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Research on Optimization Design Method
of Autonomous Deformation Decision
for Intelligent Morphing Aircraft

Dan Xu(B)

College of Information and Control Engineering, Xi’an University of Architecture and
Technology, Xi’an, China
xdan@xauat.edu.cn

Abstract. Intelligent morphing aircraft can timely and independently change
its shape according to the flight mission and environment, and meet different
flight missions with different aerodynamic layouts, so as to achieve performance
improvement and trajectory optimization in different flight stages. So it is also one
of the development trends that is most likely to bring about the technical revolution
of the future aerospace aircraft. In order to improve the trajectory characteristics,
it is necessary to establish the controlled model in advance by using traditional
controller to control structural changes. However, due to obvious changes in the
structure of morphing aircraft, it is impossible to establish accurate mathemati-
cal model. Therefore, an intelligent trajectory optimization method is proposed
to solve the problem of aircraft autonomous deformation decision control. This
paper takes intelligent morphing aircraft flying at high speed in large airspace
as the research object, aiming at the technical problems that the aircraft is dif-
ficult to obtain sufficient deformable flight test data in advance, which leads to
the difficulty in predicting the optimal aerodynamic shape under different flight
states, and the traditional controller cannot be used to optimize the deformation.
A deformable decision scheme based on reinforcement learning (RL) network
is proposed, which realizes that the aircraft structure can be changed indepen-
dently according to the real-time state in flight, so as to improve the aerodynamic
performance and optimize the flight trajectory.

Keywords: Morphing aircraft · Trajectory optimization · Intelligent decision ·
Reinforcement Learning · Autonomous deformation

1 Introduction

Intelligent morphing aircraft has great application prospects and is considered by
National Aeronautics and Space Administration (NASA) as one of the most subver-
sive and transformative strategic development directions in the future aerospace. Take
the future intelligent morphing aircraft envisioned by NASA as an example, based on
the comprehensive application of new intelligent materials, intelligent drive devices,
sensors and intelligent control systems, the aircraft can continuously, smoothly and inde-
pendently change the partial or overall structure shape of the body during the flight to
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adapt to different flight environments, complete a variety of target task and always main-
tain optimal aerodynamic characteristics. It is a new concept aircraft with flight adaptive
ability. Due to its great performance advantage and application potential, in recent years,
various military powers have carried out the research on the shape and structure of intel-
ligent morphing aircraft, and various design concepts have been proposed and realized
through optimization design. In addition, intelligent morphing aircraft also involves
aerodynamics, structural dynamics, intelligent flexible materials/structures, advanced
sensing and system integration, intelligent information and modern control and other
frontier technologies, each of which is the bottleneck restricting the improvement of
aircraft performance. At present, the research on adaptive flexible materials, deformed
wing structure and aerodynamic characteristics has been relatively perfect [1–3], but
the research on core algorithms such as deformation decision and intelligent control is
relatively insufficient, which is the key to realize adaptive flight of intelligent morphing
aircraft.

As an important link in aircraft design, trajectory optimization involves various
flight stages of aircraft and has important research significance [4, 5]. For intelligent
morphing aircraft, deformable wing structure is the main operation mechanism of flight
control. It has always been a difficult problem how to make the aircraft has autonomous
decision-making ability, and improve flight performance and optimize flight trajectory
by changing its shape independently according to different requirements of flight tasks.
It is also the core technical problem that must be solved from the control level after the
major breakthrough of intelligent deformable material, deformable wing structure, and
other key technologies. In recent years, based on its powerful exploration function and
independent learning ability, RL together with supervised learning and unsupervised
learning, has been called the three major machine learning technologies. As an online
learning technology, RL innovatively views learning as a process of interaction with the
environment. The algorithm does not need to rely on a large amount of prior knowledge.
It obtains feedback and accumulates experience through continuous trial and error, and
takes this as the guidance to realize independent learning. For the trajectory optimization
problem of intelligent aircraft to be solved in this paper, the objective is to use RL
algorithm to build a deformation decision network model and optimize the deformation
strategy autonomously through multiple training, so that the aircraft can independently
decide the deformation timing and deformation quantity according to the flight state, so
as to improve the aerodynamic characteristics and optimize the flight trajectory.

2 Methods

OpenAI tends to choose Proximal Policy Optimization (PPO) algorithm [6, 7] with the
widest application range when trying to realize various problems. So, in the research on
the trajectory optimization scheme proposed in this paper, we also firstly use this algo-
rithm to complete the preliminary feasibility verification of the autonomous deformation
decision scheme for morphing aircraft. Then, in order to further explore the learning
advantages of different algorithms, we use another kind of off-policy Deep Determin-
istic Policy Gradient (DDPG) algorithm [8–10] for comparative test. This chapter will
complete the construction of algorithm network based on the implementation principles
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of these two algorithms, and the setting of network hyperparameters will be described
in detail.

In PPO algorithm based on Actor-Critic network, there are three networks are built
generally: one critic network and two actor networks (old actor network and new actor
network). In an episode, agent firstly uses the existing policy in new actor network to
interact with the environment and get a batch of data. In this process, actor and critic
network will not be optimized. After obtaining a complete batch of data, actor network
and critic network begin to learn this batch of data, which is similar to Policy Gradient
(PG) algorithm. However, different from PG algorithm, actor network and critic network
will learn this batch of sampled data T times. T is the number of iteration rounds of actor
network. In order to avoid over-fitting, we adopt the simplest three-layer fully connected
neural network structure. In order to ensure high precision and generalization ability, the
most basic principle to determine the number of hidden layer nodes is to adopt compact
structure as far as possible on the premise of meeting accuracy requirements. According
to the observed state space and the complexity of problem, the hidden layer network with
800 nodes is finally adopted. The activation function of the hidden layer adopts piecewise
linear function Relu so that the neural network can approximate any nonlinear function
arbitrarily and accelerate the convergence of training network. When constructing the
actor network, the concept of probability distribution is added to complete the selection
of actions. The activation function used to calculate mean value is Relu, while the
activation function used to calculate variance is Sigmoid. Actor network will return a
normal distribution based on the mean and variance, and the actions will be sampled
based on this normal distribution. The loss function is calculated by clipping to prevent
the distribution difference from being too large. After many tests, we set the number of
training episodes to 400 to complete 400 trajectory tests. In each episode, aircraft starts
to glide from a fixed initial altitude at the same initial speed, and the training for that
trajectory ends when the altitude drops to 20 km. Set the learning rate of actor network
and critic network to 0.0001 and 0.0002 respectively, and the network is updated every
10 steps. Considering that the behavior strategy has not been optimized in the early stage
of training and the quality of the selected actions is also uneven, a discount factor is set
in the calculation of expected returns to adjust the calculation of cumulative rewards in
the learning process, and the value is 0.9.

Similarly, DDPG algorithm still adopts Actor-Critic network model. The difference
is that the algorithm adopts the design of the target network in DQN algorithm, so
there are four networks in the algorithm: two critic networks with the same structure
and two actor networks with the same structure. For the fairness of comparison, the
structure of actor network and the critic network, training episodes, discount factor and
termination conditions are consistent with PPO algorithm. In the output layer of the actor
network, the folding sweep angle is increased or decreased by applying Tanh function.
In order to calculate Q values more accurately, the actions are added to the first hidden
layer of the critic network to enrich the learning data. In the process of deformation
decision optimization training, PPO algorithm can better complete exploratory learning
of action space because of the randomness of its behavior strategy output. However, the
deterministic behavior output of DDPG algorithm is not conducive to the exploration
of action space, so we add random noise to the first 100 training trajectories to enhance
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the exploration ability. The learning rate of actor network and critic network is set to
0.001 and 0.0001 respectively, the minimum batch of empirical data required for each
gradient update is set to 64 (Figs. 1 and 2).
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3 Experimental Setup

In this paper, trajectory optimization of gliding phase is taken as the objective to design
the deformation decision scheme of intelligent aircraft. Glide distance and descending
height are taken as control parameters to set the reward function, and the calculated
reward value is used to evaluate the deformation amount of the autonomous decision,
so as to guide the decision scheme to achieve autonomous learning and complete the
parameter optimization in the direction of increasing the reward. After multiple iterative
trainings, the reward value gradually converges, and the optimized decision network is
obtained.

3.1 Morphing Aircraft Model

The researchmodel chosen in this paper is the aircraft with variable sweep angle of wing,
which can realize continuous change from 0° to 50°, shown in Fig. 3. During flight, the
aircraft adjusts the aerodynamic parameters by changing the swept-wing folding Angle
through autonomous decisionmaking, obtains a newflight trajectory equation, calculates
the trajectory parameters, and brings them into the reward function to obtain the reward
return to guide the decision optimization. In the optimal design scheme of deformation
decision making in glide stage, it is only necessary to calculate the parameter change of
flight trajectory in the longitudinal plane, without considering the influence of sideslip
angle. Therefore, it can be boldly assumed that the Earth is a uniform, non-rotating
sphere, so as to ignore the influence of aspherical perturbation on the gravitational field,
and obtain the flight trajectory in the general sense.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dV
dt = −D − g sin θ
dθ
dt = L cos ν

V + 1
V

(
V 2

r − g
)
cos θ

dr
dt = V sin θ
dR
dt = Re

V
r cos θ

(1)
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50

Fig. 3. Conceptual diagram of variable sweep mode aircraft

In the Equation set (1), the constant quantity includes gravitational acceleration
g and Earth radius Re, the velocity information includes flight velocity V and velocity
inclination angle θ, v representing control quantity inclination angle; r andR respectively
represent geocentric distance and glide distance; aerodynamic parameters include drag
acceleration D and lift acceleration L, which can be calculated according to Eq. (2).

{
D = X

m = CDρV 2S
2m

L = Y
m = CLρV 2S

2m

(2)

where,m is the mass of the aircraft, and S is the reference area. The atmospheric density
ρ is determined by an exponential model related to height. Drag coefficient CD is a
function of reference area S, attack angle α and Mach number Ma, lift coefficient CL

is a function of α, Ma and flight altitude h (h = R-Re). In order to improve the lateral
maneuvering performance and glide distance of the aircraft, realize thermal protection
under high-speed environment and design the attitude control system, the attack angle
is usually designed according to the piecewise linear function shown in Eq. (3), so as to
obtain a smoother attack angle curve. Where, αmax and αmax(K) respectively represent
the maximum attack angle and the corresponding attack angle to the maximum lift-drag
ratio in the flight process, V1 and V2 represent the speed of subsection points, and K
represent lift-drag ratio, is L/D.

α =

⎧
⎪⎨

⎪⎩

αmax, V1 < V < Ve
αmax+αmax(K)

2 + αmax−αmax(K)

2 sin
{ [V−(V1+V2)/2]π

V1−V2

}
, V2 ≤ V ≤ V1

αmax(K), Vf ≤ V ≤ V2

(3)

Considering that once the aerodynamic configuration of the aircraft changes, the
structural parameters and aerodynamic characteristics of the aircraft will change accord-
ingly, making flight trajectory equations also need to be adjusted accordingly, which
brings great challenges to algorithm design, program testing and scheme verification.
Therefore, we assume that the online planning of flight trajectory and the stability control
of variational configuration are ideal states, and assume that a set of fixed values can be
selected for trajectory calculation when the parameters change little in a certain defor-
mation range. For the high-speed aircraft model with variable swept-wing adopted in
the experiment, according to the sensitivity of aerodynamic coefficient to deformation,
the following configuration is divided. For the three configurations, the correspond-
ing deformation aerodynamic parameters and structural parameters were obtained by
experiments, and then the flight trajectory motion equations of the aircraft under three
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different configurations were constructed to predict the flight trajectory before and after
deformation (Table 1).

Table 1. Division of configurations

Sweep angle/° Configuration

0–15 1

15–30 2

30–50 3

3.2 Scheme Design

The scheme design of deformation decision is mainly divided into two parts: deforma-
tion timing decision and deformation quantity decision, as shown in Fig. 4. When the
mission is determined, the trajectory has the corresponding flight target parameters. For
example, the goal of the glide section is to fly as far as possible and use as little energy
as possible. Then, in flight, the trajectory parameters measured in real time by airborne
sensors can be used to determine online whether the trajectory characteristics need to
be improved by changing the shape at the current moment according to the deformation
timing criteria. When it is judged that it is necessary to optimize the flight path through
deformation, the aerodynamic data at the current time is used for constraint calculation
to determine whether the safe deformation conditions are met. If yes, the deformation
timing decision module will output the deformation instruction, and then the defor-
mation quantity decision module will directly output the optimal deformation quantity
required under the current state according to the flight state data given by sensors and
the deformation optimization strategy.

(1) Deformation timing decision module

The deformation timing decisionmodule first completes themapping of aerodynamic
parameters based on flight trajectory data andmakes deformation judgment. The specific
scheme design is shown in the shadow box on the left side of Fig. 5. One of the most
important is to establish the aerodynamic parameter mapping model, which needs to
be based on a large number of experimental data. That is, lift coefficient and drag
coefficient of the aircraft in different configurations under different combinations of
attack angle, velocity and altitude. When judging the deformation timing, it is necessary
to calculate the difference between the theoretical optimal lift-drag ratio that can be
achieved under the current flight state and the actual lift-drag ratio corresponding to the
current configuration. When the difference reaches 4% of the optimal lift-drag ratio, it is
judged that the aerodynamic characteristics need to be improved by deformation. For the
high-altitude high-speed aircraft to be studied in this paper, in addition to considering
the reliable relationship between structural deformation and aerodynamic and attitude
stability under maneuvering environment, the influence of heat flux, dynamic pressure
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Fig. 4. Flow chart of the deformation decision scheme design

and overload on the aircraft should also be considered. So, the safe deformation judgment
is set in the shadow box on the right of Fig. 5. By calculating the heat flux, dynamic
pressure and overload in the current state, and comparing with the limit value, the
deformation constraint conditions are judged to be satisfied. The calculation formulas
are as follows, where, kγ = 5.5 × 10–8 is the stagnation heat flux coefficient, Q̇ max,
qmax and nymax are the constant limit values of heat flux, dynamic pressure and overload
respectively, which are usually determined by the aircraft and the flight task.

•
Q = kγ ρ0.5v3.15 ≤ •

Q
max

(4)

q = 0.5ρv2 ≤ qmax (5)

ny = (L cosα + D sin α)/mg ≤ nymax (6)

(2) Deformation quantity decision module

In the constructed deformation decision module, the reinforcement learning algo-
rithm is used to build the network model, the trajectory parameter is used to set the
reward function, and the model parameters are constantly optimized through the char-
acteristics of self-learning and self-evolution of reinforcement learning to achieve the
optimal deformation output. The specific training process is shown in Fig. 6. A defor-
mation quantity is randomly given within the deformation range, and the lift and drag
coefficients under two configurations before and after deformation under the current
flight environment are obtained by using the aerodynamic parameter mapping model,
and the corresponding flight trajectory prediction equation is constructed to predict the
trajectory parameters after gliding for 10 s before and after deformation, mainly to obtain
the descent height and glide distance. The flight height and glide distance predicted by
the flight trajectory prediction model under the current configuration are denoted as h
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and d, while the parameters predicted under the new configuration after deformation are
denoted as hnew and dnew. Then the trajectory parameters are substituted into the reward
function Eq. (7) for calculation, in order to evaluate the current deformation strategy, and
guide parameter updating. As can be seen from the reward function, when descending
the same height, the longer the glide distance, the greater the reward. According to the
principle that the higher the reward value is, the better the behavior strategy is, the strat-
egy parameters are optimized until they converge after multiple interactive trainings. In
actual flight, based on the current flight data obtained by sensors, the deformation opti-
mization strategy obtained by off-line training can be used to quickly give the optimal
deformation online. The aircraft can improve lift-drag ratio, increase glide distance and
optimize flight trajectory through autonomous deformation.

r = dnew/(h0 − hnew) − d/(h0 − h) (7)

4 Simulation Results

4.1 Simulation Tests Environment

Before the simulation tests of the deformation decision optimization design method, the
task environment should be constructed firstly. The aircraft begin to glide unpowered
from an altitude of 60 km, the flight trajectory of the aircraft descending to the same
height before and after the execution of the deformation decision module was compared.
The feasibility verification of the decision scheme was completed by judging whether
the trajectory characteristics were optimized or not. The state observation variables of
the decision network model include flight speed (v), flight altitude (h), glide distance
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(d) and attack angle (α). The action variable output is the sweep angle (αfold) on both
wings. The next step is to initialize all the variables. The initial sweep angles αfold are
any values within the range of 0 to 5°, the initial flight speed v0 is 3 km per second, the
initial altitude h0 is 60 km, and the glide distance is calculated from 0.

4.2 Test Results of Different Algorithms

(1) Test results based on PPO algorithm

Firstly, the convergence of the algorithm model is verified. The model was made to
complete 400 times of interactive training. Each training made the aircraft to do unpow-
ered glide at the same initial speed from the altitude of 60 km, during which the deforma-
tion was carried out independently according to the constructed decision scheme. After
continuous descent to 20 km altitude, the training is finished and the cumulative reward
changes are observed. It can be seen from the change curve of cumulative rewards in
Fig. 7(a) that, after 50 times of interactive training, the cumulative rewards of the decision
model built based on PPO algorithm increase rapidly and converge gradually after com-
pleting the whole flight path. Then the feasibility of the deformation decision scheme
is verified. Considering that there are many possibilities of the actual flight path, the
optimal deformation angle of the aircraft is unpredictable. Therefore, the effectiveness
of the deformation decision can be judged by observing the flight path of the entire glide
stage. Let the aircraft glide down to the same height, and compare the trajectory curve
before and after the deformation decision. In order to simplify the motion equation of the
flight model, the aircraft moves in a straight line. As shown in Fig. 7(b), the blue dashed
line is the flight path of the aircraft completing the entire glide stage in a fixed form, and
the red solid line is the optimized flight path after the trained decision model completes
the decision deformation online according to the real-time flight state. By comparison,
it can be seen that when the aircraft drops to the same height, the glide range can be
increased by more than 700 km by using the optimized deformation decision after train-
ing. It can be concluded that the PPO algorithm network framework adopted in this paper
can effectively solve the deformation decision-making problem with unknown optimal
indexes. After the intelligent aircraft completes the optimization learning of autonomous
deformation decision-making, the aircraft can realize the optimization and promotion
of flight trajectory by means of autonomous deformation decision-making.

(2) Test results based on DDPG algorithm

In the process of testing the decision training model constructed using DDPG algo-
rithm, the convergence of the model and the effectiveness of the decision were also
verified, and the training model constructed by the two algorithms was further com-
pared. In the decisionmodel based onDDPG algorithm, the cumulative reward gradually
converges after nearly 250 scenes. Compared with the PPO algorithm decision model
with the same network structure parameters, the convergence rate of cumulative rewards
is significantly slowed down, so the learning efficiency of DDPG algorithm decision
model is low. Then the feasibility of the deformation decision scheme is verified and
compared with the PPO algorithm decision model again. Let the aircraft start to glide
unpowered from the altitude of 60 km and until it descends to 20 km. By comparing
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(a) The training curve of cumulative rewards             (b) Flight trajectory comparison 

Fig. 7. Simulation test results based on PPO algorithm

the flight paths before and after using the deformation decision module, it can be seen
that when the aircraft glided down to the same height, using the deformation decision
module to implement online deformation decision can increase the glide distance by
nearly 1000 km, which is more optimized than the PPO algorithm under the same struc-
ture. It is concluded that the decision network model constructed by DDPG algorithm
can also realize the online autonomous deformation decision of intelligent aircraft after
interactive trainings, and achieve the purpose of improving flight trajectory performance
(Fig. 8).

(a) The training curve of cumulative rewards            (b) Flight trajectory comparison

Fig. 8. Simulation test results of DDPG algorithm

5 Conclusions

This paper takes intelligent morphing aircraft flying at high speed in large airspace as
the research object, aiming at the technical problems that the aircraft is difficult to obtain
sufficient deformable flight test data in advance,which leads to the difficulty in predicting
the optimal aerodynamic shape under different flight states. And the traditional control
method needs to build accurate controlled model, so it is difficult to apply to the control
problem of morphing aircraft with large model changes. A scheme design based on RL
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network is proposed to optimize the flight trajectory by changing the aircraft’s structure
through autonomous decision. The flight trajectory is taken as the optimization design
index of deformation decision, and the trajectory parameters are used to construct the
reward function. The autonomous learning of RL network model is guided by reward
growth, so as to complete the optimization learning of deformation time decision and
deformation quantity decision, and realize the purpose of optimizing flight trajectory
through autonomous deformation. In order to verify the feasibility of the design scheme
and avoid the influence of different algorithms on the results, two RL algorithms with
different strategies are used in the simulation experiment to build the decision network
model with the same structure and parameters. The experimental results show that the
decisionmodels constructed by the two algorithms can both optimize the flight trajectory
through online autonomous deformation, which proves that the scheme is effective and
feasible.

References

1. Chu, L., Qi, L.I., Feng, G.U., et al.: Design, modeling, and control of morphing aircraft: a
review. Chin. J. Aeronaut. 35(5), 220–246 (2022)

2. Xu, W., Li, Y., Lv, M., et al.: Modeling and switching adaptive control for nonlinear morph-
ing aircraft considering actuator dynamics. Aerosp. Sci. Technol. 122, 107349.1–107349.17
(2022)

3. Kan, Z., Li, D., Zhao, S., et al.: Aeroacoustic and aerodynamic characteristics of a morphing
airfoil. Aircr. Eng. Aerosp. Technol. 93, 888–899 (2021)

4. Zhang, C., Zhang, Y.,Wei, C.: Onboard trajectory generation of hypersonicmorphing aircraft.
Int. J. Aerosp. Eng. (2021)

5. Shi, Y., Wang, Z.: Onboard generation of optimal trajectories for hypersonic vehicles using
deep learning. J. Spacecr. Rocket. 58(16), 1–15 (2020)

6. Wang, Z., Li, H., Wu, Z., et al.: A pretrained proximal policy optimization algorithm with
reward shaping for aircraft guidance to a moving destination in three-dimensional continuous
space. Int. J. Adv. Rob. Syst. 18(1), 1–9 (2021)

7. Zavoli, A., Federici, L.: Reinforcement learning for low-thrust trajectory design of interplan-
etary missions. J. Guid. Control. Dyn. 44(8), 1440–1453 (2021)

8. Zhang, H., Xu, J., Qiu, J.: An automatic driving control method based on deep deterministic
policy gradient. Wirel. Commun. Mob. Comput. 2022(12), 1–9 (2022)

9. Xu, D., Hui, Z., Liu, Y., et al.: Morphing control of a new bionic morphing UAV with deep
reinforcement learning. Aerosp. Sci. Technol. 92, 232–243 (2019)

10. Jesus, J.D., Bottega, J.A., Antonio, D., et al.: Deep deterministic policy gradient for navigation
of mobile robots. J. Intell. Fuzzy Syst. Appl. Eng. Technol. 40(1), 349–361 (2021)


