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1

Remote Collaboration on Physical Tasks

1.1 Introduction

Remote collaboration on physical tasks (or remote guidance/remote assistance)
typically involves one or more remote helpers guiding one or more local workers
to work collaboratively on the manipulation of physical objects [1, 2]. In this type
of remote collaboration, both the workers and helpers are physically distributed.
On the one hand, the workers have direct access to the physical objects to be
worked on but do not have full skills or knowledge on how to operate or manipu-
late them; thus, they need to receive help from the remote helpers. On the other
hand, the remote helpers know how, but do not have physical access to the objects
[3]. Technologies that support remote guidance can greatly improve the productiv-
ity and safety of tasks by allowing experts to provide timing guidance and training
to individuals remotely without having to travel on-site. It has a wide range of
applications in industrial domains (e.g. [4]) and has the potential to revolutionize
those industries in terms of how the business operates and how service can be pro-
vided to their customers, from manufacturing and construction to healthcare and
education, to name a few.

With recent advances in networking, augmented reality (AR), virtual reality
(VR), mobile and wearable technologies, it has become increasingly possible in
practice to enable helpers to remotely guide individuals in performing complex
physical tasks with precision and efficiency [5]. Given the increasing demand for
remote guidance technologies from industries and increasing interest and effort in
research from academics, this research book explores the latest and typical devel-
opments in remote guidance technologies and provides comprehensive reviews
of the current state-of-the-art research in this field, including our own research
findings and developments in the past 15 years.

Computer-Supported Collaboration: Theory and Practice, First Edition.
Weidong Huang, Mark Billinghurst, Leila Alem, Chun Xiao, and Troels Rasmussen.
© 2024 The Institute of Electrical and Electronics Engineers, Inc. Published 2024 by John Wiley & Sons, Inc.
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1.2 Remote Collaboration in Perspective

The rest of the book has 12 chapters, each focusing on a specific aspect of
remote collaboration research. Both technology and communication are essential
elements of remote collaboration, and understanding whether and how tech-
nology impacts communication behaviors is important for the design of remote
collaboration systems. However, this is an area that has not been well-researched.
The technology impact can be predicted using communication models. Thus, we
dedicate the next chapter of our book to the discussion of how existing commu-
nication models can be used to predict the impact of different AR technologies in
remote collaboration and if a new communication model needs to be developed.
More specifically, we provide a review of various existing communication models
and show how they can be used to analyze communication in both AR and
non-AR interfaces for remote guidance on physical tasks. We also discuss the
limitations of current models, identify research gaps, and explore possible further
developments.

The third chapter provides a review of communication cues in remote collab-
oration. It starts with an overview of the research landscape over the past three
decades and then investigates the communication context based on which a
remote collaboration is conducted. We categorize communication cues in remote
collaboration systems as verbal, visual, haptic, and empathic communication cues
and review the systems and experiments that studied each of them to identify
advantages and limitations under different situations. Finally, we summarize and
address the challenges of multimodality communication modeling and system
design for high usability and suggest potential future research directions for
augmented remote collaboration system design aiming at effectiveness, reliability,
and ease of use.

For remote guidance on physical tasks, in addition to verbal communications,
how to convey other communication cues effectively has been researched
extensively. Given the importance and variety of possible communication cues
as outlined in the third chapter, we presented a review in the fourth chapter
to summarize the communication cues being used, approaches that imple-
ment the cues, and their effects on remote guidance on physical tasks [6].
In this chapter, we categorize the communication cues into explicit and
implicit ones and report our findings. Our review indicates that a number of
communication cues have been shown to be effective in improving system
usability and helping collaborators to achieve optimal user experience and
task performance. More specifically, there is a growing interest in providing a
combination of multiple explicit communication cues to cater for the needs of
different task purposes and in providing combination of explicit and implicit
communication cues.
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Although technology for remote collaboration is becoming increasingly more
essential and affordable, and eye gaze is an important cue for human–human
communication, there is much that remains to be done to explore the use of gaze
in remote collaboration, especially for collaboration on physical tasks. Recent
advancement in eye tracking technologies enables gaze input to be added to col-
laborative systems, especially for remote guidance and is expected to bring more
promising opportunities to reduce misunderstanding and improve effectiveness.
The fifth chapter surveys publications with respect to eye tracking-supported
collaborative physical work under remote guidance. We categorize the prototypes
and systems presented according to four metrics ranging from eye-tracked subjects
to gaze visualization. Then, we summarize the experimental and investigation
findings to have an overview of the eye tracking mechanism in remote physical
collaboration systems, as well as the roles that eye gaze and its visualization play
in common understanding, referential, and social copresence practices.

The sixth chapter provides a summary of how to conduct evaluation studies of
AR-based remote guidance systems. As previously discussed in this book, com-
munication is an essential part of remote collaboration, and many technologies
have been developed to enable people to better connect and communicate with one
another. However, the impact of these technologies can only be measured through
conducting evaluation studies and measuring how the technologies change com-
munication behavior between real people. Therefore, the purpose of this chapter
is to help the readers become more proficient in their own evaluation studies and
create research outputs that will inspire others in the field. More specifically, in
this chapter, we present evaluation case studies, derive a number of design guide-
lines, and discuss methods that can be used to create robust evaluation studies.
Finally, this chapter concludes with a list of possible research directions.

From the seventh chapter, we introduce a range of typical remote guidance
systems. These systems were developed with different configurations to meet
different collaboration requirements and to serve as platforms for us to inves-
tigate specific research questions. First, in this chapter, we present a remote
guidance system called HandsOnVideo [7], a system that uses a near-eye dis-
play to support mobility and unmediated representations of hands to support
remote gestures, enabling a remote helper guiding a mobile worker working in
nontraditional-desktop environments. The system was designed and developed
using a participatory design approach, which allowed us to test and trial a number
of design ideas. It also enabled us to understand from a user’s perspective some of
the design tradeoffs. The usability study with end users indicated that the system
is useful and effective. The users were also positive about using the near-eye
display for mobility and instructions and using unmediated representations of
hands for remote gestures.

The eighth chapter introduces HandsInAir [8], a wearable system for remote
guidance. This system is designed to support the mobility of the collaborators
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and provide easy access to remote expertise. HandsInAir draws on the richness of
hand gestures for remote guiding and implements a novel approach that supports
unmediated remote gestures and allows the helper to perform natural gestures by
hands without the need for physical support. A usability study was also conducted
demonstrating the usefulness and usability of HandsInAir. More specifically, the
participants were positive about the mobility support provided by the system to
the collaborators. According to their feedback, the mobility support allows work-
ers to access a remote helper more easily. Also, helpers are enabled to continuously
engage with the system and their partner when they move around during the guid-
ing process. Participants who played the role of helper also considered gesturing
in the air as being intuitive and effective.

The ninth chapter introduces HandsInTouch [9], which supports a unique
remote collaboration gesture interface by including both raw hand gestures
and sketch cues on a live video or still images. We also conducted a user study
comparing remote collaboration with the interface that combines hand gestures
and sketching (the HandsInTouch interface) to one that only used hand gestures
when solving two tasks: Lego assembly and repairing a laptop. It was found
from the study that adding sketch cues improved the task completion time,
only with the repairing task, as this had complex object manipulation, and that
using gesture and sketching together created a higher task load for the user. The
implications of our findings for system design and application are also discussed
in the chapter.

The tenth chapter describes Handsin3D [10], a system that uses three-
dimensional (3D) real-time capturing and rendering of both the remote
workspace and the helper’s hands and creates a 3D shared visual space as a result
of colocating the remote workspace with the helper’s hands. The 3D shared space
is displayed on a head-tracked stereoscopic hand-mounted display (HMD) that
allows the helper to perceive the remote space in 3D as well as guide in 3D. A user
study conducted with the system reveals that the unique feature of HansIn3D is
the integration of the projection of the helper’s hands into the 3D workspace of
the worker. Not only does this integration gives users flexibility in performing
more natural hand gestures and ability in perceiving spatial relationship of objects
more accurately but also offers greater sense of copresence and interaction.

The eleventh chapter introduces a component-based tailorable remote assis-
tance system called RAK. The design and development of RAK were informed by
the results and findings of an interview study with employees of a manufacturing
industry. Then, an experimental simulation with RAK that was conducted at a
technical college for plastic manufacturing was briefly described. A large part
of the chapter was devoted to our discussion and reflection on the results and
observations of the user studies. It is encouraging that we are able to derive some
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meaningful and unexpected new insights, which could guide the directions of
future work. These include the tailoring behaviors of both workers and helpers,
sharing machine sound from the workspace to the helper, and supporting
workspace awareness with multi-camera setups.

The twelfth chapter introduces two multi-camera AR research prototypes,
SceneCam and CueCam. These two systems are developed to help collaborators
maintain awareness of each other in large workspaces. Multi-camera remote
assistance has some benefits over using one camera from the point of view of
the worker, most notably the view independence of the helper. However, in this
chapter, we point out the challenges that stand in the way of obtaining good
workspace awareness when using multiple cameras and demonstrate with the
two systems how AR visualization and tracking can be used to address these
awareness challenges in various ways.

The final chapter introduces some industrial systems that support remote guid-
ance on physical tasks. Each of these industrial systems was designed to meet
specific design and/or business purposes. Current challenges and possible future
directions are also discussed. These include ergonomically tested devices and pri-
vacy and ethical aspects of remote guidance, network connection, and information
delay, reproducing the environment of face-to-face collaboration for remote col-
laboration, and replacing a communication cue with another cue of a different
modality. Apart from these topics, the chapter concludes the book with other pos-
sible directions being mentioned, including artificial intelligence and cloud-based
remote guidance support, embedment, and integration of cognitive, physiological,
empathic, and multimodal communication cues, investigation of possible effects
of human factors, language, social and cultural factors, and more rigors and empir-
ically validated evaluation frameworks, design principles, metrics, and method-
ologies for remote collaboration on physical tasks.

1.3 Book Audience

This book is for researchers, engineers, scientists, and practitioners who are
interested in the research of remote collaboration and its potential applications
in various industrial domains. Academics and postgraduate students in science
and engineering will also find this book useful as a comprehensive reference
book. It provides a comprehensive overview of and detailed insights into the
current state-of-the-art research and the potential future directions for the topic.
We hope that this book will inspire new research and innovation, and ultimately
lead to new theories and development of more effective and efficient remote
collaboration systems and tools to meet real-world needs.
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2

Communication Models for Remote Guidance

2.1 Introduction

Communication is an essential part of remote collaboration, so understanding the
impact of technology on communication is important in the system design process.
For example, understanding how communication will change if one person can-
not see what their remote collaborator is doing or if they have the ability to point
or draw in their field of view. One way to do this is by using communication mod-
els; these are theoretical frameworks that can be used to predict communication
behaviors when people use different collaboration technologies.

One important element of remote collaboration is to understand the impact of
technology on communication behaviors. For example, Whittaker reviews using
audio only to audio and video conferencing in a collaboration task and finds that
people performed equally well but had very different communication patterns [1].
Previous researchers have developed a range of different communication models
to explain how people communicate with one another and to predict the impact of
technology on remote collaboration. For example, Clark and Brennon’s grounding
model of communication [2] has been used to predict communication behavior in
video conferencing, especially when compared to audio-only conferencing [3].

In this book, our main focus is on Augmented Reality (AR), a collection of dis-
play, input, and tracking technologies that can be used to seamlessly overlay video
imagery in the real world [4]. The ability to provide virtual visual and spatial cues
makes AR an ideal technology for enhancing face-to-face and remote collabora-
tion [5]. Previous collaborative AR systems have overlaid virtual video of remote
collaborators in a user’s real space [6], used shared virtual content to enhance
face-to-face collaboration [7], and enabled a remote user to place virtual cues in a
local person’s workspace [8]. Studies with these systems have found that remote
people feel a higher degree of social presence when using AR than when using
video conferencing [6], they collaborate more naturally [9], and use behaviors sim-
ilar to face-to-face collaboration [7].

Computer-Supported Collaboration: Theory and Practice, First Edition.
Weidong Huang, Mark Billinghurst, Leila Alem, Chun Xiao, and Troels Rasmussen.
© 2024 The Institute of Electrical and Electronics Engineers, Inc. Published 2024 by John Wiley & Sons, Inc.
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In this chapter, we discuss how existing communication models can be used
to predict the impact of different AR cues in remote collaboration and if a new
communication model needs to be developed. Unfortunately, this is an area that
has not been well-researched. Despite the potential of AR for remote collabora-
tion, there are relatively few formal user studies conducted with collaborative AR
systems. For example, In a survey of all AR user studies conducted between 2005
and 2014, Dey et al. [10] found less than 5% of studies involved collaborative sys-
tems, and very few of those collected communication measures. Marques et al. [11]
suggested that there is “… minimal support of existing frameworks and a lack of
theories and guidelines to guide the characterization of the collaborative process
using AR.” So, there has been relatively little previous work done on exploring
communication models in AR for remote collaboration, and there is a need for
more research on this topic.

There are many different types of collaborative AR systems, but the focus of this
chapter is specifically on head-worn AR systems for remote collaboration on phys-
ical tasks. A typical example is a system that uses a see-through head-mounted
display (HMD) with a camera mounted on it that allows a local worker to stream a
view of their workspace to a remote helper. The remote helper in turn can add vir-
tual content to the local worker’s view to help assist them with the physical task
that they are doing (see Figure 2.1). Figure 2.1a shows a typical version of such
a system with a depth-sensing camera added to an Epson AR display. Figure 2.1b
shows the view through the AR HMD and the remote expert view, where the expert
is drawing on the live video feed to provide AR visual cues back into the local work-
ers’ view. This type of system could be used in many applications, such as a remote
expert helping a mechanic fix a car or an expert surgeon remotely assisting a novice
doctor.

(a) (b) (c)

Figure 2.1 A simple example of an HMD-based collaborative AR system. (a) The HMD
with depth-sensing camera attached, (b) remote expert view with live annotation, (c) AR
view.
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There are many examples of research that have a similar setup, such as
[6, 12–16]. This type of configuration is also becoming increasingly common
in industrial applications. For example, Microsoft’s Remote Assist application
uses the Hololens2 AR HMD to allow a local worker to collaborate with remote
helpers [17]. Remote Assist streams the Hololens2 camera view to one or more
remote users viewing the content on the web, who are then able to talk to the
local worker, see what they are seeing, and place virtual arrows or other cues in
the field of view.

Although not widely used, examples of systems like this are not new. Research
on AR systems for remote collaboration dates back to the 1990s with the Shared-
View work [18], and British Telecom’s CamNet system [19]. Since then, dozens
of research papers have been published, but there have been relatively few stud-
ies of these systems from a communications perspective. Being able to evaluate
this research from a communications perspective will help identify the research
areas that should be further investigated, provide guidelines for improving the user
experience, and establish the limitations of the current communication models.
Just as using communication models improved video conferencing, the same type
of approach could be used to improve AR systems for remote collaboration.

In this chapter, we review various communication models and show how they
can be used to analyze communication in different AR interfaces for remote
guidance on physical tasks. In the remainder of this chapter we first provide
a historical review of communication models, especially focusing on remote
communication (Section 2.2). Next, we show how communication models have
been applied to analyze non-AR remote collaborative systems (Section 2.3)
and research on the application of communication models to collaborative AR
(Section 2.4). In Section 2.5, we discuss the limitations of current communication
models and explore how they could be extended to accommodate all of the
communication affordances of AR systems for remote assistance. Finally, we
identify the research gaps that should be explored in the next generation of
collaborative AR systems (Section 2.6).

The goal of this chapter is to provide the reader with enough understanding of
communication models that they can use to predict the impact of various technol-
ogy elements on AR systems for remote collaboration. This should enable them to
develop better systems and to improve their own research in this area.

2.2 Overview of Communication Models

Communication theories attempt to describe and explain how people share knowl-
edge and information with each other. Communication models are formalized
concepts of the information-sharing process. They can be simple or complex and
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there have been a wide variety of models developed. In this section, we provide a
quick overview of some of the most important historical communication models.

Formal models of communication date back thousands of years to Aristotle and
his work on rhetoric [20]. In this classic work, he proposed a simple communica-
tion model with three parts: a speaker, a message, and a listener. Each of these parts
is essential. For example, a speaker and their message do not communicate if there
is no listener. These three elements of speaker, message, and listener have been
used in many subsequent models, with Kumar noting that “Western theories and
models of communication have their origin in Aristotle’s Rhetoric” ([21], p. 16).

In a similar way, Green et al. [22] present a simple human-to-human communi-
cation model that has three key components:

● The communication channels available.
● The communication cues provided by each of these channels.
● The affordances of the technology that affect the transmission of these cues.

They say that there are three main types of communication channels available:
audio, visual, and environmental, where visual and audio cues are those that can
be seen and heard, and environmental channels support interactions with the
surrounding world. Depending on the communication medium, different commu-
nication cues may be able to be transmitted between collaborators. For example,
using text chat will enable text messages to be sent between people but will prevent
the communication of audio or environmental cues.

In face-to-face communication, a wide variety of communication cues are used
when people collaborate together. These can be classified into Visual, Audio, and
Environmental cues (see Figure 2.2). Audio cues include speech, paralinguistic,
para-verbals, prosodics, intonation, and other types of audio. Visual cues are those
generated by the user and include gaze, gesture, facial expression, and body posi-
tion, among others. Finally, environmental cues include actions of the user in the
environment to support communication, such as object manipulation, writing or

Audio

Environmental

Visual
Speech

Paralinguistic

Para-verbals

Prosodics

Intonation

Object manipulation

Writing/drawing

Spatial relationship

Object presence

Gaze

Gesture

Face expression

body position

Figure 2.2 Face-to-face communication cues.
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Communication space

Communication space

Task space

Task space

(a) (b)

Figure 2.3 Introducing a separation between task space and communication space.
(a) Face-to-face collaboration with task space a subset of communication space.
(b) Remote collaboration with task space separate from the communication space.

drawing, object presence, and the spatial relationships between objects, among
others. One of the goals of a communication model is to understand how variation
in these elements can affect communication.

In addition to using a range of different communication cues, when people are
collaborating on a task, there is a distinction between the task space and commu-
nication space (Figure 2.3a). The task space is the physical workspace that people
are focusing on to complete a particular task, while the communication space is
the space where people are able to see each other and share communication cues.

When people are collaborating face to face they can easily see each other and the
range of different communication cues being used, so the task space is a subset of
the communication space (Figure 2.3a). Ishii describes this as seamless commu-
nication because there is no functional separation between the task and commu-
nication space [23]. However, when people are working remotely, the task space
is often separated from the communication space (see Figure 2.3b). For example,
when video conferencing, people may have the face of their collaborator on one
screen, while looking at a shared document on another. In this case, it is impossi-
ble to see many of the remote collaborator’s communication cues at the same time
as looking at the task space. So, there is an artificial seam between the communi-
cation space and task space. This is the type of impact of remote communication
technology that needs to be predicted through communication models.

Green et al. [22] point out that the benefit of communication models is that they
can be used to predict collaborative behavior and the impact of technology on col-
laboration. For example, if two people are talking over the phone, they are likely to
use more verbal cues than if they were using a video conferencing link capable of
sharing audio and visual cues. In the case of text-only communication, communi-
cation is reduced to one content-heavy visual channel, with a number of possible
effects, such as less verbose communication, use of longer phrases, increased time
to reach grounding, slower communication, and fewer interruptions.
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2.2.1 Linear Communication Models

Most communication models trace their roots back to Shannon and Weaver’s 1949
linear communication model [24]. Their model has a source, a transmitter, a sig-
nal, a receiver, and a destination (see Figure 2.4). Following Aristotle, the source is
the equivalent of the speaker, and the destination is the same as the listener. Aris-
totle’s message gets converted into a signal at the transmitter. This signal is called
a sent signal, and while it is being transmitted, noise is added to it, resulting in
the received signal that reaches the receiver. For example, applying this model to
a telephone call, the speaker’s voice is converted to an electrical signal conveyed
over telephone lines, but the signal is degraded by additional noise in the telephone
line that can make it difficult for the listener to hear.

The Shannon and Weaver communication model is unique as it was initially
developed to describe communication over technology, namely telephones and
radios. Shannon was focusing on the noise caused by the technology and correctly
decoding the sender’s message. Although this model was designed for telecommu-
nication, it has been widely used in other areas.

Around the same time, Berlo [25] developed a model that he described as “a
model of the ingredients in communication.” It had four main parts: a source, a
message, a channel, and a receiver (see Figure 2.5). The source and receiver were
identical, with both having the same five characteristics: communication skills,
attitudes, knowledge, social system, and culture. The message was composed of
five elements: structure, content, treatment, and code, while the channel had the
five senses: seeing, hearing, touching, smelling, and tasting.

Berlo believed that for effective communication to take place, the source and
receiver had to be at the same level, such as having the same communication skills
or similar knowledge. However, there are some limitations to this model, includ-
ing not considering noise, having a lack of feedback, and it is a linear model. Most
significantly, it assumes that people need to have the same knowledge or skill level
for effective communication, which very rarely happens in everyday life.
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Figure 2.4 The Shannon and Weaver communication model.


