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1Introduction to Translational 
Neurorehabilitation

Rocco Salvatore Calabrò

Population is aging worldwide, especially in the western countries, with a great 
burden on the social and economic system. Neurological diseases increase with age, 
especially neurodegenerative ones, including Alzheimer’s Disease and Parkinson’s 
Disease.

The Global Burden of Disease Study estimated that in 2016, there were more 
than 80 million stroke survivors in the world, 43.8 million people with dementia, 
45.9  million patients with an active epilepsy, and 6.1  million individuals with 
Parkinson’s disease. Globally, in 2016, neurological disorders were the leading 
cause of disability (276 million disability-adjusted life-years) and the second lead-
ing cause of deaths (9 million) in the world [1].

Moreover, people who survive a brain injury are rising, thanks to the improve-
ment of intensive acute care; then, the need for neurorehabilitation will double in 
the next few years. Motor, cognitive, and behavior approaches have changed over 
years and novel tools to treat brain and spinal cord injury should be validated before 
translating into the clinical practice.

Translational Neuroscience is aimed to integrate basic research of brain mor-
phology and functional activity in vivo, with the needs of patients suffering from 
disorders of the Central Nervous System. The study of these disorders is a subject 
of Neurology, Psychiatry, and Neurosurgery, as well as Neurorehabilitation. In fact, 
Translational Neurorehabilitation is an interesting new field that seeks to produce 
more meaningful, applicable rehabilitation results that directly benefit human 
health, performance, and quality of life.

Robotics and virtual reality (VR) are the most promising tools of the last decades 
in the rehabilitation area [2, 3]. Robotic devices have been developed to reduce the 

R. S. Calabrò (*) 
IRCCS Centro Neurolesi Bonino-Pulejo, Messina, Italy
e-mail: roccos.calabro@irccsme.it

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-63604-2_1&domain=pdf
https://doi.org/10.1007/978-3-031-63604-2_1
mailto:roccos.calabro@irccsme.it


2

required labor and time, improve the reproducibility of the kinematics of different 
movements and gesture, and increase the volume of the motor exercises. They can 
also accurately and objectively measure patient’s output in terms of joint kinematics 
and kinetics. The current rehabilitation robotic devices can be grouped into two 
main groups: exoskeleton (that fits to the patients’ joints and move them through 
predetermined patterns) and end-effectors (moving the limb from the more dis-
tal part).

VR is the multisensory and interactive simulation of real scenarios, mainly pre-
sented in a three-dimensional way, with which the patient can interact [4, 5]. VR 
devices use specific software with input-output peripherals that make the experience 
complex and engaging, promoting the improvement of patients with motor/cogni-
tive disabilities, as well as their well-being and participation. VR allows being at the 
center of rehabilitation training, through two perceptive conceptions, i.e., immer-
sion and presence “Immersion” is the objective perception of a sense of “sensory 
absorption” in the three-dimensional environment, whereas “presence” is a subjec-
tive psychological state whereby the user is consciously involved in the virtual con-
text [6, 7].

The application and implementation of robotics and VR in clinical practice is the 
best example of translational neurorehabilitation of the last decades. Indeed, many 
devices (for either rehabilitative or assistive purpose) have been developed and the 
way neurological patients are trained is really changing with positive results on their 
outcomes.

Moreover, understanding the neurophysiological underpinnings of functional 
recovery is also fundamental, and to this aim advanced electrophysiology and neu-
roimaging could be of help. The former is used within translational neuroscience/
neurorehabilitation as a means of studying the electric properties of neurons in ani-
mal models as well as to investigate the properties of human neurological dysfunc-
tion and the basis of functional recovery. Neuroimaging involves a variety of 
techniques, including fMRI, DTI, PET/SPECT, used to observe the activity or the 
structures of, or within, the nervous system [8, 9].

Finally, the use of neuromodulation (TMS and tDCS), alone or combined to 
other innovative tools, may boost neural plasticity and therefore, improve patients’ 
recovery and quality of life [10].

The stages of translational neurorehabilitation, as well as all the other fields of 
translational medicine, neuroscience research are as follows:

• S0: Basic science research
• In the neurorehabilitation field, this could be aimed at finding/experiment com-

pounds able to improve neuroplasticity, reduce/slow neurodegeneration, and 
then improve functional recovery

• S1: Preclinical research
• Preclinical applications of task-specific rehabilitation include skilled reaching 

tasks. Skilled reaching tasks can be applied to experimental models to investigate 
motor behavior and sensorimotor integrations in post-injury recovery. Preclinical 
studies may also involve proof-of-concept works on robots/VR tools.
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• S2: Clinical research
• Once a device has been made by bioengineering, this should be validated in clini-

cal practice. First, feasibility and safety can be investigated in healthy subjects; 
then, pilot studies could address this issue in neurological patients, and finally 
RCT and real-life clinical studies must evaluate the efficacy, as compared to 
traditional methods.

• S3: Clinical implementation.
• This involves studies aimed at applying diagnostic or treatment devices to other 

patients than those for whom the tool was initially designed, approved, and 
commercialized.

• S4: Public health
• The device could become fundamental within a service or pathway in neuroreha-

bilitation, especially for patients suffering from chronic disability. Politicians, 
CEO, and all stakeholders are fundamental at this stage.

This summary of the transitional stages allows to better understand how the 
approach to this new field is complex and integrated, involving several disciplines 
(such as biomechanics, engineering, neurology, physiology, physiotherapy, neuro-
psychology, biochemistry, physical and rehabilitation medicine) basic researchers, 
clinicians, and other non-healthcare professionals.

The book provides useful information concerning brain–behavior interactions to 
basic neuroscientists, neural engineers, clinical neurologists, and physiatrists.

It is aimed to expand current understanding of brain function and disease by 
evaluating preclinical and clinical trials on neural plasticity and functional recovery 
after nervous system disorders, and disseminate the knowledge coming from novel 
therapies, including advanced robotic and ICT/AI-based applications.
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2Brain Injury, Neural Plasticity, 
and Neuromodulation

Antonino Naro and Rocco Salvatore Calabrò

2.1  Introduction

Any brain structural damage, with regard to stroke and traumatic brain injury, can 
impair behavioral skills and the correlated motor skill learning, i.e., the process of 
optimizing sequences of action for accomplishing specific tasks [1]. Such an impair-
ment mainly depends on the deterioration in connectivity between sets of cortico-
spinal neurons following changes in synaptic efficacy [2], whose spatial and 
temporal organization is known as the “connectivity map.”

Both connectivity maps and behavioral skills can at least be partially restored 
through intense motor practice and rehabilitation [3], ultimately aimed at restoring 
functions essential to independence in daily activities. Actually, motor training trig-
gers the principles-pillars governing the organization of connectivity maps, includ-
ing fractured somatotopy (i.e., the representation of any individual skill is highly 
distributed across different cortical regions), interconnectivity (i.e., adjacent corti-
cal areas are densely interconnected via white matter bundles), and area equals dex-
terity (i.e., the more demanding the skill, the larger the proportion of the map is 
involved in the skill’s representation) [4, 5], as a strong correlation between con-
nectivity maps and its synaptic plasticity and performance of skills exists through a 
learning-dependent motor cortical map organization [6]. Therefore, motor training 
affects plastic changes in synaptic efficacy within the motor cortex, with consequent 
changes in map topography and, eventually, behavioral skills. Particularly, motor 
recovery through rehabilitation strategies (including neuromodulatory pharmaceuti-
cal agents and stimulation techniques such as exercises, pharmacological interven-
tions, and brain stimulation) is achieved by activating a variety of neuroplastic 
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processes (including synapse strengthening, neural circuit rewiring, axonal sprout-
ing, spinogenesis, and neurogenesis) that comprehensively allow the brain to change 
and adapt its functions to brain damage [7–11].

To achieve such neurobiological changes, motor practice must be intensive to 
induce effective brain reorganization, according to an experience-dependent neuro-
plasticity principle [12]. This consists in the entrainment of long-term potentiation 
(LTP) and inhibition of long-term depression (LTD) mechanisms, which both pro-
mote behavioral motor learning [12, 13]. These are hallmarks of recovery processes 
as compared to simple compensation processes, which do not entrain plasticity 
mechanisms, as well as the activation of some biochemical cascades, including 
myokines, neurotrophic factors, neuropeptides, growth factors (GF) and GF-like 
molecules, and cytokines, which have all been recognized as crucial for recovery. 
Interestingly, all such mechanisms can be further potentiated by adding external 
stimuli through brain stimulation devices, including repetitive transcranial magnetic 
stimulation (rTMS) and transcranial current stimulation (TCS). Finally, the use of 
technological devices, as robots, has been of significant help to let the patient to 
perform an intensive, repetitive, assisted-as-needed, and task-oriented motor train-
ing, which are all essential factors to modify synaptic efficacy within the motor 
cortex, with consequent changes in map topography and, eventually, behav-
ioral skills.

This chapter provides an overview of the neuroplasticity mechanisms related to 
brain injury and neuromodulation, focusing on how motor practice and brain stimu-
lation can drive neural plasticity processes to facilitate functional recovery, also 
paving the way for next-generation strategies for brain injury rehabilitation.

2.2  Brain Injury

The acute disruption of brain tissue by a cortical contusion, ischemia, hemorrhage, 
or axonal injury [14] often causes irreversible damage to the central nervous system 
(CNS) [15]. Focal brain damage determines a degeneration process initiated by 
unrestrained neuronal depolarization (excitotoxicity) [16], increasing the likelihood 
of neuronal dissolution [17], axon disintegration [18], cell lysis and neuronal necro-
sis (19), apoptosis and postsynaptic receptor modification [14]. These neuronal 
damages trigger an inflammatory process and an accumulation of reactive oxygen 
species [19], with consequential DNA fragmentation and lipid peroxidation, all 
causing further neuronal disconnection [20] and a future harmful effect on neuro-
genesis [21].

Secondarily to this damage, a cascade of events can be triggered (including met-
abolic processes [22], decrease in energy transduction and lack of adenosine tri-
phosphate [23], excitotoxicity and inflammation processes, vasogenic and cytotoxic 
edema (the former resulting from BBB damage, the latter from cell metabolic 
derangements) [21, 24], disruption of the blood–brain barrier (BBB) [21], damage 
to the vasculature (which favor pro-inflammatory processes and release excitatory 
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amino acids, creating a more vulnerable environment) [25–27], and white matter 
destruction, ultimately leading to a collapse of brain tissue [14, 28], implying 
impairment of cell functions, cell death [29], and consequent dissemination of dam-
age [24]. In addition, owing to neuroinflammation and BBB loss of autoregulation, 
cerebral blood flow (CBF) results impaired, placing the brain at an increased risk of 
ischemic injury during the first hours after the injury.

All these changes can affect the connectivity of thousands of neurons, resulting 
in an impairment of their functional interactions. In this way, a relatively localized 
injury can result in widespread damage to the brain [30]. All these aspects deter-
mine the degree and magnitude of long-term deficits [22].

2.2.1  The Role of Plasticity in Brain Damage Recovery

Plasticity is defined as the intrinsic property of the nervous system to reorganize 
itself in response to an injury [31, 32], beyond its role in neural development and 
homeostasis [33]. Brain plasticity may be neuronal (synaptic or non-synaptic) or 
non-neuronal [34], as well as activity- or time-dependent [35], including modula-
tion of synaptic transmission [36], integrative properties of individual neurons [37] 
and neuronal networks [38], neurotransmitters and ions [39, 40], gap junctions [41], 
and glial cells [42, 43]. All these mechanisms ultimately result in anatomical and 
functional modifications [44].

Brain damage recovery develops through three main stages: activation of cell 
repair [45], including subsidence of inflammation and edema, functional cell plas-
ticity changes (including changes in the amount of excitation or inhibition induced 
and in the strength of specific synapses, also known as short-term plasticity), and 
anatomical plasticity changes [46–49]. Rehabilitation strategies therefore aims at 
targeting activity-dependent synaptic plasticity [50] (mainly based on long-term 
potentiation (LTP) and long-term depression (LTD) phenomena) [51, 52] that has a 
significant role in brain injury recovery [53–58] through the induction of anatomical 
neuronal changes [59–62], including using redundant connections or forming new 
connections among residual neurons, which all support functional recovery [63–65]. 
However, such plastic changes can also have negative effects, potentially leading to 
maladaptive outcomes (including spasticity [34], pathological pain [66, 67], schizo-
phrenia [68, 69], dystonia [70], cognitive impairment [71, 72], and seizure foci [73]. 
It is therefore essential in the rehabilitation processes to suppress functionally mal-
adaptive changes while enhancing favorable processes (and their related outcomes), 
leading to a better recovery of motor and cognitive function thus decreasing dis-
ability burden. To this end, artificially coupling neuronal pool discharges in a spik-
ing time-dependent plasticity manner through brain stimulation, so to eventually 
modify functional and/or structural network connectivity (i.e., through activity- 
dependent plasticity), represents a promising therapeutic intervention in the reha-
bilitation setting [5].

2 Brain Injury, Neural Plasticity, and Neuromodulation
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2.3  Brain Stimulation

Transcranial magnetic stimulation (TMS) and transcranial direct current stimula-
tion (tDCS) use, respectively, magnetic field to induce electric fields (consistently 
with the principle of electromagnetic induction) [74] and direct low-intensity cur-
rents in cortical tissue to affect cortical excitability with potentially relevant neuro-
plastic effects consistently with LTP and LTD phenomena [75, 76] and, eventually, 
functional and structural changes of neuronal networks [8, 77, 78]. Magnetic stimuli 
can either directly or indirectly (by interneurons) depolarize cortical neurons [79], 
depending on stimulus configuration (including intensity, frequency, pattern, and 
morphology) and the different thresholds to electrical stimulation of neuronal popu-
lations [80].

The electric current yields, first, ionic changes around targeted neurons by flow-
ing ions through the cell membrane, mostly at axonal-soma and axonal-bouton 
boundaries [81], thus inducing neuronal depolarization or hyperpolarization [82], 
and then a stimulation-induced storage of charge, which ultimately lead to modifi-
cations in neural excitability [83–85]. The repeated application of magnetic stimuli 
corrupts the ongoing neuronal activity, whose summatory effects result in an 
increase or a decrease in cortical excitability, which is when the after stimulation 
neuromodulatory effects occur. Generally, low frequencies (below 1  Hz) tend to 
decrease cortical excitability probably due to preferential stimulation of GABAergic 
neurons [86, 87], while high frequencies (above 5 Hz) have the opposite effect [88]. 
Both approaches can induce both local and distant aftereffects, harnessing large 
scale cortical networks, as also suggested by specific changes in CBF, which are not 
however necessarily coherent with excitability changes direction (i.e., cortical excit-
ability increase, CBF increase) [79].

Neuromodulation may affect cortical plasticity by providing peripheral stimuli 
when timilgly collimated each other (namely, Paired Associative Stimulation—
PAS), consistently with a spike-timing dependent plasticity principle [89–91]. 
Additionally, stimuli can be timingly sequenced in specific patterns, for example, 
low-frequency pulses can be preceded by a short train of high-frequency pulses (i.e., 
priming), leading to a stronger inhibitory effect [92]. Alternatively, brief simple or 
patterned trains of stimuli (three 50-Hz stimuli at 5 Hz) can have relevant conse-
quences on cortical excitability whether administered continuously (cTBS, 
GABAergic-dependent excitability decrease) [93, 94] or intermittently (iTBS, 
excitability increase) [95]. The duration of TMS aftereffect is variable depending on 
the individual’s physiology and the stimulation setup. It can range from minutes to 
weeks [96, 97]. It has been proposed that the repeated modulation of cell polariza-
tion (namely, short-term effects) can affect the modulation of NMDA glutamatergic 
receptors [98, 99], which could account for LTP/LTD induction. These effects, in 
turn, pave the way for long-term effects, including early genes expression associ-
ated with neuronal activation (including c-Fos) [100–102] and neurotrophic factors 
(such as brain-derived neurotrophic factor), which altogether account for structural 
plasticity changes (which is proposed to the most relevant for the neurorehabilita-
tion aftereffects) [100].

A. Naro and R. S. Calabrò
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Less information is available for tDCS aftereffect. The weak direct currents 
employed in tDCS paradigms can modify the resting membrane potential, which 
impacts the level of spontaneous neuronal excitability and activity [103, 104]. 
Noteworthy, tDCS does not interrupt neuronal activity like TMS does; in other 
words, it does not induce action potentials through a rapid depolarization of neu-
rons, like TMS does, but it rather modulates neuronal membrane excitability [103]. 
The direction of tDCS effects depends on the stimulation setup adopted, particularly 
including electrode polarity (i.e., anodal stimulation increases cortical excitability, 
whereas cathodal stimulation decreases it) [105–111], besides current intensity, 
stimulation duration, and current density, i.e., the quotient of current strength and 
electrode size. Polarity changes (without determining action potential) is achieved 
by changing the activity of transmembrane proteins and hydrogen ions [107, 110, 
111] at the interneuron level [112, 113], as well as sodium and calcium channels 
[107, 110, 111], whereas NMDA, GABAA, and glutamate-dependent mechanisms 
seem less relevant [107, 110–112, 114]. Interestingly, a significant polarization of 
neuronal membrane can result in the inactivation of voltage-gated channels, thus 
reverting tDCS aftereffects [107, 110, 111].

Prolonging current exposure can then induce ionic changes and modifications in 
transmembrane proteins, which in turn cause long-lasting changes of neural mem-
brane function [115], calling into account synaptic mechanisms (contrarily to what 
observed for the immediate effects of tDCS), which likely involve GABAAergic 
and glutamatergic synapses [93, 94, 112, 113] related to LTP- and LTD-like mecha-
nisms [116]. Particularly, the activation of NMDA receptors by glutamate entrains 
LTP phenomena [117, 118], whereas cathodal stimulation may be able to contribute 
to the development of LTD-like phenomena.

2.4  NBS as a Therapeutic Tool

A brain injury can yield a variety of neurobehavioral consequences, including sei-
zures [119, 120], headache [121], movement disorders, motor impairment, language 
and visual deficits, sleep [122], memory [123, 124], and attention disorders as well 
as concentration impairment [125]. These can occur soon after a brain injury as well 
as up to months. Similarly, the course of recovery may last months to years. This 
means that specific interventions at different time periods can be used in the attempt 
to foster brain function recovery, mainly depending on the phase (acute, subacute, 
and chronic) of brain damage. Basically, we can try (i) to limit the extent of the 
initial injury to minimize further neurological deficits, and (ii) to promote reorgani-
zation of neural networks, allowing for the relearning/vicariation of lost functions 
[12, 126–128].

Modifying cortical excitability by using NIBS could help to counteract the acute 
inflammatory phenomena of a brain lesion and to favor an adaptive rewiring of dam-
aged neural connections, thus ultimately enhancing behavioral recovery [129–133]. 
Specifically, NIBS aims at reducing the excessive glutamatergic activity resulting 
from neuronal damage and the loss of surround inhibition mechanisms through 
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enhancing residual inhibition mechanisms, ultimately resulting in a suppression of 
cortical excitability. In this regard, daily cathodal tDCS, low-frequency rTMS, and 
cTBS may prove to be useful, as suggested by the remodulation of the glutamatergic 
and GABAergic systems in murine models [134]. Moreover, NIBS can limit the 
oxidative stress and apoptosis process following brain injury [135]. Finally, NIBS 
can modulate plastic changes even in the acute phase, to avoid maladaptive conse-
quences, including effects on axonal sprouting and synaptogenesis [136]. Following 
glutamatergic-mediated neurotoxicity, a prevailing inhibitory tone takes step, which 
both silence neural networks [137] and affect LTP/LTD plasticity processes [137, 
138]. Therefore, facilitatory interventions such as high-frequency rTMS or anodal 
tDCS could increase cortical excitability and counteract GABAergic inhibition, so 
to facilitate, for example, motor function recovery as shown in stroke models [139].

Consistently with the issue that function recovery occurs through a series of 
distributed cortical activation in different brain areas of both hemispheres, the strat-
egy of contemporary modulating both hemispheres seem reasonable. Indeed, the 
modulation of interhemispheric balance using a combination of NIBS parameters 
has been shown promising [107, 110, 111, 140–149], with particular regard to 
motor learning [147] by using high-frequency rTMS, iTBS, and anodal tDCS [88, 
107, 110, 111, 140, 144] over the affected hemisphere or low-frequency rTMS, 
cTBS, and cathodal tDCS on the contralesional hemisphere [150, 151] by modulat-
ing transcallosal inhibition [152]. To enhance NIBS aftereffects, coupling with 
Physical Therapy Motor training involving skill learning (as opposed to simple 
exercises) may be critical to induce plastic changes in the CNS via increased synap-
togenesis, LTP/LTD-like mechanisms, and reorganization in the thalamo-cortical 
motor maps [53, 153, 154]. NBS and motor learning seem to share similar mecha-
nisms for inducing neuroplasticity; thus, their individual therapeutic effects may be 
enhanced by their combination. For instance, physical exercise can improve motor 
and cognitive outcomes by improving motor cortical representations [55, 155]. NBS 
delivered prior to a motor task may prime neuronal networks in the cortex, whereas 
simultaneous application may recruit specific sets of synapses involved with motor 
performance. In this regard, physical therapy coupled with high-frequency rTMS on 
the injured hemisphere [156] or low-frequency stimulation on the contralesional 
hemisphere [157], as well as CIMT coupled with active tDCS or cathodal tDCS of 
the intact M1 and anodal stimulation of the affected M1 [158], induce structural 
neuroplasticity changes and a modulation of transcallosal inhibition from the 
undamaged to the affected hemisphere sustaining functional outcomes after isch-
emic stroke compared to sham stimulation. However, the specific anatomic and neu-
rophysiologic derangements of each patient, the time elapsed after brain injury, the 
severity of paresis, the type of intervention, the technique of NIBS used and its 
parameters, the target area, the type of physical training performed, and its timing 
in relation to stimulation [116] may all influence the success of treatment [159], as 
different tDCS setups coupled to robotic therapy showed non-significant outcome 
difference. All such above-mentioned factors must be thus individually tailored and 
the need for further research in the field is obviously emphasized.
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2.5  Conclusions

The knowledge of the complex mechanisms and timing of neuroplasticity processes 
developing after a brain injury are the fundamental prerequisite to build a patient- 
tailored rehabilitation program. This would help enhance recovery and decrease the 
burden of disabling sequelae after the injury. Although plasticity processes sustain 
functional recovery, they might also lead to additional injury and negative outcomes 
if developing as maladaptive. Targeting plasticity processes in an adequate manner 
becomes therefore critical to enhance the former while suppressing the latter. This 
has been demonstrated as possible through rehabilitation strategies which are fur-
thermore fostered by NIBS, so to precisely target specific neural networks and 
potentiate plasticity processes aftereffects. However, further research is needed to 
understand the mechanistic interaction between the aforementioned techniques, as 
well as to establish their safety and define optimal stimulation parameters.
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