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Preface 

On the Euclidean space, the square root of an elliptic system is a well-studied object, 
in particular due to the solution of the Kato square root conjecture. However, as was 
remarked by Lions back in the 1960s, in applications it is likewise important to 
study systems that are posed on a rough open set equipped with mixed boundary 
conditions. 

The present monograph describes the author’s journey and contributions to 
the last raised question. It combines tools from harmonic analysis, interpolation 
theory, potential analysis, function spaces, and many more to investigate the square 
root of an elliptic system in so-called locally uniform domains. The Kato square 
root property is established and corresponding estimates are extended to Lebesgue 
spaces in an optimal range of exponents. 

Even though the solution of the Kato square root problem in locally uniform 
domains is the central goal of this monograph, other tools and developments in 
the treatment of mixed boundary conditions find their spot in this book. Thus, this 
monograph is supposed to be a gentle starter for the reader to discover these topics. 

Delft, Netherlands Sebastian Bechtel 
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Chapter 1 
Introduction 

Taming non-smoothness has been a major theme in the analysis of partial differential 
equations and other branches of analysis in the past decades. This monograph grew 
out of the PhD thesis of the author and presents their contribution to the field in a 
streamlined way. The content of this book is strongly based on the publications [12– 
16] by the author together with his colleagues R. Brown, M. Egert, R. Haller, and 
P. Tolksdorf. Occasionally, the results in these articles are formulated in a more 
general manner. We tried to reduce technical difficulties as much as possible so that 
the reader gets an introduction to state-of-the-art results for square roots of elliptic 
systems in open sets with the least technical overhead possible. 

Rough Geometry Let us begin with a glance on non-smooth geometry. A first 
fundamental question is the following: how could one measure the smoothness of 
an open set? Certainly, there is no single answer to this question. For instance, one 
may take into consideration the regularity of its boundary, either considered as being 
locally the graph of a function or as the boundary of a manifold with boundary [38]. 
Also, there are purely measure-theoretic concepts. For the set itself, a common 
condition is the interior thickness condition, which is tightly connected to the study 
of Sobolev spaces on an open set [41], but there are also conditions for the boundary 
like the notion of Ahlfors–David regularity. Besides that, there are involved metric 
conditions like the .ε-cigar condition of Jones [47], corkscrew conditions, and many 
more. 

As was just mentioned, there is a deep connection between concepts in rough 
geometry and the theory of Sobolev spaces. In the smooth case, many properties 
and constructions can be performed by “flattening the boundary” and working in the 
regular configuration of a halfspace, where simple reflection arguments are feasible. 
In the non-smooth case, a considerably more involved usage of the geometry is 
needed. Examples of this can be found in the works of Calderón [22] and Jones [47] 
on extension operators. The work of Jones already allows one to treat very irregular 
configurations like the Koch snowflake (Fig. 2.1). But there are limits, for instance, 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024 
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2 1 Introduction

an open set has to be interior thick at least to allow for the construction of an 
extension operator for Sobolev spaces [41]. 

To establish further results in non-smooth geometry and in the theory of Sobolev 
spaces, it is often handy to have notions of (fractal) dimension at hand. In fact, there 
is a whole zoo of such dimensions, including that of Aikawa, Assouad, Hausdorff, 
and many more [33]. They are of different nature, for instance, the Aikawa 
dimension is Euclidean, and the Assouad dimension is purely metric. Furthermore, 
there are different purely metric dimensions, which emphasize different aspects, 
and hence might not coincide for certain sets. But there are also prominent 
examples where different notions do coincide [53]. Often, these bridges lead to deep 
insights! And even if different notions are not equivalent, they occasionally obey 
interesting relations, for example, the relation between porosity and the dimension 
of Assouad [55]: a set is porous if and only if its Assouad codimension is strictly 
positive. 

Fractional dimensions are also tied to the study of Hardy’s inequality [28, 31, 40, 
52] and fractional variants thereof [25, 29], the study of characteristic functions as 
pointwise multipliers [34, 66] and their regularity as functions [67], or the existence 
of traces of almost everywhere defined functions [1, 48]. 

Boundary Conditions All of the three mentioned tools—Hardy’s inequality, 
characteristic functions as pointwise multipliers, and trace operators—can be used 
to introduce homogeneous Dirichlet boundary conditions, which is to say that a 
function vanishes “in some sense” on the boundary. Observe that for the existence 
of a trace operator, some regularity of the function and the boundary are a priori  
needed, whereas it is always possible to write down a Hardy’s term and ask for 
its finiteness. This already highlights that different concepts for the treatment of 
boundary conditions might not even be comparable, yet coincide in general, and 
each of them has advantages and disadvantages. 

We will use two out of the three methods in the interpolation of Sobolev spaces 
with boundary conditions in Chap. 10. For the usage of pointwise multipliers, we 
refer the reader to [15]. The boundary conditions of the spaces under consideration 
in the chapter on interpolation are always formulated using a trace operator. We 
will see that this allows to apply simple functorial arguments in the treatment of 
these spaces. Nevertheless, Hardy’s inequality is a handy way to encode a vanishing 
trace condition in a manner that is accessible to direct computations, and we are 
going to exploit this in the interpolation of Sobolev spaces in Sect. 10.4. Another 
example of such an application of Hardy’s inequality is the “special” Calderón-
Zygmund decomposition shown in Chap. 18. In Chap. 15, a fractional Hardy term 
is even turned into the definition of a “vanishing trace” for functions with a fractional 
order of Sobolev regularity, and a fairly general extension result without usage of 
localization techniques is established. 

Besides homogeneous Dirichlet boundary conditions, there are other boundary 
conditions that one could impose. For example, one could demand that a function 
does not vanish at the boundary, but attains a prescribed function defined on the 
boundary, which corresponds to non-homogeneous Dirichlet boundary conditions.
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One could also require that the gradient of the function satisfies some condition 
on the boundary. As with the trace operator, it is again a nontrivial question 
how such a condition even has to be understood. In the further course of this 
monograph, questions of this kind will not be addressed. Instead, a third type of 
boundary condition is in the spotlight: we speak of mixed boundary conditions if a 
homogeneous Dirichlet boundary condition is imposed on a portion of the boundary 
and natural boundary conditions are imposed on the rest of the boundary. In fact, 
mixed boundary conditions are one of the driving motives of this work and play a 
role in (almost) every chapter of this book. 

The framework of Brewster, Mitrea, Mitrea, and Mitrea [21] could have been 
considered the state of the art in the treatment of mixed boundary problems. They 
use the .(ε, δ)-domains introduced by Jones in a clever way as “charts” around the 
Neumann part to localize the mixed boundary constellation. This way, they can, for 
example, craft an extension operator for their geometric framework. In Chap. 4, we  
also use Jones’ ideas to build an extension operator in the case of mixed boundary 
conditions. However, this operator is not based on localization but modifies the 
original construction of Jones. To get good estimates for his extension operator, 
Jones uses connecting chains of cubes between so-called interior cubes. In our 
construction, there are interior cubes, which are not connected to other interior 
cubes, but “escape” the underlying set through the Dirichlet boundary part. The 
whole construction is highly technical, but it allows to consider constellations which 
are irregular arbitrarily close to the interface between Dirichlet and Neumann part, 
and hence are not feasible by localization methods. 

The central concept in the construction of this extension operator, but also for 
all other topics of this monograph, are locally uniform domains near the Neumann 
boundary part N . They are so important for us that we dedicate Chap. 2 to them. 
They were introduced in [16] by the author together with M. Egert and R. Haller to 
study Kato’s square root property (we are going to come back to this in a minute). 
Roughly, these are open sets in which point close to N that are nearby to each other 
can be connected by an .ε-cigar that is taken with respect to N . 

Differential Operators with Rough Coefficients and the Kato Square Root 
Problem We leave the geometric aspects aside for a moment to have a look at 
differential operators with rough coefficients. In a series of articles [49, 50], T. Kato 
asked the question when for an (at least maximal accretive) operator L on a Hilbert 
space, one has the identity .D(

√
L) = D(

√
L∗). After a series of examples and, in 

particular, counterexamples [54, 56], the question was refined to the case where L 
is a second-order elliptic operator in divergence form with bounded, measurable, 
complex coefficients—in the first place as an operator on . Rd . In this case, L can be 
defined using a sesquilinear form .a : V × V → C, in which case the question can 
be reformulated as whether or not the identity .D(

√
L) = V holds. This identity 

is called the Kato square root property. In the case of smooth coefficients, the 
operator L itself has optimal elliptic regularity, and the square root property is an 
easy application of complex interpolation. Also, if the operator is self-adjoint, the 
square root property follows readily from Kato’s so-called second representation
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theorem [51]. We also present the relevant special case in Proposition 6.8. In the  
rough and non-selfadjoint situation, the square root property means that at least 
.
√

L has optimal elliptic regularity, even though this might not be the case for 
L itself. It turned out that the fractional exponent .1/2 is the critical exponent 
for optimal elliptic regularity. For exponents strictly below . 1/2, optimal elliptic 
regularity follows from abstract arguments and was already known to Kato [49]. On 
the other hand, it is easy to construct counterexamples against optimal regularity for 
exponents above .1/2 in dimension one [2]. 

Kato’s motivation for this question came from applications to elliptic and 
hyperbolic equations, see [57] for more information. These ideas are nowadays 
successfully used in what is called the first-order approach [4, 5]. This underlines 
the relevance of Kato’s question, and in particular the deviation from his original 
question, which was ruled out by the counterexamples of Lions and McIntosh. 

From the viewpoint of harmonic analysis, Kato’s square root problem asks 
to bound certain singular integrals. Besides the square root problem, there were 
other challenging problems of the same kind, like the boundedness of the Cauchy 
integral on Lipschitz curves, which were summarized under the name Calderón 
program [11, p. 463]. Armed with many novel techniques, Kato’s square root 
problem was eventually solved in 2002 by Auscher, Hofmann, Lacey, McIntosh, and 
Tchamitchian in their seminal paper [9]. For more information, we refer the reader 
to the excellent surveys of McIntosh in [59, 60] and to the introduction of [9]. 

To close the loop to rough geometry and mixed boundary conditions, we take a 
look at a quote by Lions taken from a remark in [54], where he says the following: 

[...] par exemple, pour un opérateur elliptique A du 2ème ordre, non auto-adjoint, avec 
condition aux limites de Dirichlet sur une partie de la frontière et condition aux limites 
de Neumann sur le reste de la frontière, on ignore si .D(A1/2) = D(A∗1/2). Même chose 
d’ailleurs avec le problème de Dirichlet et une frontière irrégulière.1 

Phrased differently, Lions suggests to combine the challenges in rough geometry 
and mixed boundary conditions with those in harmonic analysis coming from rough 
coefficients of a differential operator. 

The seminal work by Axelsson, Keith, and McIntosh [11] opened the door to 
this problem. In that article, the authors provide quadratic estimates for perturbed 
Dirac operators. This framework allows to solve several problems from the Calderón 
program at once, including the Kato square root problem. Thereby, it is flexible 
enough to also treat systems of equations and their multiplicative perturbations, and 
it could be adapted by the same authors to give a first answer [10] to the problem 
posed by Lions. However, the class of admissible geometries in there is not easily 
accessible.

1 For example, if A is a second-order elliptic operator that is not self-adjoint and that is subject to 
Dirichlet boundary conditions on a part of the boundary and Neumann boundary conditions on the 
rest, then it is unknown if the identity .D(A1/2) = D(A∗1/2) holds. The same is true if the operator 
is subject to pure Dirichlet boundary conditions, but the boundary is irregular. 
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This is why Egert, Haller-Dintelmann, and Tolksdorf refined the ideas from [11]. 
They observed that it is possible to prove quadratic estimates in a way that 
decouples harmonic analysis from geometry [30]. In a second paper, they used their 
modified framework to prove a very general result concerning Lions’ problem [29]. 
Compared to the application to Kato’s problem in [11], the application here 
is far more involved: it requires hard work to check the assumptions for the 
perturbed Dirac operator framework, including interpolation theory for Sobolev 
spaces incorporating boundary conditions, extrapolated optimal regularity for the 
Laplacian, or the construction of extension operators for Sobolev spaces with 
boundary conditions. 

Extending the result of Egert, Haller-Dintelmann, and Tolksdorf is probably 
the deepest contribution of this monograph to the field. Their result is already 
fairly general, but there is some margin for improvement. For instance, they only 
treat bounded domains, which satisfy the interior thickness condition. Moreover, 
they assume that the whole boundary and not only the Dirichlet boundary part 
is Ahlfors–David regular. In their setup, the latter is no restriction because they 
require Lipschitz charts around the Neumann boundary part, which in turn implies 
that the full boundary is regular. Also, they do not treat multiplicative perturbations 
of elliptic systems. Our improvement in Chap. 14 is as follows: we allow the 
underlying set to be disconnected and unbounded. Only the Dirichlet boundary 
part is supposed to be Ahlfors–David regular, and regularity around the Neumann 
boundary only comes from O being locally uniform around N . Lastly, we allow 
multiplicative perturbations from either the right or left by an elliptic coefficient 
matrix. 

It can be shown that N is porous when O is locally uniform near N . Porous sets 
are systematically studied in Chap. 7. Together with Ahlfors–David regularity of D, 
it follows that the full boundary of O is porous. Thus, we use porosity as a substitute 
for Ahlfors–David regularity for the full boundary in [30]. Besides Ahlfors–David 
regularity, Lipschitz charts around the Neumann part were needed for the existence 
of a Sobolev extension operator in their setting. This is not an issue for us since 
we can rely on the extension operator from Chap. 4 instead. The connectedness 
assumption was in fact not needed in [30] and could hence be easily eliminated. 

The most severe challenge is to eliminate the interior thickness condition. In 
other words, this condition means that the underlying set is a space of homogeneous 
type. For this type of spaces, Christ managed to craft “dyadic grids” [23, 61], which 
can be used as a substitute for dyadic cubes in . Rd . The existence of such a cube 
structure is essential for the dyadic harmonic analysis in the proof of quadratic 
estimates and cannot be circumvented. Instead, we employ an a posteriori argument 
in Chap. 14. This works in two steps. First, we fatten the underlying set near the 
Dirichlet boundary part, thereby ensuring the interior thickness condition without 
losing geometric quality. Note that even if one starts with a connected set, this 
fattened set will be disconnected, which shows that the deviation from domains 
opens the road for a richer toolbox, even if one is only interested to apply the result 
to domains in the end. On this auxiliary set, we solve the Kato problem for an 
“extension” of the elliptic operator. Second, we decompose the functional calculus
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of this extended elliptic operator to transfer regularity of the square root back to the 
original elliptic operator. 

Besides this, we also have to redo the arguments from [29] in the more complex 
geometric constellation. A lot of this is already done in the chapters on interpolation 
theory and Sobolev space, but we also need some more involved potential theory 
due to the lack of Ahlfors–David regularity for the full boundary. 

Beyond Calderón-Zygmund Theory Another consequence of the rough nature 
of the coefficients is that extrapolation to .Lp-spaces is much harder compared to 
classical Calderón-Zygmund theory. In particular, it is in general not possible to 
show .W1,p → Lp estimates for .

√
L for all .1 < p < ∞. Nevertheless, extrapolation 

to .p /= 2 is possible and was pioneered by Blunck and Kunstmann [20]. In 
the situation of the classical Kato problem on . Rd , the  .Lp-extrapolation theory 
is well-understood [3]. These techniques go under the name “beyond Calderón-
Zygmund theory”. Extensions to the situation of mixed boundary conditions were 
first obtained for real equations [6] and later extended to complex systems [27] in a  
natural range when .p < 2 + ε. 

The geometric assumptions in [6, 27] were essentially dictated by the .L2-theory 
in [29, 30]. Hence, it is only natural to generalize these results to the situation 
from Chap. 14. This is performed in Chap. 19. Since we include multiplicative 
perturbations, arguments have to be changed compared to earlier work. Certainly, 
the recent monograph [8] paved the road for many of these changes, but some 
arguments like our approach to extrapolate the .H∞-calculus in Sect. 17.2 seem 
nevertheless to be new in the literature. The most innovative contribution concerns 
the case .p > 2. In the reference works, only exponents up to .2+ ε were considered, 
where . ε is an abstract parameter. A quantifiable interval was only used in the work 
of Auscher on . Rd in [3] using gradient families, but these are not suitable to work 
in general geometric constellations. Instead, we quantify an upper endpoint for 
the extrapolation range for the perturbed system L by extrapolation properties of 
the unperturbed Lax–Milgram isomorphism . L0. In particular, this shows that the 
extrapolation range is independent of a possible perturbation of the system. 

1.1 Notation 

We introduce notation that is used throughout the monograph. There is also an index, 
which contains relevant notation developed in the course of this book. 

General For a discrete set J write . #J or . |J | for the number of elements of J . The  
indicator function of a set A is denoted by . 1A. 

Euclidean Concepts The dimension of the ambient Euclidean space is .d ≥ 2. The  
Euclidean distance is .d(x, y) = |x − y| and it induces the distance of sets .d(A,B). 
Write .B(x, r) for the Euclidean ball of radius r centered in x. The radius of a given 
ball B is denoted by .r(B). For a number .c > 0 and a ball B write cB for the
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concentric ball with radius .cr(B). The norm .| · |∞ is the Euclidean infinity norm 
and induces the cubes. As for balls, if .c > 0 is a scaling factor and Q a cube of 
sidelength .ℓ(Q), write cQ for the concentric cube of sidelength .cℓ(Q). For a given 
cube Q define “annuli” by 

. C1(Q) = 4Q and Cj (Q) = 2j+1Q \ 2jQ (j ≥ 2).

Put .diam(A) for the diameter of a set A. The Lebesgue measure of a measurable 
set A is . |A|. The symbols . dx, . dt and so on indicate integration with respect to the 
Lebesgue measure. If . γ is a rectifiable curve in . Rd , write .ℓ(γ ) for the length of . γ . 
The notation .z ∈ γ means .z = γ (t) for some t . When .f : Rd → C is a measurable 
function, put 

. M(f )(x) = sup
B

 
B

f (y) dy

for all .x ∈ R
d for which the right-hand side exists, where the supremum is taken 

over all balls B with .x ∈ B. Here, . 
ffl
is the average over a given set. Say that . M(f )

is the maximal function of f and the mapping .f |→ M(f ) is the maximal operator. 
By .Hs(E), .s ∈ (0, d], we denote the s-dimensional Hausdorff measure of . E ⊆

R
d defined as follows. For .ε > 0 we put 

. Hs
ε(E) := inf

|⎲
i

r(Bi)
s :

| |
i

Bi ⊇ E, r(Bi) ≤ ε
|

and since this value is increasing as .ε → 0 we define .Hs(E) := limε→0Hs
ε(E). 

Function Spaces Write .Lp(𝚵) for the Lebesgue space on a measurable set . 𝚵. If . 𝚵 is 
open, write .Wk,p(𝚵) for the Sobolev space of order k. The space . Hs,p := Hs,p(Rd)

is the usual Bessel potential space of order .s ∈ R. It is defined via the fractional 
powers .(1 − Δ)

s
2 of the Laplacian. They can be expressed via (unbounded) Fourier 

multiplication operators. 
On an open set U the class .M(U) consists of the meromorphic functions on U 

and .H∞(U) of the bounded holomorphic functions on U . Equip .H∞(U) with the 
norm .|| · ||∞ so that it becomes a Banach algebra. 

If f is a function on A and .B ⊇ A is another set clear from the context, then . E0f
is the zero extension of f to B. 

Operators If T is a given operator, then .D(T ), .ker(T ) and .R(T ) denote its domain, 
null space and range. Its spectrum and resolvent set are denoted by .σ(T ) and .ρ(T ). 
If .(Hi)i is a sequence of Hilbert spaces and . Ti is an operator in . Hi for each i, 
then .

⨂
i Hi is the Hilbert space of sequences .(Ui)i with .Ui ∈ Hi and . ||(Ui)i|| :=

(
Σ

i ||Ui||2Hi
)1/2 < ∞ and the operator .

⨂
i Ti acts componentwise on its domain 

.
⨂

i D(Ti) ⊆ ⨂
i Hi .
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Exponents If .p ∈ [0,∞] then its Hölder conjugate . p' is determined by 

. 
1

p' = 1 − 1

p
,

where we use the convention .1/∞ = 0. The  upper and lower Sobolev conjugates are 
defined through 

. 
1

p∗ = 1

p
− 1

d
,

1

p∗
= 1

p
+ 1

d
.

If .p > d, then . p∗ is not a number in .[1,∞].



Chapter 2 
Locally Uniform Domains 

In this chapter, we will introduce and explore the underlying geometry for this 
monograph: locally uniform domains near the Neumann boundary. The precise 
definition will be given in Definition 2.1. The original idea of uniform domains and 
their relation with the Sobolev extension problem originates from Jones’ work [47]. 
Variations in the case of mixed boundary conditions were first given in [21]. We 
discuss their framework in Sect. 2.2. The geometric framework presented in this 
chapter is a special case of [14] that is better suited to conquer the Kato square root 
property later on. 

2.1 Introduction of Locally Uniform Domains 

Definition 2.1 Let ε ∈ (0, 1] and δ ∈ (0,∞]. Let  O ⊆ Rd be open and N ⊆ ∂O. 
Set Nδ := {z ∈ Rd : d(z, N) < δ}. Then O is called locally an (ε, δ)-domain near 
N if the following properties hold. 

(i) All points x, y ∈ O ∩ Nδ with |x − y| < δ  can be joined in O by an ε-cigar 
with respect to ∂O ∩ Nδ , that is to say, a rectifiable curve γ ⊆ O of length 

.ℓ(γ ) ≤ ε−1|x − y| (LC) 

such that 

. d(z, ∂O ∩ Nδ) ≥ ε|z − x| |z − y|
|x − y| (z ∈ γ ). (CC) 

(ii) O has positive radius near N , that is, there exists c >  0 such that all connected 
components O ' of O with ∂O ' ∩ N /= ∅  satisfy diam(O ') ≥ c. 
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If the values of ε and δ need not be specified, then O is simply called locally 
uniform near N . 

Remark 2.2 Definition 2.1 describes a quantitative local connectivity property of 
O near N . For an illustration of ε-cigars with respect to ∂O the reader can refer for 
instance to [71, Fig. 3.1]. Having positive radius is of course only a restriction if O 
has infinitely many connected components. 

As a starter, we show a corkscrew condition near N . This condition implies, for 
instance, that N is a null set (see Lemma 4.8). Moreover, the corkscrew condition 
has a close connection with the notions of a porous set (which we will study in more 
detail in Chap. 7) and the interior thickness condition (see Definition 8.15). 

Proposition 2.3 (Corkscrew Condition) Suppose that O ⊆ Rd is open and 
locally an (ε, δ)-domain near N ⊆ ∂O. Then there is some κ ∈ (0, 1] such that 

. ∀x ∈ Nδ/2 ∩ O, r ≤ 1 ∃z ∈ B(x, r) : B(z, κr) ⊆ O ∩ B(x, r).

Proof By assumption, O is locally an (ε, δ)-domain near N . Moreover, recall the 
positive radius constant c from Definition 2.1. With these numbers in hand, put 
C := min(δ/2, c,  1). 

First, observe that it suffices to show the claim for r ≤ C and x ∈ Nδ/2 ∩ O. 
Indeed, for such x and any r ≤ 1 we find  z ∈ B(x, Cr) ⊆ B(x, r) with 
B(z, (κC)r) ⊆ O ∩ B(x, r). That is to say, we just have to replace κ by κC 
for a general r . Finally, with a constant strictly smaller than κC we can allow all 
x ∈ Nδ/2 ∩ O in virtue of a limiting argument. 

That being said, let r ≤ C and x ∈ Nδ/2 ∩ O. We claim that there is some y ∈ O 
satisfying r/2 ≤ |x − y| ≤  3r/4. Suppose that this was not true and let O ' be the 
connected component of O that contains x. First, by choice of x there is x0 ∈ N 
with |x − x0| < δ/2. Any ball of radius at most δ/2 around x0 intersects O in a point 
y that can be joined to x by an ε-cigar in O. Thus, y ∈ O '. Hence, x0 ∈ ∂O ', so  
that ∂O ' ∩ N /= ∅. Second, O ' ⊆ B(x, r/2), since otherwise connectedness would 
yield some y ∈ O ' with r/2 ≤ |x − y| ≤ 3r/4. Consequently, diam(O ') ≤ r/2 < c, a  
contradiction to the positive radius property. 

Fix any y ∈ O as above. Then |x −y| ≤ 3r/4 < δ/2, and in particular y ∈ Nδ ∩O. 
Let γ be a joining ε-cigar. By continuity we pick z ∈ γ ⊆ O with |x−z| =  1 2 |x−y|. 
Let us verify the required property for κ := ε/8. First, we have B(z, κr) ⊆ B(x, r) 
by construction. Second, |z−y| ≥  1 2 |x −y| and |x −y| ≥  r 2 plugged into (CC) give 
d(z, ∂O ∩ Nδ) ≥ κr . Suppose that B(z, κr) intersects ∂O in a point w. It follows  
that w /∈ Nδ . Again by choice of x there is x0 ∈ N with |x − x0| < δ/2. Now  

. δ ≤ |w − x0| ≤ |w − z| + |z − x| + |x − x0| ≤ κr + 1

2
|x − y| + δ/2 < δ,

a contradiction. Thus, B(z, κr) ⊆ Rd \ ∂O. Third, as  z ∈ O we must have 
B(z, κr) ⊆ O. ⨅⨆


