactions with other substances, and toxicity. The chapter explains how the 
use of these products is alarming due to their wide use and risks to the environment.

Chapter 11 reveals how the various chemical compositions including plastics and micro-
plastics are mixed into desired concentrations when manufacturing cosmetics. It discusses, 
too, the main sources of plastics and microplastics and their growth in India. The effect of 
cosmetics on human health is explained. Finally, alternative products to plastics and micro-
plastics for use in cosmetics are listed.

Chapter 12 delves into the detrimental impact of micro- and nanoplastics on the human 
genome. The introduction of such particles into the ecosystem, and ultimately to the human 
body, is explained. This chapter presents an thorough toxicological analysis of these parti-
cles, shedding light on the urgent need for proactive measures to safeguard our ecosystem.

Chapter 13 discusses the generation, as well as the techniques for the measurement and 
identification, of micro- and nanoplastics. Various degradation methods are also discussed, 
as are the harmful effects of plastics, nanoplastics, and microplastics. Measures to avoid the 
production of plastics, nanoplastics, and microplastics are emphasized.

Chapter 14 details the source and hazardous effects of micro- and nanoplastics in marine 
environments. Additionally, it elaborates on the damages caused by the plastic pollution 
on air, water, and soil. Methods for decreasing microplastics in the environment are also 
discussed, along with the severance of microplastics from water, sediments, and marine 
microbial strains associated with degrading microplastics.

Chapter 15 reviews the advances and challenges in assessing the toxicity of micro- and 
nanoplastics (MPs and NPs) in human beings. An analysis of 85 research articles is also 
presented. Results show that in most cases there is a negative effect associated with MPs and 
NPs, but this chapter explains how methodology differences don’t allow the establishment 
of cause-effect relationships.

Chapter 16 delves into the extensive impact of plasticizers and flame retardants on eco-
systems and human health. The presence of plasticizers and flame retardants in various 
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environments raises concerns about potential ecotoxicological effects. This chapter explains 
how bridging knowledge gaps and promoting safer alternatives are crucial to address the 
risks posed by these additives.

Chapter 17 details the invisible threat of micro- and nanoplastic materials on mankind 
and the environment. It discusses the harmful effects of inorganic and organic contami-
nants that are present in MPs and NPs. Inorganic contaminants primarily include heavy 
metals and pesticides. However, organic contaminants are persistent organic pollutants, 
and the impact of persistent organic pollutants and inorganic contaminants on the environ-
ment are presented in detail. 

Chapter 18 compares the toxicity of microplastics, nanoplastics, and nanoparticles in the 
ecosystems. Smaller particles can penetrate organisms and tissues leading to more severe 
impacts. Their unique properties increase reactivity and oxidative stress, raising concerns 
about bioaccumulation and higher trophic levels. This chapter explains why urgent mitiga-
tion strategies are needed to protect ecosystems from these pervasive pollutants.

Chapter 19 discusses the occurrence and sources of micro- and nanoplastics and the pre-
treatments performed in the samples. Additionally, it thoroughly discusses several techniques 
that can be used to characterize, identify, and quantify them. Furthermore, this chapter presents 
a general overview of the advantages, disadvantages, and limitations of those techniques.

Chapter 20 presents new analytical approaches for the analysis of micro- and nanoplas-
tics in the environment. Microscopic, spectroscopic, thermal, and electroanalytical tech-
niques are commonly used for the analysis of MPs and NPs. The chapter describes the 
development of analytical techniques for monitoring plastic pollution based on single and 
combined methods. 

Chapter 21 details various enzymes that are applied for the biodegradation of micro- and 
nanoplastics. In this chapter, the advantages of enzymatic approaches compared to conven-
tional methods are presented. The mechanism of enzyme-catalyzed degradation of plastics 
is also discussed, as are some examples from biodegradation of synthetic polymers that use 
various enzymes.

Chapter 22 explains how the most common physical, chemical, and biological tech-
niques work to remove micro- and nanoplastics. Some of the most relevant findings found 
in the literature for each technique are presented, as are the advantages and disadvantages 
of each type of removal technique.

Chapter 23 details the different materials used to remove the micro- and nanoplastics 
from the water. This chapter explains how to use sponge/aerogel materials, materials with 
metals, and biochar to remove MPs and NPs. Also, remediation methods that employ pow-
der and granulated activated carbons are presented.

Chapter 24 details the toxicity and aftereffects of micro- and nanoplastics on the marine 
environment and its flora and fauna. The providence of MPs and NPS and their migration 
to the aquatic environment, along with an analysis of various micro/nanoplastics toxicity 
and the propensity towards environmental implications, is also presented.

We are deeply grateful to everyone who helped with this book and greatly appreciate the 
dedicated support and valuable assistance rendered by Martin Scrivener and the Scrivener 
Publishing team during its publication.

The Editors
March 2024
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Abstract
The presence of plastics in various ecosystems is an emerging worldwide environmental concern. 
Researchers have studied the interaction of microplastics (MPs) with other pollutants that are 
also present in the environment and have concluded that they act as vectors for pollution disper-
sion, transporting pollutants to different ecosystems, and being taken up by living organisms. The 
effects of natural processes that MPs undergo in the environment (UV radiation, physical abrasion, 
chemical reactions, and biodegradation) cause changes in their external surface, morphology, and 
chemical alterations that increase their ability to interact with other pollutants and transport them. 
Researchers have developed laboratory techniques to simulate the aging process of polymers and 
predict the behavior of MPs in real ecosystems. These reports highlight permanent physical and 
chemical changes in different properties of MPs, such as color, morphology, particle size, specific 
surface area, hydrophobicity, crystallinity, melting and glass transition temperature, surface groups, 
carbonyl index, and oxygen/carbon ratio. These properties have been measured using standard 
techniques (e.g., optical, fluorescence, and scanning electron microscopy, Fourier-transform infra-
red spectroscopy, Raman spectroscopy); however, emerging techniques are being explored (two-
dimensional correlation spectroscopy and excitation–emission matrix-parallel factor analysis), 
where it is possible to detect the release products of the aging process.

Keywords:  Advanced oxidation process, aged microplastic, biodegradation, emerging 
contaminants, mechanical stress, photooxidation, pristine microplastic

1.1	 Introduction

Plastics are widely used to meet various societal needs. Advantages such as light weight, low 
cost, and long durability have led to their expanded use and application in fields such as 
healthcare, engineering, construction, agriculture, and high-performance apparel [1–4]. The 
distribution of plastic use in industries is estimated to be 4% is used in the electrical and elec-
tronics industry and construction, 6% for transportation, 12% for consumer and institutional 
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products, 14% for textiles, 13% for other industries, and 43% for packing [5]. Apart from 
their applicability, their production can also have a great impact on the environment, as they 
can be manufactured with fossil fuels, which have a great impact on the carbon footprint, 
or with natural materials, such as cellulose [2, 3]. Biobased plastics have been researched in 
recent years and have proven to be an alternative to fossil plastics, as they are largely derived 
from biomass. However, they currently account for only 1%–2% of the annual production of 
plastics. Nevertheless, a study of the cradle-to-grave life cycle of biobased plastic should be 
conducted to balance the use of fossil versus biobased plastic [6, 7]. Despite these new alter-
natives, low-density polyethylene (LDPE), high-density polyethylene (HDPE), polyethylene 
terephthalate (PET), polyvinyl chloride (PVC), polypropylene (PP), and polystyrene (PS) are 
the most commonly used polymers that are produced from fossil hydrocarbons [3, 8–10]. 

Plastics are adaptable and inexpensive, and plastic production between 2005 and 2017 
was as high as in the last 50 years, showing a tendency to increase exponentially, posing 
a problem in the treatment and disposal of plastic waste [1]. In 2016, the entrance of 19 
to 23 million t of plastics into the aquatic environment was estimated and it is predicted 
that 20–53 Mt/year will be released into aquatic systems by 2030 [11]. Researchers expect 
that double plastic production would be achieved by 2050, meaning that approximately 8 
million tons of plastic waste will escape into the oceans [12]. Single-use plastics, such as 
bags and straws, represent approximately half of the plastic waste generated. During the 
COVID-19 pandemic, protective gear containing plastics (e.g., gloves and face masks) is 
often used by the population, increasing the amount of plastic waste [1, 12, 13]. Zhao et al. 
reported that 6,300 million tons of plastic waste was generated in 2015, of which only 9% 
was recycled, 12% was incinerated, and 79% was disposed of in landfills [2]. According to 
Williams et al., of the plastic waste generated since 1950, 14% is incinerated, 40% is sent to 
landfills, and 14% is recycled. However, of this amount of recycled plastic only, 2% is opti-
mally recycled, and the remaining 12% produces material with lower quality and function-
ality than the original, which is referred to as “downcycle” [12]. 

Based on this information and knowledge of the long life of plastics, humanity may face 
a worrying environmental problem in the coming years [14]. Governments around the 
world have introduced regulations to reduce the use of single-use plastics, namely imposing 
taxes on plastic bags and food packaging [1]. The incorrect disposal of plastics is a major 
problem of pollution, which may cause their entrance into the oceans [12, 15]. In recent 
years, researchers have explored plastic pollution from manufacture to final disposal, and 
the damage caused by plastic to ecosystems, but there is still a long way to go to understand 
how harmful their chronic presence may be to the environment. 

MPs may have two types of sources: the primary source, which is considered a direct 
contributor, focused on the manufacturing of MPs in various industries, such as exfoliating 
cleansers, cosmetics, and toothpaste [14, 16]; and the secondary source, which is consid-
ered an indirect contributor to MPs, caused by the fragmentation of large plastic pieces into 
small ones, which can be promoted by photodegradation, mechanical or chemical action, 
or other weathering processes to which plastics are subjected to improper disposal in the 
environment [9, 16, 17]. 

Plastics are subjected to physical, chemical, and biological reactions over time, resulting 
in the desorption of  smaller particles [8, 18]. Plastics can be classified based on their size as 
megaplastics (>50 cm), macroplastics (>5 to 50 cm), mesoplastics (≥5 mm to 5 cm), micro-
plastics (≥1 µm to <5 mm), and nanoplastics (<1 µm) [14, 18, 19]. MPs have become the 
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focus of research in recent years owing to their widespread presence in ecosystems, which 
is considered a threat to the environment, and consequently to human health. Microplastics 
(MPs) have been identified in freshwater [8, 10, 14, 16, 17, 20, 21], groundwater [8, 17, 20], 
snow [17], ice [17], sediments [8, 16, 17, 21, 22], soils [10, 17, 22–24], terrestrial and aquatic 
biota [10, 14, 24], air [17, 22, 25], foodstuffs (e.g., honey and salt), tap/bottled water [17, 22, 
26], and biological samples (e.g., blood, human placenta, lung tissue) [27–29]. The ubiq-
uity of MPs in the environment and their presence in consumer products, such as food or 
freshwater, leads to unrestrained consumption of MPs by humans [17]. Ingestion through 
direct consumption of contaminated products, inhalation of airborne contaminants with 
inhalable sizes of MPs and dermal contact between nanoplastics and the skin barrier are 
considered human exposure to MPs [22].

The biggest problem arises when researchers discover the ability of MPs to adsorb and 
transport various types of pollutants [9, 14, 23, 30–32]. Reports have shown that pollut-
ants such as polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), 
heavy metals, pesticides and antibiotics can be transported by MPs [10, 20, 30, 33–35]. 
Moreover, ecotoxicity studies show the hazardous effects of MPs taken up by earthworms, 
mussels, gobies, seabirds, turtles, seals, mammals, fish, reptiles, and plants [8, 14, 23, 36]. 
Depending on their exposure and susceptibility to MPs, they are considered potentially 
harmful to humans because of their high surface area, which can provoke cytotoxicity, oxi-
dative stress, and translocation to other tissues [17, 22, 37]. Their persistence may also cause 
chronic inflammation with possible carcinogenic effects and immune or neurodegenerative 
diseases [22]. Recent studies have reported that MPs have been detected in human placenta, 
blood, and lung tissue [27–29], increasing the urgency to understand the behavior of MPs, 
including their interactions, and find solutions to minimize their impact on ecosystems, 
organisms, and human health. 

Reducing plastic use is crucial to minimize this problem. Resolutions are being made 
regarding single-use plastics, and some countries have defined laws banning certain types 
of plastics. Resolutions such as taxing the production of single-use plastic (SUP) bags, 
charging for the use of SUP bags, assigning recycling targets to the manufacturer, and more 
radically, countries such as Jakarta have already banned the use of SUP bags completely, 
requiring the use of environmentally friendly bags [38]. The use of biodegradable plastics 
contributes to solving the plastic waste problem; however, suitable microorganisms must be 
present to ensure their degradation; otherwise, we will only address the problem [4]. It is 
crucial to harmonize policies, invest in alternative materials, and improve research on MPs, 
particularly in terms of ecotoxicity, namely the chronic effects on human life, which are still 
unknown. In addition, the focus should be on the pathways and interactions to find future 
solutions to minimize the impact of this problem.  

1.2	 Impact of MPs on the Environment 

Recent studies have focused on the effects of MPs on the ecosystems where they are spread 
(air, terrestrial, and aquatic). As physical–chemical properties change due to the natural 
aging process, researchers have driven their studies on the behavior and ability of MPs to 
transport pollutants (e.g., PAHs, PCBs, pesticides, etc.) [10, 20, 30, 33, 34]. Adsorption and 
absorption constitute the sorption process and consist of the transfer of chemicals from 
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liquids or gases to a solid, in this case MPs [39, 40]. The transfer of contaminants occurs 
due to interactions (van der Waals, ionic and steric forces, л–л interactions, and covalent 
bonds) with the surface of MPs, which is considered an adsorption process [39, 40]. Strong 
interactions between a low pollutant concentration and the surface of the adsorbent lead to 
adsorption. However, if the contaminant concentration is high, absorption occurs as soon as 
a large volume of pores is available to settle the pollutant molecules [39, 40]. Characteristics 
such as composition, size, shape, density, and chemical composition of MPs are key factors 
that promote the adsorption of MPs [40, 41], which may be changed by the aging processes 
that occur in MPs. However, environmental conditions (e.g., pH, temperature, salinity, and 
ionic strength) can also influence the adsorption process [42].

Studies have been carried out to predict the impact of the presence of MPs in differ-
ent organisms, from aquatic (e.g., crabs and fish) to terrestrial (e.g., earthworms, nema-
todes, and mites) organisms. Although the responses differ according to the test organism, 
researchers have shown that MPs can cause hazardous effects (e.g., oxidative stress, cytotox-
icity, and translocation to other tissues). Long-term contact and constant ingestion of MPs 
by organisms such as fish may cause effects along the food chain, leading to chronic inflam-
mation (e.g., of the lungs) and increased risk of cancer, immune or neurodegenerative dis-
eases, and metabolic disorders in humans [8, 22, 43, 44]. Furthermore, the harmful effects 
of MPs on other living organisms (plants and soil invertebrates) are of great concern [36].

Lei et al. investigated the effects of PS (diameter between 100 and 500 nm) on the sur-
vival rate, lifespan, motor behavior, movement-related neurons, and oxidative stress in 
Caenorhabditis elegans. After 3 days of contact, a decrease in the rate of survival, a large 
decrease in the organism length, and a decrease in the average life span of the nematodes 
were observed. In this study, it was also found that MPs can cause oxidative damage in nem-
atodes, and the size of the particles affects their toxicity, which has far-reaching effects [43]. 

HDPE particles can transport chlorpyrifos (CPF), a commonly used pesticide. When 
this combination is in contact with mussels for 21 days, changes in the biological responses 
can be observed, which are greater than those induced by any stressor individually, accord-
ing to the study by Fernándes et al. [31]. 

In a study performed by Bessa et al., 157 particles of MPs were detected, corresponding 
to 38 % of all fish, with 1.67 ± 0.27 (SD) MPs per fish, in three commercial fish species: sea 
bass (Dicentrarchus labrax), sea bream (Diplodus vulgaris), and flounder (Platichthys flesus). 
In addition, ecotoxicological studies need to be conducted to understand the risks to fish 
health and the consequences of consuming these fish in humans [20]. According to a review 
by Rakib et al., approximately 25 studies have reported various effects of MPs on different 
marine organisms, including ingestion, translocation, and respective impacts, reduction of 
the feed, oxidative stress or retention in the digestive tract, or even mortality of species [45].

1.3	 Pristine and Aged Microplastics

MPs are widespread in the atmosphere and in terrestrial and aquatic systems. After their 
release, they are subjected to natural phenomena that lead to aging [46]. Ultraviolet (UV) 
radiation, physical abrasion, chemical oxidation, and biodegradation cause physical and 
chemical changes to the MPs [46, 47]. Exposure to UV radiation, known as photooxidation, 
leads to rapid degradation of the polymer in the environment, resulting in color changes 
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and the appearance of cracks [48]. Although UV radiation is considered the main cause 
of aging of MPs, it is important to consider other phenomena that may play a role, such 
as mechanical stress or physical abrasion. Waves, tides, gravel, sand, stone, water flow, and 
other particles surrounding MPs can affect their physical properties and render them brit-
tle. This aging process can result in changes in crystallinity, thermal hydrophilicity, and 
degree of polymerization [46, 49]. Chemical reactions may also occur, promoted by reactive 
oxygen species (ROS) [50, 51]. Photooxidation may occur because of a chemical reaction 
between MPs and ROS produced from natural organic matter (NOM), NO−3, and CO2

−3. 
In addition, after exposure to sunlight, pigments can produce ROS through a series of 
reactions that can oxidize the polymer [50–52]. Weathering phenomena, such as UV light, 
mechanical erosion, or chemical reactions, can play an important role in the life cycle of 
MP, as they cause changes in polymer properties. 

The use of their aged in a natural environment was the better choice to study their 
interactions, but uncontrollable factors were associated with it. Therefore, researchers 
have focused on simulating the aging process in the natural environment of the labora-
tory, which although being more controlled may be less realistic. With constant changes 
in the environment and the emergence of new pollutants and possible new interactions, 
researchers have also focused on simulating environmental phenomena at the laboratory 
scale, such as photooxidation, mechanical stress, and chemical oxidation [53]. The devel-
opment of these laboratory-scale aging tests is important for predicting and determining 
the behavior of aged MPs compared to pristine MPs, as the process of aging is very slow 
in the real environment [53]. According to Liu et al., researchers are focusing on selecting 
the best laboratory technologies to increase the speed of the MP aging process. The most 
commonly used technology is light irradiation (66.7%), followed by chemical oxidation 
(16.7%), heat treatment, and microbial degradation (less than 26.6%) [52]. Despite the dif-
ficulty of the developed aging techniques, researchers have focused on understanding the 
significant changes in MPs after the aging process: physical changes, such as color changes, 
cracks on the surface of MP, or chemical changes, such as the differences between spec-
tra from the Fourier-transform infrared spectroscopy (FTIR) and Raman analysis, or even 
changes in crystallinity, such as an increase in melting temperature. Table 1.1 summarizes 
the significant changes found in MPs after the aging process in the laboratory, with differ-
ent changes showing the effects of aging processes. Understanding the behavior of MPs 
and their interactions can be complex, considering that mechanical agents, chemical, and 
biological reactions constantly occur in the environment. The change in properties has a 
significant impact on the adsorption behavior of MPs [54–57]. 

Adsorption studies were conducted with a focus on comparing the behavior of MPs in 
the pristine and aged states to understand the influence of altered properties. Zhang et al. 
studied the adsorption process of oxytetracycline in PS using purchased PS foams and aged 
PS foams made from plastic waste collected from coastal beaches. The influence of pH 
(between 2.0 and 10.0) and ionic strength (using sodium chloride, calcium chloride, and 
sodium sulfate) was tested to understand the effect on the adsorption process. The maxi-
mum adsorption capacity was observed at pH 5 for the beached PS samples, and stronger 
sorption of oxytetracycline in the MPs was observed in the presence of CaCl2. Based on the 
equilibrium isotherms, it was found that aged PS had a higher adsorption capacity than 
pristine PS (1,520 µg g−1 and 27,500 µg g−1, respectively) [58]. Fan et al. simulated the aging 
behavior of PS and polylactic acid (PLA) in a natural environment, exposing the MPs in a 
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Table 1.1  Physical and chemical changes of MPs after suffering an aging process.

Property Agent Changes References

Color Photooxidation Yellow, opacity [49, 64, 66, 95–98]

Morphology Photooxidation
AOP
Mechanical stress
Biodegradation

Cracks, flakes, 
roughness, 
biofilm 
colonization

[56, 66, 95–97, 99–104]

Particle size Photooxidation
AOP
Mechanical stress
Biodegradation

Decrease [49, 59, 86, 88, 89, 98]

SSA Photooxidation
AOP

Increase [33, 53–55, 58, 67, 84, 105]

Contact angle Photooxidation
AOP

Decrease [77, 99, 100, 105, 106]

Crystallinity Photooxidation
AOP

Increase 
Decrease 

[33, 56, 74]
[75, 100, 107]

Melting 
temperature

Photooxidation Increase/Decrease [59, 100, 103, 108]

Glass transition 
temperature

Photooxidation Changeable [59, 108–111]

Surface groups Photooxidation
AOP
Mechanical stress
Biodegradation

New peak/band 
formation

[67, 78, 79, 95, 103, 112, 
113]

CI Photooxidation
AOP
Mechanical stress
Biodegradation

Increase [50, 92, 100, 101, 106, 107]

O/C Photooxidation
AOP 
Mechanical stress
Biodegradation

Increase [53, 56, 84, 90, 98, 99, 106]

Adsorption 
capacity 

Photooxidation
AOP 
Mechanical stress
Biodegradation

Increase [47, 96, 101, 102, 106, 114, 
115]


