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Preface to the First Edition

Particle Technology

Particle technology is a term used to refer to the science and technology related to the
handling and processing of particles and powders. Particle technology is also often
described as powder technology, particle science and powder science. Powders and par-
ticles are commonly referred to as bulk solids, particulate solids and granular solids.
Today particle technology includes the study of liquid drops, emulsions and bubbles
as well as solid particles. In this book only solid particles are covered and the terms par-
ticles, powder and particulate solids will be used interchangeably.
The discipline of particle technology now includes topics as diverse as the formation of

aerosols and the design of bucket elevators, crystallization and pneumatics transport,
slurry filtration and silo design. A knowledge of particle technology may be used in
the oil industry to design the catalytic cracking reactor which produces gasoline from
oil or it may be used in forensic science to link the accused with the scene of crime. Igno-
rance of particle technology may result in lost production, poor product quality, risk to
health, dust explosion or storage silo collapse.

Objective

The objective of this textbook is to introduce the subject of particle technology to students
studying degree courses in disciplines requiring knowledge of the processing and hand-
ling of particles and powders. Although the primary target readership is amongst stu-
dents of chemical engineering, the material included should form the basis of courses
on particle technology for students studying other disciplines includingmechanical engi-
neering, civil engineering, applied chemistry, pharmaceutics, metallurgy and minerals
engineering.
A number of key topics in particle technology are studied giving the fundamental sci-

ence involved and linking this, wherever possible, to industrial practice. The coverage of
each topic is intended to be exemplary rather than exhaustive. This is not intended to be a
text on unit operations in powder technology for chemical engineers. Readers wishing to
knowmore about the industrial practice and equipment for handling and processing are
referred to the various handbooks of powder technology which are available.
The topics included have been selected to give coverage of broad areaswithin easy par-

ticle technology: characterization (size analysis), processing (fluidized beds granulation),
particle formation (granulation, size reduction), fluid-particle separation (filtration,
settling, gas cyclones), safety (dust explosions), transport (pneumatic transport and



standpipes). The health hazards of fine particles or dusts are not covered. This is not to
suggest in any way that this topic is less important than others. It is omitted because of a
lack of space and because the health hazards associated with dusts are dealt with com-
petently in the many texts on Industrial or Occupational Hygiene which are now avail-
able. Students need to be aware however, that even chemically inert dusts or ‘nuisance
dust’ can be a major health hazard. Particularly where products contain a significant pro-
portion of particles under 10 μmandwhere there is a possibility of the material becoming
airborne during handling and processing. The engineering approach to the health hazard
of fine powders should be strategic wherever possible, aiming to reduce dustiness by
agglomeration, to design equipment for containment of material and to minimize expo-
sure of workers.
The topics included demonstrate how the behaviour of powders is often quite different

from the behaviour of liquids and gases. Behaviour of particulate solids may be surpris-
ing and often counter-intuitive when intuition is based on our experience with fluids. The
following are examples of this kind of behaviour:

When a steel ball is placed at the bottom of a container of sand and the container is
vibrated in a vertical plane, the steel ball will rise to the surface.

A steel ball resting on the surface of a bed of sand will sink swiftly if air is passed
upward through the sand causing it to become fluidized.

Stirring a mixture of two free-flowing powders of different sizes may result in segre-
gation rather than improved mixture quality.

Engineers and scientists are used to dealing with liquids and gases whose properties
can be readily measured, tabulated and even calculated. The boiling point of pure ben-
zene at one atmosphere pressure can be safely relied upon to remain at 80.1 C. The vis-
cosity of water at 20 C can be confidently predicted to be 0.001 Pa s. The thermal
conductivity of copper at 100 C is 377W/mK.With particulate solids, the picture is quite
different. The flow properties of sodium bicarbonate powder, for example, depend not
only on the particle size distribution, the particle shape and surface properties, but also
on the humidity of atmosphere and the state of the compaction of the powder. These vari-
ables are not easy to characterize and so their influence on the flow properties is difficult
to predict with any confidence.
In the case of particulate solids it is almost always necessary to rely on performing

appropriate measurements on the actual powder in question rather than relying on tabu-
lated data. Themeasurements made are generally measurements of bulk properties, such
as shear stress, bulk density, rather than measurements of fundamental properties such
as particle size, shape and density. Although this is the present situation, in the not too
distant future, we will be able to rely on sophisticated computer models for simulation of
particulate systems. Mathematical modelling of particulate solids behaviour is a rapidly
developing area of research around the world, and with increased computing power and
better visualization software, wewill soon be able to link fundamental particle properties
directly to bulk powder behaviour. It will even be possible to predict, from first princi-
ples, the influence of the presence of gases and liquids within the powder or to incorpo-
rate chemical reaction.
Particle technology is a fertile area for research. Many phenomena are still unexplained

and design procedures rely heavily on past experience rather than on fundamental

xvPREFACE TO THE FIRST EDITION



understanding. This situation presents exciting challenges to researchers from a wide
range of scientific and engineering disciplines around the world. Many research groups
have websites which are interesting and informative at levels ranging from primary
schools to serious researchers. Students are encouraged to visit these sites to find out
more about particle technology.

Martin Rhodes
Mount Eliza, May 1998
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Introduction

Particulate materials, powders or bulk solids are used widely in all areas of the process
industries, for example in the food processing, pharmaceutical, biotechnology, energy,
chemical, mineral processing, metallurgical, detergent, paint, plastics and cosmetics
industries. These industries involve many different types of professional scientists and
engineers, such as chemical engineers, chemists, biologists, physicists, pharmacists, min-
eral engineers, food technologists, metallurgists, material scientists/engineers, environ-
mental scientists/engineers, mechanical engineers, combustion engineers and civil
engineers. Numerous surveys have suggested the importance of particle-based products
to the world’s economy and new products and applications are emerging every day.
Some examples of the processing steps involving particles and powder include particle

formation processes (such as crystallization, precipitation, granulation, spray drying,
tabletting, extrusion and grinding), transportation processes (such as pneumatic and
hydraulic transport, mechanical conveying and screw feeding) and mixing, drying
and coating processes. In addition, processes involving particulates require reliable stor-
age facilities and give rise to health and safety issues, which must be satisfactorily han-
dled. Design and operation of these many processes across this wide range of industries
require a knowledge of the behaviour of powders and particles. This behaviour is often
counterintuitive, when intuition is based on our knowledge of liquids and gases. For
example, actions such as stirring, shaking or vibrating, which would result in mixing
of two liquids, are more likely to produce size segregation in a mixture of free-flowing
powders of different sizes. A storage hopper holding 500 tonnes of powder may not
deliver even 1 kg when the outlet valve is opened unless the hopper has been correctly
designed. When a steel ball is placed at the bottom of a container of sand and the con-
tainer is vibrated in the vertical plane, the steel ball will rise to the surface. This steel ball
will then sink swiftly to the bottom again if air is passed upwards through the sand caus-
ing it to be fluidized.
Engineers and scientists are used to dealing with gases and liquids, whose properties

can be readily measured, tabulated or even calculated. The boiling point of pure benzene
at atmospheric pressure can be safely assumed to remain at 80.1 C. The thermal conduc-
tivity of copper can always be relied upon to be 377W/mK at 100 C. The viscosity of
water at 20 C can be confidently expected to be 0.001 Pa s. With particulate solids, how-
ever, the situation is quite different. The flow properties of sodium bicarbonate powder,
for example, depend not only on the particle size distribution, but also on particle shape
and surface properties, the humidity of the surrounding atmosphere and the state of com-
paction of the powder. These variables are not easy to characterize and so their influence
on the flow properties of the powder is difficult to predict or control with any confidence.
Intriguingly, powders appear to have some of the behavioural characteristics of all three
phases: solids, liquids and gases. For example, like gases, powders can be compressed;



like liquids, they can be made to flow; and like solids, they can withstand some
deformation.
The importance of knowledge of the science of particulate materials (often called par-

ticle or powder technology) to the process industries cannot be overemphasized. Very
often, difficulties in the handling or processing of powders are ignored or overlooked
at the design stage, with the result that powder-related problems are the cause of an inor-
dinate number of production stoppages. However, it has been demonstrated that the
application of even a basic understanding of the ways inwhich powders behave canmin-
imize these processing problems, resulting in less downtime, improvements in quality
control and reduced environmental emissions.
This text is intended as an introduction to particle technology. The topics included have

been selected to give coverage of the broad areas of particle technology: characterization
(size analysis, surface area), processing (granulation, fluidization), particle formation
(granulation, crystallisation, tableting, size reduction), storage and transport (hopper
design, pneumatic conveying, standpipes), separation (filtration, settling, cyclones),
safety (fire and explosion hazards, health hazards), engineering the properties of partic-
ulate systems to achieve desired product performance, discrete element modelling. For
each of the topics studied, the fundamental science involved is introduced and this is
linked, where possible, to industrial practice. In each chapter there are worked examples
and exercises to enable the reader to practice the relevant calculations and a ‘Test Your-
self’ section, intended to highlight the main concepts covered.

Martin Rhodes
Jonathan Seville
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Particle Analysis

Particle size and size distribution are fundamentally important in determining how a
powder will behave in its bulk form. Measuring the particle size distribution, describing
it in graphical and mathematical form and comparing it with other distributions are
therefore important tasks for the particle technologist and are introduced in this chapter.
Particle “size” can be described unambiguously by a single number only for a distribu-
tion of monosized spheres, but real particles are neither spherical nor monosized.
We therefore need to understand how to describe particle shape and what effects this
has on measurement and calculation. In many industrial applications it is common to
represent an entire distribution by some sort of averaged single number. Calculation
methods and choices for this are shown. Finally, we also introduce methods for measure-
ment of the surface area of particle distributions.

1.1 PARTICLE SIZE

Size is the most fundamental of particle properties. We will see throughout this book that
the size of a particle affects all of its properties. For example, larger particles usually flow
freely whereas smaller particles do not. Larger particles dissolve slowly and smaller ones
more quickly, resulting in different pharmaceutical effectiveness. Light is scattered
strongly from small particles but much less so from larger ones, resulting in different
atmospheric effects and a different appearance of painted surfaces, for example.
The objects we describe as particles can cover a wide range of sizes, as shown in

Figure 1.1, from large molecules (of order 0.01 μm or 10−8 m) to bricks (of order 10 cm
or 10−1 m). Particles almost always come in large numbers (there are hundreds ofmillions
of salt particles on your dinner table right now!) and as a distribution of sizes. Mono-sized
distributions, containing only one particle size or a very narrow distribution of sizes, are
very rare (pollen is an example in nature). Distributions can be wide, often very wide. For
example, your container of salt will include not only salt crystals of around 0.3 mm or
300 μm but also broken salt dust particles down to 1 μm in size. In many processes
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and products the entire distribution is important; those very fine particles can have a big
effect on how the whole distribution behaves.
What dowemean by particle size? This might seem like a simple question but in general

it is not. If the particle is a sphere, the obvious answer is that its size is the same as its
diameter. What if the particle is a cube? (Crystalline particles usually have an angular
shape and crystals of common salt – sodium chloride – are roughly cubic.) In this case,
it might seem logical to choose the side length of the cube to represent its size but as
shown in Figure 1.2, there are other choices and the maximum dimension is actually
3 times the side length a.
Another way of looking at the problem of selection of a representative or equivalent

diameter is to calculate the size of a sphere which has the same property as the non-
spherical particle we are interested in. Two widely used possibilities are:

Sphere

Sphere diameter, x Cube side length, a

Face diagonal =

Cube diagonal =

Cube

2a
3a

Figure 1.2 Sizes of spheres and cubes
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Figure 1.1 Ranges of particle size
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the diameter of a sphere of equivalent projected area A

xA =
4A
π

(1.1)

or the diameter of a sphere of equivalent volume V

xV =
6V
π

3
(1.2)

For the cube considered earlier, Figure 1.3 shows how the projected area may take the
value a2 or 2 a2 or 3 a2 according to the orientation of the particle, or, of course, values
in between these for other orientations. The equivalent projected area diameter will
then depend upon the orientation and in these three cases will take values of a 4 π,
2a 1 414 π and 2a 1 732 π.
Note that the equivalent volume diameter xV, does not depend on the orientation.
The example of a cube is relatively easy to deal with. Real particles seldom have a reg-

ular shape but approximation to a spheroid, plate or rod may sometimes be useful.
For irregular particles, the projected image can be used to obtain a number of types of

shape factors, as illustrated in Figure 1.4.
Roundness SR, is a measure of how closely the particle outline resembles a circle:

SR =
4πA
P2 (1.3)

where P is the perimeter length and A is the area. Roundness is defined such that the
value for a circle is 1. The roundness of other particles is then less than 1.
The Feret diameter is obtained by taking the distance between two parallel lines on

either side of the particle perimeter, as shown. By varying the angle φ it is possible to find
theminimum andmaximum Feret diameters; a shape factor can be simply obtained from
the ratio between them.
Many other measures of shape can be defined.

Projected area

Cube side length, a

Face direction = a2

Vertex direction = a2 3

Edge direction = a2 2

Figure 1.3 Equivalent areas for a cube
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1.2 DESCRIPTION OF POPULATIONS OF PARTICLES

A population of particles is described by a particle size distribution. Particle size dis-
tributions may be expressed as frequency distributions or cumulative distributions.
These are illustrated in Figure 1.5. The two are related mathematically in that the
cumulative distribution is the integral of the frequency distribution; i.e. if the cumu-
lative distribution is denoted as F, then the frequency distribution is dF/dx. For sim-
plicity, dF/dx is often written as f(x). The distributions can be by number, surface,
mass or volume (where particle density does not vary with size, the mass distribu-
tion is the same as the volume distribution). Incorporating this information into the
notation, fN(x) is the frequency distribution by number, fS(x) is the frequency distri-
bution by surface, FS is the cumulative distribution by surface and FM is the cumu-
lative distribution by mass. In reality, for many particles these distributions are
smooth continuous curves. However, size measurement methods usually divide
the size spectrum into size ranges or classes and the size distribution becomes a
histogram.
For a given population of particles, the distributions by mass, number and surface

can differ dramatically, as can be seen in Figure 1.6.

1.3 CONVERSION BETWEEN DISTRIBUTIONS

Many modern size analysis instruments measure particles individually and therefore
produce a number distribution, which is rarely the one which is of most practical use.
These instruments include software to convert the measured distribution into more prac-
tical distributions by mass, surface, etc.
Relating the size distributions by number fN(x), and by surface fS(x) for a population of

particles having the same geometric shape but different size:

Fraction of particles in the size range x to x + dx = fN x dx

Particle image Perimeter

Feret

diameters:

horizontal,
vertical and at

angle φ

Fφφ

Area A

FH

FV

Figure 1.4 Shape and the Feret diameter
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Figure 1.5 Typical differential and cumulative frequency distributions

Figure 1.6 Comparison between distributions
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Fraction of the total surface of particles in the size range x to x + dx = f S x dx

IfN is the total number of particles in the population, the number of particles in the size
range x to x + dx = NfN(x)dx and the surface area of these particles = (x2αS)NfN(x)dx,
where αS is the factor relating the linear dimension of the particle to its surface area.
Therefore, the fraction of the total surface area contributed by these particles [fS(x)dx] is:

x2αS NfN x dx
S

where S is the total surface area of the population of particles.
For a given population, the total number of particles,N, and the total surface area, S are

constant. Also, assuming particle shape is independent of size, i.e. all particles have the
same shape, αS is constant, and so

f S x x2fN x or f S x = kSx2fN x (1.4)

where

kS =
αSN
S

Similarly, for the distribution by volume

fV x = kVx3fN x (1.5)

where

kV =
αVN
V

where V is the total volume of the population of particles and αV is the factor relating the
linear dimension of the particle to its volume.
And for the distribution by mass

fm x = kmx3fN x (1.6)

where

km =
αVρpN

V

assuming particle density ρp is independent of size, i.e. all the particles have the same
density.
The constants kS, kV and km may be found by using the fact that

∞

0
f x dx = 1 (1.7)
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Thus, when we convert between distributions it is necessary to make assumptions
about the constancy of shape and density with size. If these assumptions are not valid,
the conversions are likely to be in error. For example, this approach would not be valid in
the case where the population consists of whole spheres and broken pieces of spheres,
because shape will then vary with size. Also, calculation errors are introduced into the
conversions. For example, imagine that we used an electron microscope to produce a
number distribution of size with a measurement error of ±2%. Converting the number
distribution to a mass distribution we triple the error involved (i.e. the error becomes
±6%). For these reasons, conversions between distributions are to be avoided wherever
possible. This can be done by choosing the measurement method which gives the
required distribution directly.

1.4 DESCRIBING THE POPULATION BY A SINGLE NUMBER

In most practical applications, we require to describe the particle size of a population of
particles (millions of them) by a single number. There are many options available: the
mode, the median, and several different means including arithmetic, geometric, quad-
ratic, harmonic, etc. Whichever expression of central tendency of the particle size of
the population we use needs to reflect the property or properties of the population of
importance to us. We are, in fact, modelling the real population with an artificial popu-
lation of mono-sized particles. This section deals with calculation of the different expres-
sions of central tendency and selection of the appropriate expression for a particular
application.
Themode is themost frequently occurring size in the sample (Figure 1.5).We note, how-

ever, that for the same sample, different modes would be obtained for distributions by
number, surface and volume. The mode has no practical significance as a measure of cen-
tral tendency and so is rarely used in practice.
The median is easily read from the cumulative distribution as the 50% size (Figure 1.5):

the size which splits the distribution into two equal parts. In a mass distribution, for
example, half of the particles by mass are smaller than the median size. Since the median
is easily determined, it is often used. However, it has no special significance as a measure
of central tendency of particle size.
Various means can be defined for a given size distribution. However, they can all be

described by:

g x =

1

0
g x dF

1

0
dF

but
1

0
dF = 1 and so g x =

1

0
g x dF (1.8)

where x is the mean and g is the weighting function, which is different for each mean
definition. Examples are given in Table 1.1.
Equation (1.8) tells us that the mean is the area between the curve and the F(x) axis in a

plot of F(x) versus the weighting function g(x) (Figure 1.7).
Eachmean can be shown to retain two properties of the original population of particles.

For example, the arithmetic mean of the surface distribution retains the surface and vol-
ume of the original population. This is demonstrated in Worked Example 1.3. This mean
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is commonly referred to as the surface-volume mean or the Sauter mean. The arithmetic
mean of the number distribution xaN retains the number and length of the original
population and is known as the number-length mean xNL:

Number-length mean xNL = xaN =

1

0
x dFN

1

0
dFN

(1.9)

As another example, the quadratic mean of the number distribution xqN conserves
the number and surface of the original population and is known as the number-surface
mean xNS:

Number-surface mean x2NS = x2qN =

1

0
x2 dFN

1

0
dFN

(1.10)

A comparison of the values of the differentmeans and themode andmedian for a given
particle size distribution is given in Figure 1.8. This figure highlights two points: (a) that

Table 1.1 Definitions of means

g(x) Mean and notation

x Arithmetic mean xa
x2 Quadratic mean xq
x3 Cubic mean xc
log x Geometric mean xg
1/x Harmonic mean xh

Figure 1.7 Plot of cumulative frequency against weighting function g(x). Shaded area is g x =
1
0 g x dF
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