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Preface

The field of metal–oxide–semiconductor field-effect transistor (MOSFET) devices
has observed swift growth in the last decade. In recent years, scientists’ views on
the use of technology have increased. Nanotechnology is a technology that has
the potential to significantly impact almost all areas of human activity, raising
great hopes for finding solutions to the major needs of society. The fields of appli-
cation of research in nanoscience include aerospace, defense, national security,
electronics, biology, and medicine. In recent years, human knowledge has made
great progress through both theoretical analysis and experimental findings in the
area of nanoscience and nanoscale devices.

Nanoelectronic devices are the basis of today’s powerful computers and are
attracting many new applications, including electronic switching, sensing, and
other computational applications. However, our purpose is not to discuss specific
tools or applications. Rather, it is to illustrate the concept that has emerged in
the last two years to understand the flow of electricity at the atomic scale. This is
important not only for the creation of new nanoscale materials but also for the
insights it provides into some long-standing questions in transport and quantum
physics.

Reasonable attention has been given to editing this book to promote knowledge
exchange and collaboration among different stakeholders in the field of nanoscale
materials. Nano-devices include new and broad fields of activity such as physics,
chemistry, biology, and materials engineering focusing on the nanoscale. To
understand how these devices work, it is crucial to understand the structure,
properties, and quantum behavior of these devices.

Modern life is revolutionized by the advancements of complementary
metal–oxide–semiconductor (CMOS) technology. Performance of MOSFET has
been improved continuously at a dramatic rate via gate length scaling since
its invention. In order to serve the next-generation high-performance require-
ments with lower operating power, remorseless scaling of CMOS technology
has now reached the atomic scale dimensions. Conventional MOSFET scaling
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not only involves the reduction of device size but also requires the reduction in
the transistor supply voltage (V DD). With the reduction of V DD, the threshold
voltage (V th) must be scaled down simultaneously in order to attain reasonable
ON-state current, reduce delay, and maintain sufficient gate overdrive voltage.
As a consequence of scaling of device following Moore’s law, the channel length
of the MOSFET is reducing every year, causing short channel effects (SCEs).
Different strategies have been considered to surmount SCEs using different device
architectures and material compositions.

In this book, the problems associated with the emerging nanoscale MOSFET
devices and their trends are highlighted. This book is focused on the evaluation of
the present development of nanoscale electronic devices and the future projection
of device technologies. Basic device physics and MOSFET operation are presented
at the beginning. A widespread discussion on basics of MOSFETs and potential
difficulties related to scaling and its remedies is presented. Next, discussion on
the impact of high-k gate dielectrics in next-generation transistors is included.
The effects of trap charges on dielectric defects for multiple gate devices, strain
engineering for advanced devices like FinFETs, gate all around nanosheet
transistors, etc., have been discussed in different chapters. TCAD analysis is a
very important methodology for device performance analysis. TCAD simulation
is discussed for negative capacitance field-effect transistors (FETs) and their
linearity performance. Quantum-mechanical tunnelling effect for electrically
doped nano-devices is also included in the scope of this book. The principles and
operations of tunnel FETs, graphene-based FETs, and related issues are discussed.
Applications of GaN devices are considered for optoelectronics applications.
Performance analysis of nanosheet transistors and low-power circuit design
using advanced MOSFETs is also discussed. Finally, an FET-based biosensor with
negative capacitance is included.

Readers can feel pleasure in learning about nanoscale devices in real-world
applications. Throughout this book, one can discover the amazing developments
of nanoelectronics, its challenges, and its future prospects. We hope that this
book will appear as a one volume reference for postgraduate students, prospective
researchers, and professionals requiring knowledge for design of integrated
circuits using nanoscale devices.

Kalyan Biswas
Angsuman Sarkar
Kolkata, West Bengal, India

November 4th, 2024
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1.1 Introduction: Transistor Action

The human life of the modern generation has been revolutionized by the
progress of complementary metal–oxide–semiconductor (CMOS) technology.
Metal–oxide–semiconductor field-effect transistor (MOSFET) is one of the most
noteworthy inventions of the twentieth century. One important milestone in the
progress of semiconductor integrated circuits was the famous – Moore’s law [1].
Following Moore’s law, the performance of MOSFET has been improved continu-
ously at an intense rate through gate length scaling. To serve the next-generation
high-performance requirements with lower operating power, unrelenting scaling
of CMOS technology has now reached the atomic scale dimensions. The trend
will continue with emerging areas of applications such as the internet of things
(IoT), e-mobility, artificial intelligence, and 5G. The cutting-edge innovation in
MOSFET technologies is the most important and at the heart of these emerging
technologies. A schematic diagram of the Conventional Bulk MOSFET Structure
is shown in Figure 1.1.

1.2 MOSFET Scaling

This downscaling of dimensions of the device is critical to integrate the greater
number of devices in integrated circuits (ICs). As a consequence of the Moore’s
law, every year channel length of the MOSFET sinks, causing short channel effect
(SCEs). SCEs are affecting power consumption of the circuits [2–9]. The transis-
tor scaling target has been made reachable because of the advanced lithographic

Advanced Nanoscale MOSFET Architectures: Current Trends and Future Perspectives,
First Edition. Edited by Kalyan Biswas and Angsuman Sarkar.
© 2024 The Institute of Electrical and Electronics Engineers, Inc. Published 2024 by John Wiley & Sons, Inc.
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Gate
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Figure 1.1 Schematic diagram of the Conventional Bulk MOSFET Structure.

capability to make shorter/thinner channels. In the early stage, scaling was possi-
ble with conventional structures and material technology, but it is understood that
conventional scaling technology cannot continue forever. Therefore, investigation
of non-classical device structures became necessary.

1.3 Challenges in Scaling the MOSFET

Scaling of MOSFETS is not an easy task but faces lots of challenges. Normally,
six different short-channel effects can be distinguished such as “Sub-Threshold
Slope,” DIBL and threshold voltage roll-off, velocity saturation, hot carrier effects,
and direct source to drain tunneling [10–12].

As the SCEs set hurdles to device operation and degrade device performance,
these effects should be removed or minimized, so that a device with a shorter phys-
ical channel length can preserve the required device characteristics. Researchers
tried to overcome these problems by reducing the gate oxide thickness and the
depth of source/drain junction while reducing the gate length in conventional
bulk MOSFETs. But these scales reached the physical limit of dimension. As a
remedy, gate dielectric materials with higher permittivity were used. The use of
these high-k materials as gate oxide allowed for achieving smaller equivalent oxide
thickness with a thicker physical dimension. But shrinking of MOSFET to the
sub-10 nm scale is challenging and new technologies were necessary. As per ITRS
forecasts and published literature, it is understood that the main research is going
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on in two different directions: possible modification of the planar architecture and
use of non-planner 3D structure [13–17] to push for its physical limits, or a new
way of making transistors, such as devices based on III–V group materials, use
of nanomaterials and nanotechnologies like silicon nanowires, carbon nanotubes
(CNTs) or graphene, single electron transistors, and also some other emerging
devices such as quantum cellular automata and spin-based electronics.

1.4 Emerging MOSFET Architectures

For decades, traditional scaling techniques based on sinking its physical dimen-
sions have largely dominated the development path of MOSFETs. However, this
traditional scaling technique is not valid for emerging nanoscale devices. As device
scaling enters beyond the 22 nm node, various significant changes in terms of
device architecture and materials in the traditional MOSFET would be required for
the competent operation of the device and to extend Moore’s law [18–21]. To sur-
mount SCEs, researchers are employing different strategies for nanoscale devices.
The main approaches are (i) by employing different structures such as multigate
MOSFETs (ii) advanced device physics approaches, such as junctionless MOSFET,
tunnel FET (TFET), and (iii) different channel materials having higher carrier
mobility such as III–V-based materials, strained silicon, CNTs, Graphene, etc. for
continuing the progress in nanoscale.

1.4.1 Tunnel FET

To reduce power consumption in MOSFETs without degrading device perfor-
mance, operating voltage (V dd) and threshold voltage (V th) of the device need to
be scaled down. If V th is reduced keeping sub threshold swing (SS) of MOSFET
unchanged, the power consumption increases. The TFET, which is based on the
principle of band-to-band quantum tunneling, is one of the most favorable devices,
having a steep slope for applications in low-power circuits. The device structure
of a TFET differs from that of the conventional MOSFET as a type of doping in
the source region and drain region of TFET are of opposite types. A schematic
diagram of single-gate n-type TFET is shown in Figure 1.2. A positive voltage
in the gate and reverse bias between the source and drain is required to switch
the n-type device ON. It is a semiconductor device based on the band-to-band
tunneling principle of electrons rather than thermal emission. TFETs operate by
tunneling through the S/D barrier rather than diffusion over the barrier [22–31].
The device switches between ON-state as well as OFF-state at lower voltages than
the V dd of the MOSFET, making it a suitable choice for low-power consumption
applications in the era of emerging nanoscale devices. This type of device can
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Figure 1.2 Schematic diagram of tunnel FET.

provide extremely low OFF-current and steeper sub-threshold slope than con-
ventional MOSFET. Tunneling occurs for an electron between the valence band
of the semiconductor to the conduction band through a potential barrier without
having enough energy required for this transition, and this phenomenon can
only be explained by quantum mechanical physics. The output characteristics
of a TFET are dependent on the parameters such as the doping, the gate work
function, etc. Therefore, these parameters can be modified to obtain the desired
output characteristics of a TFET. However, from the fabrication point of view,
TFET faces a few challenges such as the fabrication of an ultra-thin body required
for robust electrostatics, formation of abrupt junction, III–V/high-k interface with
low trap density, etc.

Two-dimensional crystal semiconductors are being investigated as the mate-
rials of the channels for field effect transistors (FETs). The main advantages of
such 2D-transistors consist of outstanding electrostatic control of the gate termi-
nal because of the considerably higher surface-to-volume ratio, pristine surfaces
to confirm better interface quality with the insulators, and greater electrical con-
ductivity owing to the ballistic/quasi-ballistic transport. It also offers tunable elec-
tronic properties dependent on the layer and stacking providing further flexibility
in transistor design. These distinctive attributes offer the chance to acquaint with
2D materials in the design of TFET, which can concurrently combine the bene-
fits of greater electrostatic integrity and tunneling barrier engineering. As a result,
the arena of TFET design based on 2D materials has grown significantly in recent
years.

1.4.2 Nanowire FET

In the era of sub-10-nm technology nodes, cylindrical-shaped structures with
gates all around were proposed to provide better gate controllability on the
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Figure 1.3 Schematic 3D view and a cross-sectional view of a cylindrical FET.

channel and reduce “Short Channel Effects” [32–35]. In this structure, a gate
is wrapped around the cylindrical-shaped channel region and termed a silicon
nanowire FET (Figure 1.3). Nanowires can be fabricated with single-crystal
structures, controllable doping, and diameters as small as several nanometers.
Though the silicon nanowire transistors (SNWT) improves device performance,
the fluctuations in process parameters rigorously affect the device characteristics.
As per the projection of the International Technology Roadmap for Semicon-
ductor (ITRS), the multiple-gate SOI MOSFETs will be able to scale up to
sub-10 nm dimensions and are capable candidates for nanoscale devices in the
future.

1.4.3 Nanosheet FET

Nanosheet FETs are considered as a transistors of next-generation technology,
which have been broadly adopted by the industry to carry on logic scaling beyond
5 nm technology nodes, and beyond FinFETs. Scaling of FinFET beyond 7 nm
node results worsened SCEs, forced them to move from tri-date to gate all-around
structures. Among different gate all-around structures, wider nanosheets provide
higher “ON” current and better electrostatic control [36]. FinFETs were the first
architectural change of devices in transistor history and gate-all-around nanosheet
FETs are the milestones in the history of transistor devices as they utilize the com-
plete architectural change. To obtain the full advantages of nanosheet FETs, mul-
tiple nanosheets should be stacked on one another. The channel thickness during
the stacking is fully dependent on the lithographical limit of the fabrication pro-
cess. Induction of strain to increase hole mobility has also been adopted recently
to improve the device’s performance (Figure 1.4).
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Figure 1.4 Schematic diagram of a gate-all-around nanosheet FET [36]/MDPI/CC by 4.0.
Cross section view across a) source-drain region b) gate region.

1.4.4 Negative Capacitance FET

The negative capacitance field effect transistor (NCFET) has become a good solu-
tion for extending Moore’s Law due to its process compatibility, high on/off current
ratio, and low subthreshold swing. In these devices, a layer of ferroelectric mate-
rial is sandwiched between the gate oxide and gate metal and utilizes the property
of polarization inversion of the ferroelectric material under the influence of gate
voltage to provide negative capacitance (Figure 1.5).

Additionally, the use of ferroelectric layers, for example, NCs in the gate stack,
helps to reduce the sub-threshold slope of the FET to less than the theoretical limit
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Figure 1.5 (a) Schematic diagram of the DFR-negative capacitance FET, (b) equivalent
capacitance model of the device [37]/MDPI/CC by 4.0.
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of 60 mV/decade [37]. Various additives such as Al (HAO), Zr (HZO), and Si (HSO)
in hafnium-based ferroelectric materials have also been considered to improve the
performance of NCFETs.

1.4.5 Graphene FET

CNTs are planar graphite sheets known as graphene that are wrapped into tube
shapes. CNTs have outstanding electrical characteristics and they can be fabri-
cated with very small dimensions, as small as 4–8 Å in diameter. The encouraging
electrical properties of a CNT depend on its diameter and the wrapping angle of the
graphene. Theory shows that the structure of CNTs may be expressed by a chiral
vector linked with two integers (n, m). CNTs can be metallic or semiconducting
depending on the difference of values in fundamental tube indices (n, m), and
their bandgap is dependent on the diameter. The analysis also indicates that semi-
conducting CNTs have very high low-field mobility, large current-carrying capa-
bility, excellent thermal and mechanical stability, and high thermal conductivity
[38–40]. Because of their superior material properties, nanotubes are attractive
as future interconnects and show enormous advantages as a channel material of
high-performance MOSFETs. Though CNT-based MOSFETs promise great perfor-
mance lots of processing issues remain such as fabrication of identical nanotubes,
control of abrupt doping profiles, etc. A sketch of the graphene FET is shown in
Figure 1.6 [39].

1.4.6 III–V Material-based MOSFETS

As the performance improvement of silicon-based MOSFETs reaches its limit of
scaling. Interest has been greatly increased in introducing non-silicon materials as
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Figure 1.6 A sketch of the graphene FET [39]/MDPI/CC by 4.0.
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a channel. III–V-based MOSFETs are considered one of the most efficient devices
for high-performance digital logic applications. Currently, III–V MOSFETs are
expected to allow higher drive currents and greater flexibility than silicon-based
MOSFETs. A wide range of compound semiconductor materials can be obtained
using elements from the Periodic Table’s columns III and V, like GaAs, InP, and
InxGa(1−x)As. The main parameter which defines the important characteristics of
these materials is the bandgap energy. The integration of Ge/III–V and Si CMOS
platforms is promising in providing low-power integrated circuits in 10 nm tech-
nology nodes and beyond [41]. One of the key challenges of the III–V MOSFET
technology is thermodynamically stable, high-quality gate dielectrics that passi-
vate the interface states.

1.4.7 HEMT

In recent times, high electron mobility transistor (HEMT) accomplished excessive
interest due to its superior electron transport. HEMT devices are facing tremen-
dous challenges and replacing traditional field-effect transistors (FETs) because
of their outstanding performance at high frequencies [42]. HEMT technology
was first innovated by T. Mimura who was involved in compound semiconductor
device development at Fujitsu Laboratories Ltd, Japan [43]. HEMT devices incor-
porate heterojunctions formed at the junction of two different bandgap materials
in which electrons are trapped in quantum wells to avoid scattering by impurities.
Thanks to their higher electron mobility and dielectric constant, GaAs having
direct bandgap have been used in high-frequency applications and the field of
optoelectronic integrated circuits. AlGaAs having nearly similar lattice constant
but larger bandgap in comparison to GaAs, are considered the most suitable
contender for barrier material and one of the most prevalent choices to be used
in HEMTs [44–46]. However, another excellent material that has been widely
studied for HEMT devices in recent years is AlGaN/GaN. AlGaN/GaN HEMTs
can operate at very high frequencies with high breakdown strength and high
saturation electron velocity. GaN also shows very robust piezoelectric polarization
that helps to accumulate huge carriers at the interface of AlGaN/GaN. The per-
formance of the MEMS devices depends on many factors such as a combination
of material layers, concentration of doping, and different layer thicknesses, which
provide flexibility in the device design process.

1.4.8 Strain Engineered MOSFETs

Strained silicon technology based on the improvement of carrier mobility under
the influence of axial strain. Proper use of strain in the silicon channel has
emerged as a powerful technique for improved MOSFET performance [47].


