
Lecture Notes in Civil Engineering

Giorgio Mannina
How Yong Ng Editors

Frontiers in 
Membrane 
Technology
7th IWA-RMTC 2024



Lecture Notes in Civil Engineering 525

Series Editors
Marco di Prisco, Politecnico di Milano, Milano, Italy
Sheng-Hong Chen, School of Water Resources and Hydropower Engineering, Wuhan
University, Wuhan, China
Ioannis Vayas, Institute of Steel Structures, National Technical University of Athens,
Athens, Greece
Sanjay Kumar Shukla, School of Engineering, Edith Cowan University, Joondalup,
Australia
Anuj Sharma, Iowa State University, Ames, USA
Nagesh Kumar, Department of Civil Engineering, Indian Institute of Science
Bangalore, Bengaluru, India
Chien Ming Wang, School of Civil Engineering, The University of Queensland,
Brisbane, Australia
Zhen-Dong Cui, China University of Mining and Technology, Xuzhou, China
Xinzheng Lu, Department of Civil Engineering, Tsinghua University, Beijing, China



Lecture Notes in Civil Engineering (LNCE) publishes the latest developments in Civil
Engineering—quickly, informally and in top quality. Though original research reported
in proceedings and post-proceedings represents the core of LNCE, edited volumes of
exceptionally high quality and interest may also be considered for publication. Volumes
published in LNCE embrace all aspects and subfields of, as well as new challenges in,
Civil Engineering. Topics in the series include:

• Construction and Structural Mechanics
• Building Materials
• Concrete, Steel and Timber Structures
• Geotechnical Engineering
• Earthquake Engineering
• Coastal Engineering
• Ocean and Offshore Engineering; Ships and Floating Structures
• Hydraulics, Hydrology and Water Resources Engineering
• Environmental Engineering and Sustainability
• Structural Health and Monitoring
• Surveying and Geographical Information Systems
• Indoor Environments
• Transportation and Traffic
• Risk Analysis
• Safety and Security

To submit a proposal or request further information, please contact the appropriate
Springer Editor:

– Pierpaolo Riva at pierpaolo.riva@springer.com (Europe and Americas);
– Swati Meherishi at swati.meherishi@springer.com (Asia—except China, Australia,

and New Zealand);
– Wayne Hu at wayne.hu@springer.com (China).

All books in the series now indexed by Scopus and EI Compendex database!

mailto:pierpaolo.riva@springer.com
mailto:swati.meherishi@springer.com
mailto:wayne.hu@springer.com


Giorgio Mannina · How Yong Ng
Editors

Frontiers in Membrane
Technology
7th IWA-RMTC 2024



Editors
Giorgio Mannina
Engineering Department
University of Palermo
Palermo, Italy

How Yong Ng
Beijing Normal University
Beijing, China

ISSN 2366-2557 ISSN 2366-2565 (electronic)
Lecture Notes in Civil Engineering
ISBN 978-3-031-63356-0 ISBN 978-3-031-63357-7 (eBook)
https://doi.org/10.1007/978-3-031-63357-7

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2024

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproductiononmicrofilmsor in anyother physicalway, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

If disposing of this product, please recycle the paper.

https://doi.org/10.1007/978-3-031-63357-7


Preface

In recent decades, advanced technologies have received increased attention as interest
in sustainable water resources has grown.

Membrane technologies have become of paramount importance in enhancing human
life, specifically, membrane technologies for water and wastewater treatment (e.g., novel
membrane materials and configurations, energy recovery from water and wastewater,
fouling mechanisms and control, membrane process development and optimization,
drinking water and wastewater treatment, desalination, etc.) by focusing the attention
on the interrelationship among the entire water cycle, environment, and society.

The book contains contributions presented during the 7th International Water Asso-
ciation (IWA) Regional Membrane Technology Conference (IWA-RMTC 2024), which
was held on 18–21 June 2024 in Palermo, Italy. This was the seventh in the series of IWA-
RMTC events and is a joint effort of the IWASpecialist Group onMembrane Technology
and the EU project: Achieving Wider-Uptake of water smart solutions – Wider-Uptake.

The IWA-RMTC’s final aim was to create a forum for promoting the discussion
among scientists, professionals, and academia in different areas of the broader themes.

The conference was organized in nine parallel sessions, and for each of them, a
keynote by a referral researcher was presented. Specifically, the keynotes were held by
the following professors, whose contributions were highly inspiring: Damià Barceló,
Menachem Elimelech, Xia Huang, Yongmei Li, Eberhard Morgenroth, How Yong NG,
Ana Soares, Eveline Volcke, Zhiwei Wang, and Zhiguo Yuan.

The wealth of information exchanged during IWA-RMTC was of great benefit to all
involved in the urgent need of developing advanced and sustainable solutions for water
and wastewater treatment.

The book is organized into six parts: Part I – Resource recovery from wastewater,
Part II –Domestic/industrial wastewater treatment, Part III –Membrane bioreactors, Part
IV – Novel membrane materials and hybrid membrane processes, Part V – Membrane
fouling mechanisms and control, and Part VI – Desalination.

Each contribution of the conference has been peer-reviewed by at least two members
of the scientific committee. Their efforts have contributed to the high quality of the
final book contributions, and therefore, their reviewing activity is acknowledged and
appreciated.

Finally, I express my thanks to Mr. Pierpaolo Riva, publishing editor at Springer, for
his suggestions during the finalization of the book.

I do hope that the reader will find the book a source of inspiration for both research
and professional life.

Giorgio Mannina
How Yong Ng
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Resource Recovery from Wastewater



Can Water Conserving Toilet be a Solution
to Achieve Higher Energy Recovery

from Co-digestion of Toilet Waste and Kitchen
Waste?

Farideh Jamali-Behnam1(B), Ricardo Bello-Mendoza2, Maria J. Gutierrez-Gines1,
Kristin Bohm1, and Fatemeh Jamali-Behnam3

1 Institute of Environmental Science and Research, Porirua, New Zealand
fara.behnam@esr.cri.nz

2 Department of Civil and Natural Resources Engineering, University of Canterbury,
Christchurch, New Zealand

3 Department of Environmental Health Engineering, School of Health, Mashhad University of
Medical Sciences, Mashhad, Iran

Abstract. Approximately 21%ofAotearoa-NewZealand’s population is not con-
nected to a reticulated sewer system. They live in rural areas where households
must treat their sewage with onsite wastewater treatment systems, which is com-
monly a septic tank.However, septic tank does not favour the recovery of resources
such as energy and nutrients.

In an era of climate change, a circular economy is vital. Separating black
water fromgreywater at the source and treating themwith specialized technologies
enhances water, energy, and nutrient recovery from domestic wastewater. Anaer-
obic co-digestion efficiently extracts bioenergy and biofertilizers from organic
waste like toilet waste and food residues.

This work presents the results of a batch experiment to investigate the biogas
production by anaerobically co-digesting source separated toilet wastewater and
kitchen waste with different amounts of water to represent: a) water conserving
toilet waste (e.g., vacuum toilets using 0.5–1.2 L water per flush), b) dual-flush
toilet waste (using 6 L water per flush) and c) conventional toilet waste (using 9 L
water per flush). The main objective of this research was to evaluate the impact of
water content on the biochemical methane production from co-digestion of three
different type of toilet wastes with kitchen waste.

The results of this study showed that co-digestion of water conserving toilet
waste and kitchenwaste accelerated themethane production compared to the toilet
waste diluted with higher amount of water. Water diluted waste (for example by
using less water efficient toilets) impacted the co-digestion reducing the methane
production.

Keywords: Toilet waste · Kitchen waste · Anaerobic co-digestion ·
Decentralised systems ·Water efficiency

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
G. Mannina and H. Y. Ng (Eds.): IWA-RMTC 2024, LNCE 525, pp. 3–7, 2024.
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1 Introduction

Approximately 21% of New Zealand’s population, which mainly live in rural areas, is
not connected to a centralized sewer system, relying on septic tanks for onsitewastewater
treatment (Beca et al., 2020). However, the operation and maintenance of such onsite
wastewater treatment systems pose challenges and do not effectively recover valuable
resources like energy and nutrients. To address this issue, alternative technologies for
onsite waste management are being sought.

In response to climate change and decarbonization, there has been a growing focus
on the circular economy approach to recover resources from wastewater (Neczaj and
Grosser, 2018). The concept of decentralized wastewater management with separate
collection and treatment of toilet waste and greywater, along with water reuse, is gaining
popularity. This approach aims to maximize the recovery of valuable resources from
wastewater, including energy, nutrients, and water (Zhang et al., 2019). By collecting
toilet waste separately, a concentrated stream can be obtained. This concentrated stream
contains organic content and nutrients which could be recovered (Zhang et al., 2019).

Anaerobic digestion (AD) is a waste-to-energy technology that converts organic
waste into biogas. AD can be used in both centralised and decentralised systems to
manage a wide spectrum of organic wastes, from complex lignocellulosic materials to
easily degradable food waste to generate renewable energy (Elsayed et al., 2020). Co-
digestion (i.e., simultaneous anaerobic digestion of multiple organic waste products) is
often themost suitableway to increasemethane production fromdifferent sorts of organic
waste, especially toilet waste (Elsayed et al., 2020). In New Zealand, reducing the food
waste that is sent to landfills and significantly contributes to greenhouse gas emissions, is
a priority for theMinistry for the Environment (Ministry for the Environment, 2023). By
adopting co-digestion and implementingmore efficient waste management practices, we
can promote sustainability. In this context, this study aimed to use co-digestion strategy
to simultaneously recover resources from toilet waste (TW) and kitchen waste (KW).

Previous studies investigated the co-digestion of blackwater sourced from different
collection systems. Their findings showed that the characteristics of the blackwater
contributed to the large variance in the reported methane production (Gao et al., 2019).
However, no study investigated the impact of water content in the gas production of
toilet waste.

We aimed to evaluate the impact of water usage on the co-digestion of toilet waste
with kitchen waste. The main objective of this study was to evaluate the biochemical
methane potential from anaerobically co-digesting source separated toilet wastewater
and KW with different amount of water to represent: a) water conserving toilet waste
(vacuum toilets using 0.5–1.2 L water per flush), b) dual-flush toilet waste (using 6 L
water per flush) and c) conventional toilet waste (using 9 L water per flush).

In this study, the term “water conserving toilet waste” is used interchangeably for
toilet waste with 1 L of water (TW1), while “water wasting toilet waste” refers to toilet
waste diluted with 6 L (TW6) and 9 L of water (TW9).
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2 Materials and Methods

Kitchen waste made up mainly of fruit peels, vegetable residue and a lower amount of
meat, bread and rice was used. The toilet waste stock (mixture of faeces, urine and toilet
paper) was sourced from healthy adult volunteers. To prepare toilet wastes with varying
level of water, an equivalent quantity of stock toilet waste (374 g wet weight) was diluted
with 1, 6, and 9Lofwater to representwater conserving toiletwaste (designated asTW1),
dual flush toilet waste (designated as TW6) and conventional toilet waste (designated
as TW9), respectively. Each group of toilet waste was then mixed with kitchen waste to
give a volatile solid ratio of 70% toilet waste and 30% kitchen waste.

The biomethane potential test (BMP) of the prepared mixtures was conducted in
sealed serum bottles (162 mL), previously flushed with nitrogen gas to remove air from
the headspace, incubated at 37 °C. The serum bottles were inoculated with digested
sludge. Five replicates were carried out for each mixture. Gas chromatography was used
to determine the gas composition in the serum bottles and gas volumewas also measured
during the experiment. The pH, total solid (TS), and total volatile solid (VS) content
were determined in initial wastes.

All samples were prepared with substrate to inoculum (S/I) ratio of 0.5 g VS/g
and each serum bottle contained the same amount of substrate mixture based on VS.
This enabled us to evaluate the maximum methane yield from each type of waste by
considering the amount of water as a factor that would impact the biogas production in
each treatment.

One-way ANOVA (analysis of variance) method followed by post hoc Tukey’s test
with a 0.05 significance level was used to determine whether the various treatments were
statistically different from each other or not.

3 Results and Discussion

As can be seen in Fig. 1, co-digestion of TW1 + KW resulted in the highest methane
yield of 443 L CH4 kg VS−1, which was 10% higher than the co-digestion of TW9 +
KW (400 L CH4 kg VS−1). One-way ANOVA test showed that there was a significant
difference among three treatments (P value of < 0.05).

The findings suggested that the co-digestion of toilet waste with reduced water
content (here TW1 + KW) may enable a better access to nutrients by the methanogens
leading to a higher methane yield. Furthermore, since the amount of methane dissolved
in water for each treatment would be different, favoring the test with lower water content
(TW1 + KW).

Based on the available data regarding the annual kitchen and toilet waste quantities
per person including 145 kg (wet weight) of TW (Kim et al., 2019) and 61.2 kg (wet
weight) of KW [9], co-digestion of TW1+ KW could potentially yield around 15.7 m3

of CH4 per household per year (i.e., 2.6 people per household) (Stats, 2018)(Table 1).
This amount of methane, equivalent to 157 kWh of energy, is derived from considering
the calorific value of 1 m3 of methane as 10 kWh (Suhartini et al., 2019). By considering
power usage of daily 1.2 kWh for a fridge or freezer with avarage size, 157 kWh of
energy can keep the fridge or freezer on for about 4 months.
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Fig. 1. Cumulative methane production during co-digestion of different types of toilet wastes
with kitchen waste

Table 1. Biochemical methane potential (BMP) of toilet waste and kitchen waste with different
levels of dilution and estimate potential methane production per household.

Substrate BMP
(L CH4 kg VS−1)

Methane yield
(m3 CH4 a−1 household−1)

TW1 + KW 443 ± 5.5 15.7

TW6 + KW 433 ± 3.4 15.4

TW9 + KW 400 ± 5.8 14.3

Anaerobic co-digestion exhibits remarkable adaptability, enabling the incorporation
and management of various waste streams within the system. So, there would be oppor-
tunities to co-digest different organic wastes in a single household digestor in rural areas
in New Zealand. Further research should be conducted in New Zealand to identify other
suitable substrates (e.g. animal manures or green wastes) available in decentralised areas
for the anaerobic co-digestion and their potential for enhancing energy recovery.

Furthermore, when this technology is expanded to a larger scale, such as at the
community or city level, the cumulative production of biogas can be significant. A rough
estimation based on daily human waste production in China showed that, the electricity
production from human waste could reach 257 GWh/day. If this electricity substitutes
coal-based electricity, −142 kt CO2eq. Would be avoided on a daily basis (Duan et al.,
2020).. This will reduce required costs and energy to operate a conventional wastewater
treatment plant.

Finally, it is noteworthy to mention that the estimations given in this study regarding
the methane yield generated is based on the biomethane potential test. However, BMP
does not give information on the continuous operation of an anaerobic digester, and
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this require more research to evaluate the methane yield in a continuous anaerobic
co-digestion digestor.

4 Conclusions

The amount of water in the toilet waste was recognized as a limiting factor affecting
the methane yield from co-digestion of toilet waste with kitchen waste. It is suggested
that toilet waste generated from water conserving toilet waste (toilet with 0.5 to 1.2 L
of water per flush) and kitchen waste can be a good substrate to be applied in anaerobic
co-digestion systems for obtaining higher energy recovery, while the amount of water for
toilet flushing can hugely be minimised. Hence, the implementation of water conserving
toilet waste to co-digest toilet waste with kitchenwaste is a viable solution for effectively
handling thewastes in rural communities. Collected toilet and kitchenwaste fromvarious
households or communal spaces (e.g. schools), can be combined and processed within
a single anaerobic digester, subsequently producing sustainably energy for the entire
community.
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Abstract. The conversion of organic matter in waste activated sludge (WAS) into
high value-added chemicals of volatile fatty acids (VFAs) has become a focus of
attention. However, the direct conversion of WAS to a certain acid in VFAs is
difficult. Herein, for the first time, biochar was used to promote sludge solubiliza-
tion, hydrolysis and acidogenic fermentation directing the production of acetic
acid. The results illustrated that biochar was able to promote the oxidation of
NADH and maintain the appropriate level of NADH/NAD+ ratio, thus increas-
ing the acetic acid production. The promotion effect was directly proportional to
the content of oxygen-containing functional groups (OFGs) in the biochar, and
the maximum content of OFGs was found in the CT/Ni2O3@SBC, which had
the lowest NADH/NAD+ ratio in the anaerobic fermentation system, acetic acid
accounted for the largest percentage (52.30%), which was 1.99 times higher com-
pared to the blank. OFGs in the biochar were involved in the electron transfer
between electroactive microorganisms in the fermentation system, which com-
pete with the methanogenic microorganisms for the electrons and thereby inhibit
the production of methane. This study reveals that biochar could promote sludge
solubilization, hydrolysis and promote acetic acid production, providing a new
strategy for directional acid production in the future.

Keyword: Biochar · Acetic acid · NADH/NAD+

1 Introduction

The conversion of organic matter in waste activated sludge (WAS) to value-added chem-
icals such as volatile fatty acids (VFAs) has become a focus of attention (Dyksma et al.,
2020). However, most of the current studies have focused on the increase of the total
amount of VFAs, and there are fewer studies on the targeted conversion of VFAs to
specific acids.

Nicotinamide adenine dinucleotide hydrogen (NADH) and nicotinamide adenine
dinucleotide (NAD+) control the production direction of acid, which have to do with
electron transport (Martins et al., 2018). Many studies have shown that porous biochar
can provide attachment sites for microorganisms and key enzymes in sludge anaerobic
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fermentation systems (Rajendran et al., 2020). In addition, biochar contains oxygen-
containing functional groups (OFGs, including quinone groups, phenol groups, and
environmentally persistent free radicals (EPFRs)), which have some redox capacity and
can transfer electrons.

Themain purpose of this study thuswas to use biochar to promoteWASsolubilization
and hydrolysis and directionally promote desired acid production. This study, for the
first time, provided deep insights into the feasibility of using biochar to promote WAS
solubilization, hydrolysis and acidogenic fermentation directed to acetic acid production.

2 Materials and Methods

2.1 Modified Sludge-based Biochar Preparation

The pyrolysis method was used as follows: firstly, dry sludge, dry sludge+ 5% catechol,
dry sludge + 5% catechol + 5% ferric oxide, dry sludge + 5% catechol + 5% nickel
trioxide were put into a quartz boat and pyrolyzed at 450 °C for 90 min, and then
cooled to room temperature. They were named SBC,CT@SBC,CT/Fe2O3@SBC and
CT/Ni2O3@SBC, respectively.

2.2 Acid Production Batch Experiment Under Modified Biochar Pretreatment

The serum bottles for batch fermentation were AF1, AF2, AF3, AF4, AF5, and AF6,
with a capacity of 550 mL. Biochar was not added to AF1 and AF2 bottles, in which pH
was not adjusted in AF1; pH was adjusted to 10 in AF2 bottles; and SBC, CT@SBC,
and CT/Fe2O3@SBC with 1.17g were added to AF3, AF4, AF5, and AF6, respectively,
and the fermentation time was 7 days.

3 Results and Discussion

3.1 Characterization of Modified Biochar

As can be seen from the Fig. 1, the modified biochar CT/Ni2O3@SBC has higher –
OH and C = O functional groups, EPFRs, the reduction peaks in the CV curves of the
modified biochar are more obvious, and the ability to gain electrons has been improved,
and the maximum O/C value (0.52) in CT/Ni2O3@SBC indicates that at this time, the
biochar contains a higher content of OFGs, which is conducive to the promotion of the
electron transfer of the reaction.

3.2 Effect of Modified Biochar on Acid Production

As shown in Fig. 2a and b, at pH 10, the changes of supernatant SCODwith the addition
of different biochars (SBC, CT@SBC, CT/Fe2O3@SBC, and CT/Ni2O3@SBC) firstly
increased and then decreased, and then reached the maximum value on the second day
(4680.56mg/L, 4820.67mg/L, 5200.45 mg/L and 5540.32 mg/L).The changes of protein
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Fig. 1. Modified biochar characterization. (a) FTIR, (b) XRD, (c) EPR and (d) CV.

firstly increasing and then decreasing, and then reaching the maximum on the second
day (2024.61 mg/L, 2100.27 mg/L, 2200.19 mg /L and 2386.26 mg/L).

As can be seen in Fig. 2c, the total VFAs production of the AF3, AF4, AF5, and AF6
groups increased with the increase of the electron-gaining capacity in biochar. As can be
seen in Fig. 2d, the content of acetic acid was increased with the addition of biochar and
the production of acetic acid with the addition of the different biochars SBC, CT@SBC,
CT/Fe2O3@SBC, and CT/Ni2O3@SBC, was 1365.38mgCOD/L, 1701.98mgCOD/L,
1918.33mgCOD/L and 2160.52mgCOD/L, accounting for 42.59%, 47.84%, 50.91%
and 52.30%, respectively, which were higher than the AF2 (1085.62mgCOD/L), which
were 1.26, 1.56, 1.77 and 1.99 times, respectively.

As can be seen from the Fig. 2e, the maximum gas production was 25.06% on the
seventh day in AF2, which was 9.99% higher than that of the AF1 group (15.07%), and
the methane production when different biochar SBC, CT@SBC, CT/Fe2O3@SBC, and
CT/Ni2O3@SBC were added was 13.56%, 12.80%, 11.42%, and 10.82%, respectively.
Suggesting that the addition of biochar suppressed the anaerobicmethanogenesis process
of WAS, which was elevated with the increase of OFGs in biochar.
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Fig. 2. Effect of modified biochar on acid production from anaerobic fermentation of sludge. (a)
SCOD, (b) protein, (c) VFAs, (d) Individual VFAs and (e) Methane ratios.

3.3 Enzyme Activity Analysis

As shown in Fig. 3a, the protease and α-glucosidase activities of the experimental group
dosed with CT/Ni2O3@SBC biochar were the largest, which were 1.67 times and 1.56
times of those of the AF2 group.

As can be seen in Fig. 3b, PTA enzyme activities were 1.24, 1.38, 1.50 and 1.62
times higher than those of the AF2, and AK enzyme activities were 1.17, 1.21, 1.31 and
1.52 times higher than those of the AF2, respectively. And F420 enzyme activities were
0.81, 0.71, 0.69 and 0.62 times higher than those of the AF2 group.


