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Preface 

Data-Driven Clinical Decision-making of healthcare is the intersection of data 
science and clinical decision-making has emerged as a transformative force, paving 
the way for unprecedented advancements in medical imaging. The book you are 
about to embark upon, Data-Driven Clinical Decision-Making Using Deep Learning 
in Imaging, is a comprehensive exploration of the symbiotic relationship between 
deep learning algorithms and the field of medical imaging. 

As technology continues to reshape the healthcare paradigm, the integration of 
data-driven approaches has become imperative for improving diagnostic accuracy, 
treatment planning, quick decision, health monitoring, and overall patient inten-
sive care. At the forefront of this revolution is the marriage of sophisticated deep 
learning techniques with the wealth of information embedded in medical imaging 
datasets. This book delves into the intricate tapestry of this union, providing clini-
cians, researchers, and data scientists with a profound understanding of the principles, 
challenges, and potential of data-driven clinical decision-making. 

The book contains various topics, methodologies, and applications, providing 
readers with a comprehensive understanding of the field’s current state and prospects. 
It begins with exploring domain adaptation in medical imaging and evaluating the 
effectiveness of transfer learning to overcome challenges associated with limited 
labeled data. The subsequent chapters delve into specific applications, such as 
improving kidney lesion classification in CT scans, elevating breast cancer research 
through attention-based U-Net architecture for segmentation and classifying brain 
tumor. 

The journey of this book begins by laying a strong foundation in the funda-
mentals of medical imaging and deep learning, ensuring that readers from diverse 
backgrounds can navigate the complexities of the subject matter. We then embark on 
a path through the applications of deep learning in various imaging modalities, from 
radiology and pathology. Real-world case studies and examples illustrate the transfor-
mative impact of data-driven approaches on clinical workflows, offering insights into 
how these methodologies can enhance diagnostic precision and therapeutic efficacy.

v
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Throughout the book, the emphasis is on fostering a holistic understanding of the 
integration of deep learning into clinical decision-making processes. Ethical consid-
erations, regulatory frameworks, and potential pitfalls are explored, guiding practi-
tioners in navigating the evolving landscape of healthcare technology responsibly 
and ethically. 

As we stand on the precipice of a new era in health technology, where data-
driven insights have the potential to revolutionize patient outcomes, Data-Driven 
Clinical Decision-Making Using Deep Learning in Imaging serves as a beacon for 
those seeking to harness the power of cutting-edge technologies for the betterment 
of healthcare. This book highlights the basic concept of deep learning-based medical 
imaging and its application in numerous scientific domains of healthcare. The book 
includes thirteen chapters in which Eva et al. in the first chapter “Domain Adaptation 
in Medical Imaging: Evaluating the Effectiveness of Transfer Learning” focus on the 
effectiveness of transfer learning, specifically within the domain adaptation frame-
work for medical imaging, addressing the challenges posed by varying data distri-
butions across different medical domains. Shovon et al. highlighted transfer learning 
(TL) approach fused with a squeeze-and-excitation (SE) attention mechanism to 
accurately diagnose brain tumors on a brain tumor MRI dataset incorporating one-
hot encoding in the image preprocessing step in the second chapter “Advancing Brain 
Tumour Detection: Transfer Learning-Based Approach Fused with Squeeze-and-Ex-
citation (SE) Attention Mechanism in Computer Vision”. In the third chapter 
“A Precise Cervical Cancer Classification in the Early Stage Using Transfer Learn-
ing-Based Ensemble Method: A Deep Learning Approach”, Alam et al. integrated 
the Adam optimizer into deep learning model to mitigate issues of both overfit-
ting and underfitting to detect cervical cancer. In the fourth chapter “Unveiling 
Diagnostic Precision: Evaluating Machine Learning and Deep Learning Approaches 
for Pneumonia Recognition of COVID-19 Patients Using Chest X-Rays”, Rahman 
et al. analyze the efficacy of the ML strategy, seven distinct machine learning algo-
rithms, including K-Nearest Neighbor (KNN), Logistic Regression (LR), Support 
Vector Machine (SVM), Decision Tree (DT), Naive Bayes (NB), Random Forest, 
and AdaBoost, are employed, followed by the best classifier being chosen using Grid-
SearchCV. In the fifth chapter “Advanced Hybrid Deep Learning Model for Precise 
Multiclass Classification of Bone Marrow Cancer Cells”, Sakib et al. discussed an 
automated classification method for plasma cell cancer which is pre-processed and 
trained with the parameterized hybrid convolutional neural network. 

In the sixth chapter “Privacy-Preserving Vision-Based Detection of Pox Diseases 
Using Federated Learning”, Kibriya et al. highlighted counterfactual explanations 
and discussed federated learning for enhanced data analytics to introduce a privacy-
preserving framework for pox disease detection. A performance analysis of utilizing 
transfer learning to develop an automated system capable of accurately detecting the 
portion of the image categorized the sample as any disease and XAI was introduced 
by Chowdhury et al. in the seventh chapter “Unveiling the Unique Dermatological 
Signatures of Human Pox Diseases Through Deep Transfer Learning Model Based 
on DenseNet and Validation with Explainable AI”. In the eighth chapter “Improved 
Classification of Kidney Lesions in CT Scans Using CNN with Attention Layers: 
Achieving High Accuracy and Performance”, Afroj et al. discussed an innovative
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deep learning method for precisely categorizing CT kidney images which automati-
cally categorize the kidney disorders. In the ninth chapter “Enhancing Breast Cancer 
Detection Systems: Augmenting Mammogram Images Using Generative Adversarial 
Networks”, Rifat et al. highlighted counterfactual explanations and discussed the effi-
cacy of pre-existing methodologies both pre-augmentation and post-augmentation, 
seeking to ascertain whether an improvement in accuracy can be achieved. With 
the help of computer vision techniques, a robust model was proposed on the 2019 
IQ-OTH/NCCD LC dataset by incorporating a multichannel convolutional neural 
network integrated with the residual connection by Shovon et al. in the tenth chapter 
“Incorporating Residual Connections into a Multi-channel CNN for Lung Cancer 
Detection in Digital Pathology”. 

In the eleventh chapter “Advancing Breast Cancer Diagnosis: Attention-En-
hanced U-Net for Breast Cancer Segmentation”, Hasan et al. introduce an inno-
vative model that contributes to advancing breast cancer diagnosis and showcases 
promise in broader medical imaging applications, fostering a more nuanced and 
specialized approach within deep learning paradigms. To improve patient quality 
of life, reduce mortality, and enhance the privacy issues in mammography data 
enables personalized care, a federated learning is used for precision medicine in the 
twelfth chapter “Privacy Preserving Breast Cancer Prediction with Mammography 
Images Using Federated Learning”. In the final chapter “Improving Healthcare Effi-
ciency via Sensor-Based Remote Monitoring of Patient Health Utilizing an Enhanced 
AdaBoost Algorithm”, Ghosh et al. designed a system that automatically detects and 
monitors the health status of patients from a remote location. 

The editor expresses gratitude to the exceptional authors and referees for their 
valuable contributions to the book. Their hard work and cooperation have resulted 
in outstanding publication. Additionally, thanks are extended to the members of the 
Springer team for their support. 

Dhaka, Bangladesh 
Kolkata, India 

M. F. Mridha 
Nilanjan Dey
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Domain Adaptation in Medical Imaging: 
Evaluating the Effectiveness of Transfer 
Learning 

Arifa Akter Eva, Jamin Rahman Jim, Ashifur Rahman, Hanif Bhuiyan, 
and Md. Mohsin Kabir 

Abstract Deep learning (DL) shows great promise in medical imaging, yet its 
widespread application across various medical fields encounters obstacles due to 
distinct data distribution variations in each domain. This research delves into the 
effectiveness of transfer learning, specifically within the domain adaptation frame-
work for medical imaging, addressing the challenges posed by varying data distri-
butions across different medical domains. This paper used two modified models, 
MobileNet and EfficientNet, to classify medical datasets. We studied transfer learn-
ing with metadata using two medical datasets: the MRI samples dataset and the chest 
X-ray samples dataset. We compared the achievement of our approach to the most 
advanced method. In the two models, EfficientNet B2 and MobileNet V2, total cat-
egorization accuracy was for brain tumors, 97.48 and 95.09%, and lung diseases, 
97.77 and 96.67%. We created a model that could be trained on devices with low 
computational power, making it ideal for deployment in smaller IoT devices. 

Keywords Transfer learning · Medical imaging · Pre-trained models · Domain 
adaptation · EfficientNet B2 · MobileNet V2 

A. A. Eva · J. R. Jim 
Advanced Machine Intelligence Research Lab (AMIR Lab), Dhaka, Bangladesh 

A. Rahman 
Department of CSE, Bangladesh University of Business and Technology, Dhaka, Bangladesh 

H. Bhuiyan 
Monash Data Futures Institute, Monash University, Melbourne, Australia 
e-mail: Hanif.Bhuiyan@monash.edu 

Md. M. Kabir (B) 
Superior Polytechnic School, Universitat de Girona, Montilivi, Girona, Spain 
e-mail: mdmkabi@gmail.com 

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024 
M. F. Mridha and N. Dey (eds.), Data-Driven Clinical Decision-Making Using Deep 
Learning in Imaging, Studies in Big Data 152, 
https://doi.org/10.1007/978-981-97-3966-0_1 

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-3966-0_1&domain=pdf
mailto:Hanif.Bhuiyan@monash.edu
mailto:mdmkabi@gmail.com
https://doi.org/10.1007/978-981-97-3966-0_1
https://doi.org/10.1007/978-981-97-3966-0_1
https://doi.org/10.1007/978-981-97-3966-0_1
https://doi.org/10.1007/978-981-97-3966-0_1
https://doi.org/10.1007/978-981-97-3966-0_1
https://doi.org/10.1007/978-981-97-3966-0_1
https://doi.org/10.1007/978-981-97-3966-0_1
https://doi.org/10.1007/978-981-97-3966-0_1
https://doi.org/10.1007/978-981-97-3966-0_1
https://doi.org/10.1007/978-981-97-3966-0_1
https://doi.org/10.1007/978-981-97-3966-0_1


2 A. A. Eva et al.

1 Introduction 

Medical imaging is a cornerstone in modern health care, providing essential tools for 
accurate diagnosis, ongoing illness surveillance, and treatment planning, [ 1]. With 
the advent of DL, the landscape of medical image [ 2, 3] analysis has undergone a 
deep transformation [ 4], yielding remarkable breakthroughs in tasks ranging from 
pinpoint image classification to intricate object identification and precise segmenta-
tion [ 5]. However, the efficacy of these cutting-edge DL models rests heavily on the 
availability of expansive, high-quality tagged datasets for comprehensive training. In 
the realm of medical imaging, acquiring such datasets becomes an intricate challenge 
due to multifaceted factors such as stringent privacy concerns, the qualified scope of 
patient cohorts, and the inherent variability in tomography protocols across diverse 
healthcare institutions. 

The ones who preponderating obstacles encountered in medical imaging is the 
phenomenon of domain shift [ 6]. This challenge is rooted in the inherent dispari-
ties between datasets collected from disparate sources. These variations encompass 
disparities in tomography hardware, patient demographics, and even the nuances of 
tomography procedures, collectively culminating in the discord of data distributions 
connecting the source and destination domains. Such shifts across domains have the 
potential to exert profound repercussions on the public presentation of trench learning 
models, particularly when these models are deployed on novel, antecedently unseen 
data. This phenomenon curtails the generalization capabilities of models, hampering 
their ability to seamlessly adapt to variable data contexts. 

In response to these intricate challenges, transfer learning has emerged as an 
empowering paradigm that holds immense promise in the domain of medical imaging 
[ 7, 8]. Transfer learning uses knowledge gained in one area to enhance the efficiency 
of models in another. Of particular interest are pre-trained models, often birthed 
from expansive datasets of natural images, which embody a repository of generic 
wine features and representations [ 9]. The temptation lies in the potential to adapt 
these pre-trained models to the distinctive realm of medical imaging tasks. However, 
a significant wonder emerges: Can the inherent disparities between natural images 
and intricate medical images be effectively bridged through the utilization of these 
pre-trained models? 

Within this context, the point direct of this chapter is the precise exploration of the 
transfer learning landscape painting within medical imaging. Specifically, the focus 
resides in the nuanced valuation of the adaptability of pre-trained models—originally 
tailored for the domain of cancel images—when transposed to the complex canvas 
of medical imaging. The overall contributions are: 

• An exhaustive deliberation on two pre-trained models, providing a comprehensive 
exposition of their operational methodologies, accompanied by an elucidation of 
their inherent advantages and disadvantages. 

• Evaluation of the performance of these two models is conducted across two popular 
medical datasets, specifically the MRI sample dataset and the Chest X-ray sample
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dataset. This rigorous analysis of their relative efficacy, and accuracy when applied 
to pattern recognition tasks, is substantiated by the utilization of pivotal graphs. 

In our chapter, we embark on a journey through various sections. Firstly, we delve 
into the backdrop of our work in Sect. 2, providing the necessary context. Moving 
on to Sect. 3, we meticulously unveil the intricate methodology behind our study, 
encompassing data preprocessing, model intricacies, and the systematic workflow 
guiding our experiments. Following this, Sect. 4 meticulously examines the datasets 
at hand, while Sect. 5 rigorously details the experimental phase of our study. Finally, 
in Sect. 6, we converge all our findings and insights to craft a conclusive discussion, 
paving the way for our comprehensive conclusion. 

2 Background 

In health care, medical imaging stands as a vital tool, offering profound insights 
into the human body and aiding in the diagnosis and treatment of diverse condi-
tions. Yet, these imaging datasets often pose challenges due to their limited size and 
quality, hampering the effective training of deep learning models [ 10]. Enter transfer 
learning—an emerging technique that harnesses knowledge from source domains 
and adapts it to target domains [ 11]. This approach addresses data scarcity, enabling 
more effective utilization of resources and time, thereby making substantial strides 
in medical image analysis [ 12]. 

Transfer learning manifests in various forms, notably through fine-tuning and 
feature extraction. Fine-tuning involves retraining a pre-trained model on new data, 
while feature extraction utilizes the pre-trained model to derive features from input 
data, subsequently training a new model [ 13] based on these features. However, 
pre-trained models, initially designed for natural images, raise concerns about their 
efficacy when applied to medical imaging [ 10]. Despite this challenge, transfer learn-
ing has gained traction across different medical imaging sectors, spanning image 
classification, segmentation, detection, and domain adaptation [ 14, 15]. Innovative 
medical imaging algorithms with less labeled data have emerged, outperforming 
standard transfer learning methods in recognizing medical image challenges [ 16]. 
Recent studies delve deeper into understanding transfer learning’s efficacy in medical 
images, emphasizing the significance of feature reuse. Contrary to prior assumptions, 
these studies challenge the notion that transfer learning’s effectiveness solely hinges 
on reusing general features in the early layers of a model. This evolving research 
landscape seeks to unravel the nuanced factors driving transfer learning’s success 
within the realm of medical imaging [ 17, 18]. 

Lately, domain adaptation has gained substantial traction within machine learning-
based medical image analysis [ 19], captivating the interest of researchers as a signif-
icant research avenue. This technique, a facet of transfer learning, specifically aims 
to adapt a model applied on a source domain to better suit a destination domain 
[ 20], effectively mitigating the domain shift effect. In the medical imaging domain,
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[ 21], domain adaptation proves instrumental in surmounting challenges arising from 
limited labeled data and domain discrepancies when deploying deep learning models 
across diverse healthcare tasks [ 22]. Recent advancements propose domain adapta-
tion methodologies that transfer knowledge gleaned from an initial domain to effec-
tively execute tasks within a destination domain. These approaches strive to enhance 
model performance across varied datasets and bolster the resilience of machine learn-
ing models against domain shifts [ 23]. Transductive transfer learning techniques 
suited for domain adaptation in brain MRI segmentation have been introduced in 
studies in this domain [ 19], effectively reducing the impact of domain shifts. Addi-
tionally, there are benchmarks proposed specifically for T1-weighted brain MRI seg-
mentation, aimed at evaluating domain adaptation techniques [ 24]. Overall, domain 
adaptation exhibits promise in mitigating domain shift challenges in medical imag-
ing. Researchers continue to explore innovative methodologies, striving to further 
enhance their effectiveness and applicability in this crucial domain [ 7]. 

3 Methodology 

3.1 Transfer Learning 

Transfer learning is a type of machine learning (ML) method in which a trained 
model is converted for another related job. The first model has already learned to 
extract important properties from images, such as edges, forms, and colors, which is 
why transfer learning works. These properties can be employed in the second model, 
which can then focus on distinguishing between flowers and other things [ 25]. To 
learn data representation, neural networks often, a huge amount of training data is 
required. When working with limited training data, there are numerous techniques to 
aid neural network models in exploring data representation. Among these approaches, 
transfer learning stands out as a powerful tool for improving the performance of 
machine learning models, particularly in situations where the new task has minimal 
data for training [ 26]. It can also be used to accelerate training. It transfers data 
from one to another and this method is called the self-learning method or transfer 
learning [ 27]. 

Transfer learning uses pre-trained models as a foundation for a new task or area. 
Because of their ability to adapt to diverse tasks, many pre-trained models are espe-
cially intended to assist transfer learning. An architecture that has been trained is an 
ML model that has been developed on a large dataset for a specific task before being 
made accessible for use or further fine-tuning to developers, academics, or practi-
tioners. Some prominent pre-trained models for transfer learning are widely used 
for medical imaging. They are ResNet [ 28], MobileNet [ 29], VGG [ 30], inception 
[ 31], and generative pre-trained transform [ 32]. Some key objects about pre-trained 
models are: 

• Large Dataset Training: pre-trained models are frequently trained on large and 
diverse datasets. Models in computer vision, for example, may be trained on
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millions of labeled images (e.g., the ImageNet dataset), whereas models in natural 
language processing may be trained on massive volumes of text data. 

• Reusability and flexibility: These models, once trained, can be utilized for other 
related tasks. Their learned representations can be used as an initial point for new 
tasks, domains, or datasets (by transfer learning), allowing for faster convergence 
and potentially greater performance on these tasks. 

• Time and resource efficiency: Training models from scratch may be computation-
ally and time-consuming, particularly for complicated models such as deep neural 
networks. Pre-trained models act as the foundation for new tasks, significantly 
reducing training time and computational resources required by using previous 
expertise. 

• Improved Performance: Because they are trained on large datasets, pre-trained 
models frequently perform well in a variety of domains. They may generalize well 
and perform competitively when applied to related tasks, even with minimum 
fine-tuning. 

• Accessibility: Most pre-trained models are publicly available and freely accessible 
via libraries such as TensorFlow Hub, Hugging Face Transformers, or PyTorch 
Hub. This openness encourages their reuse across projects, allowing for speedier 
machine learning development and testing. 

3.2 MobileNet 

MobileNet represents a CNN uniquely designed to cater to the demands of mobile 
and embedded vision applications. MobileNet is a specialized CNN engineered to 
operate efficiently on devices constrained by limited CPU power and memory capac-
ities. Within MobileNet’s architecture, convolution is segmented into depthwise and 
pointwise convolutions. These components of MobileNet leverage batch normaliza-
tion (BN) and rectified-linear units (ReLU) to optimize the process of both depthwise 
and pointwise convolutions [ 33]. 

Indeed, the main contrast between MobileNet and traditional CNN architectures 
lies in their focus: CNNs typically emphasize accuracy through the utilization of more 
parameters and layers. In contrast, MobileNet is built for efficiency with depthwise 
separable convolutions, making it suitable for mobile devices are shown in Figs. 1 
and 2 [ 34]. 

Figure 2 illustrates the architecture on the left side, demonstrating a standard 
convolutional layer integrated with batch normalization and ReLU. Additionally, it 
showcases the concept of Depthwise Separable convolutions, incorporating Depth-
wise and Pointwise layers along with batch normalization and ReLU. The MobileNet 
model encompasses two versions: MobileNet V1 [ 35] and MobileNet V2 [ 36]. Par-
ticularly, MobileNet V2 [ 37] is optimized for simpler mobile and on-board vision 
applications. It’s noteworthy that deep learning techniques have expanded their influ-
ence beyond computer vision, permeating domains such as robotics, the Internet of
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Table 1 MobileNet V2 architecture 

Input Operator .t .e .n . s

.2242 .× 3 Conv2d – 32 1 2 

.1122.× 32 Bottleneck 6 16 1 1 

.1122 .× 16 Bottleneck 6 24 2 2 

.562 .× 24 Bottleneck 6 32 3 2 

.282 .× 32 Bottleneck 6 64 4 2 

.142 .× 64 Bottleneck 6 96 3 1 

.142 .× 96 Bottleneck 6 160 3 2 

.72 .× 160 Bottleneck 6 320 1 1 

.72 .× 320 Conv2d 1.× 1 – 1280 1 1 

.72 .× 1280 Avg pool 
7.× 7 

– – 1 – 

1.× 1.× 1280 Conv2d 1.× 1 – k – 

Things (IoT), natural language processing (NLP), and medical image processing 
applications. 

Indeed, in MobileNet V2, the pointwise convolution operates inversely by decreas-
ing the number of channels. This specific layer is commonly termed the projection 
layer because its primary function is to convert high-dimensional data into a tensor 
while concurrently reducing its dimensionality. The bottleneck layer is a tiny con-
volution layer that decreases how many feature map channels there are [ 38]. The 
expansion layer then restores the amount of available channels to their real value. 
The Table 1 illustrates the architectural layout of MobileNet V2. 

Within MobileNet, a bottleneck exists between the model’s inputs and outputs. 
This bottleneck is situated within an inner layer that encompasses the model’s capac-
ity to change input data from lower-level concepts into more abstract, higher-level 
descriptors (Fig. 4). Additionally, similar to residual connections in conventional 
CNNs, these bypasses established between bottlenecks contribute to accelerated 
training and enhanced accuracy. 

MobileNet V2 introduces the extension layer as a pioneering element. This layer, 
termed the expansion layer, leverages one-to-one convolutions to amplify the chan-
nel count in image data before delving into depthwise convolution [ 39]. Unlike the 
projection layer, this expansion layer consistently generates a greater number of 
output channels than input channels. Another innovative addition is the residual con-
nection, showcased in Fig. 4, mirroring ResNet’s [ 38] functionality and facilitating 
seamless gradient flow throughout the network. A parameter termed the expansion 
factor governs the manipulation of feature channels. During testing, MobileNet V2 
was employed using 0.5 and a channel-1 multiplier, accommodating an input size of 
224. × 224. 

MobileNet V2 places a strong emphasis on optimizing latency while accom-
modating tiny networks to efficiently handle inputs of varying sizes. This method
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NEURAL NETWORK ARCHITECTURE 

Pre trained MobileNet V2 

2242x3 Conv2d 

1122x32 bottleneck 

1122x16 bottleneck 

562x24 bottleneck 

282x32 bottleneck 

142x64 bottleneck 

142x96 bottleneck 

72x320 Conv2d 1x1 

72x1280 avgpool 7x7 

1x1x1280 conv2d 1x1 

Additional NN layer 

Global Average Pooling 

Dense Layer(512) 

Fig. 3 The CNN pre-trained architecture is made up of an ImageNet pre-trained MobileNet V2 
with extra avg pooling and one dense layer 

delivers enhanced performance by employing ReLU6 as the activation function in 
every layer, coupled with batch normalization. Notably, performance assessments 
on the ImageNet [ 40] categorization task indicate that MobileNet V2 exceeds both 
MobileNet and ShuffleNet [ 41] (width multipliers 1.5) with similar design sizes 
and computational costs. Furthermore, MobileNet V2 exhibits faster inference times 
compared to ShuffleNet and NASNet [ 41], especially notable with a width multiplier 
of 1.5. In the domain of object detection [ 42] tasks like MS COCO, MobileNet V2 
+ SSDLite [ 43] demonstrate a 20% increase in efficiency and a 10% reduction in 
size compared to YOLOv2. This version stands as an advanced, real-time object 
identification system on the COCO dataset [ 44]. The comprehensive architecture of 
MobileNet V2, illustrated in the accompanying Fig. 3, comprises 17 of these build-
ing blocks sequentially. It concludes with a regular 1. × 1 convolution, a global mean 
pooling layer, and a classification layer. The initial block was slightly different as it 
employed a standard 3. × 3 convolution with 32 channels instead of incorporating an 
expansion layer.
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Fig. 4 Inside, there are three 
blocks, the first of which is a 
new feature of the 
MobileNet V2 design 
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+ 

3.3 EfficientNet 

EfficientNet is a CNN family that is intended to be both accurate and efficient. 
They are based on a compound scaling algorithm that scales a CNN’s width, depth, 
and resolution consistently [ 45]. This enables EfficientNets to achieve cutting-edge 
accuracy on a wide range of image classification applications while being much more 
efficient than regular CNNs. The EfficientNet family includes several models, each 
with its own set of scaling factors. EfficientNet B0, EfficientNet B1, EfficientNet 
B2, EfficientNet B3, EfficientNet B4, and EfficientNet B7 are the most widely used 
models. The number following “B” shows the model’s size, with larger numbers 
referring to larger models. 

The model’s input layer incorporates both normal and lung disease chest X-rays at 
the outset. To ensure uniformity, each pixel values of the chest X-rays are standard-
ized within the range of 0–1. The hidden layer plays a pivotal role in optimal feature 
extraction, diligently discerning the most relevant features essential for precise lung
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Table 2 Properties of the efficient model 

Model Size Input dimension Parameters 

EfficientNet B0 75 240.× 240 4,050,845 

EfficientNet B1 31 260.× 260 6,576,513 

EfficientNet B2 36 300.× 300 7,769,971 

illness classification. Within this hidden layer [ 46], an array of EfficientNet mul-
tichannel models, including variants and others, operate. A comprehensive Table 2 
outlines the distinctive properties of these various models. Notably, the training of 
EfficientNet models is conducted leveraging ImageNet datasets, harnessing their rich 
and diverse data for model refinement and enhancement. 

ImageNet databases predominantly comprise primary images, yet fine-tuning the 
model’s weights on medical image classification yields superior performance. In this 
study, the pre-existing EfficientNet models were harnessed as transfer learning tools, 
aimed at enhancing the accuracy of lung disease categorization using chest X-ray 
(CXR) images. This method of instruction significantly reduces training duration, 
accelerates convergence, and yields optimal outcomes in distinguishing between 
chest CXR patient data samples as either indicative of lung disease or normal. The 
flexibility to adjust the weight of the hidden layer during backpropagation remains 
a notable feature of this work. Furthermore, the employed methodology involves 
utilizing the dual cross-entropy loss function, which proves effective in guiding the 
model’s learning process toward achieving precise lung disease classification based 
on CXR images. 

A multiobjective neural architecture search was employed to craft the EfficientNet 
architecture, visualized in Fig. 5. This approach aimed to enhance both precision and 
reduce floating-point operations. The inception of EfficientNet stemmed from the 
foundation laid by EfficientNet B0, which paved the way for a family of models 
spanning from B1 to B7. This lineage achieved top-notch accuracy, ranking within 
the top 1% on the challenging ImageNet dataset [ 47]. The evaluation showcased the 
performance of eight distinct scaled CNN architectures on the ImageNet dataset. For 
instance, the baseline design of EfficientNet B0 comprised 5.3 million parameters 
and utilized 224. × 224 images as input, while the more complex EfficientNet B7 

Input 

Image Classification 

EfficientNet B2 
Network 

Glioma 

Meninglioma 

Pituitary Image Segmentation Segmented Tumor 
Region 

Fig. 5 Overview of the proposed architecture for brain tumors
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model contained 66 million parameters and employed 600. × 600 images as input. 
Leveraging the substance scaling method, this work aims to yield precise findings. 
During testing, EfficientNet B2 was employed with a 0-channel multiplier and a 
channel-1 multiplier, utilizing a maximum input size of 300. × 300, later resized to 
224. × 224 for analysis. This strategic resizing ensured compatibility with the model’s 
specifications for comprehensive evaluation. 

4 Dataset 

4.1 Brain Tumor 

Brain tumor detection and classification is a key challenge in computer-aided diag-
nosis (CAD) for use in medicine. The complexity of various tumor types necessitates 
a system that effectively distinguishes between normal brain activity and pathologi-
cal conditions [ 48]. While specialist expertise remains crucial in diagnosing specific 
tumor types, recent strides in deep learning-based networks have ushered in ground-
breaking advancements in brain tumor classification. Elevating the accuracy and 
efficiency of brain tumor categorization [ 49] could significantly influence diagnosis 
and treatment outcomes, presenting a promising avenue by harnessing the capabili-
ties of deep learning methodologies. 

Exploring the transformative impact of artificial intelligence (AI) on health care 
stands as a crucial endeavor aimed at advancing patient outcomes. This research 
endeavors to devise a preprocessed classifier capable of detecting three distinct types 
of brain tumors: meningioma, glioma, and pituitary [ 50], as illustrated in Fig. 6. 
Below is a comprehensive rundown of the detailed information required to opera-
tionalize this deep model within the presented algorithm. 

4.1.1 Dataset—Brain Tumor 

The strategy’s effectiveness was evaluated using a widely recognized brain tumor 
dataset. Our study utilized a specialized brain tumor dataset consisting of 3064 T1-
weighted contrast-enhanced images collected from 233 patients [ 51]. This dataset 
encompassed three distinct types of tumors: 

• Meningioma: 708 images obtained from 82 patients. 
• Glioma: 1426 images sourced from 89 patients. 
• Pituitary: 930 images were gathered across 62 patients. 

For rigorous evaluation, the dataset was divided into three subsets: 

• 80% for training the model. 
• 10% for validation purposes. 
• 10% specifically allocated for testing the model’s performance.
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Fig. 6 Example of MRI images of a brain tumor. First row: Meningloma, Second row: Glioma 
Third row: Pituitary glide 

Table 3 List of tumor datasets 

Class Total Training Validation Testing 

Glioma 826 676 75 75 

Meninglioma 822 674 74 74 

Pituitary 827 677 75 75 

The images, obtained from the T1-CE MRI modality, encompass coronal, sagittal, 
and axial views, each with pixel sizes of 49 mm .× 49 mm across the three planes. 
This freely accessible dataset online includes crucial information for each image, 
such as patient ID, tumor mask, tumor boundary, and class label. Particularly sig-
nificant among these is the lesion mask, utilized for cropping the tumor’s region of 
interest (ROI). The dataset provides a diverse range of brain tumor picture samples, 
exemplified in Table 3. To optimize model training by expediting the learning process 
and addressing memory constraints, preprocessing stages were integrated. The initial 
preprocessing step involved normalizing the intensity values of MRI images via a 
min-max normalization algorithm, effectively scaling the intensity values within the 
range of [0, 1]. 

.I ‘(x, y) = I(x, y)

Zmax − Zmin
(1)
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where I and I. ‘ are the images of an original and healthy brain, respectively, and x, 
and y are the locations of an MRI image. .Zmax represents the greatest value of pixel, 
and .Zmin represents the smallest value of pixel. Resizing the images to dimensions 
256. × 256 was the initial step, followed by rescaling them to match the input layer 
size of the deep model, intended for class prediction with the updated input data. 
Given that MRI images inherently contain grayscale structures, a transformation was 
applied to generate three channels. This process involved replicating the grayscale 
values thrice, resulting in an image size of 256. × 256. ×3. This adjustment to the 
suitable dimensions ensures compatibility between the input images and the DNN 
architecture. 

4.2 Lung Diseases 

Lung disease encompasses a large range of medical issues that impact the function 
and structure of the lungs. These disorders can be moderate to severe, and they can 
be acute or chronic. Among the most frequent lung diseases are: COPD (chronic 
obstructive pulmonary disease), asthma, lung interstitial disease, cancer of the lung, 
pneumonia, and thyroid hypertension. In numerous aspects, artificial intelligence 
(AI) can be extremely useful in the diagnosis, care, and study of lung diseases: 
diagnosis and detection at an early stage, patient education and engagement, treat-
ment penalization, monitoring and predictive analytics, drug discovery and research, 
telemedicine, and remote monitoring. 

4.2.1 Dataset—Lung Diseases 

Creating an artificial neural network model for classifying X-ray reports into COVID-
19, healthy cases and pneumonia using deep learning is a valuable endeavor [ 52]. 
Additionally, developing an algorithm to detect lung disorders and visualize affected 
areas on X-ray images through Computer Vision techniques represents a significant 
step in aiding medical diagnosis. 

The Table 4 displays the data description and the number of data points uti-
lized in our process. Initially, we segregated the information into two distinct cat-
egories: train data and test data. In the initial phase, we built the artificial training 
model using supervised machine learning techniques on labeled photos [ 53]. Fol-
lowing that, in the subsequent phase, we employed this newly developed model to 
assess fresh data, predict final outputs, and classify X-ray images (Shown in Figs. 7 
and 8) into three categories: COVID-19, pneumonia, and healthy instances. Our data 
collection included images from Kaggle, comprising 856 pneumonia images. We 
further subdivided this data into two subsets, allocating 80% of the first subset used 
in train and validate purposes and the remaining 20% of the second subset for testing 
the model’s performance.
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Table 4 List of lung datasets 

Class Total Training Validation Testing 

COVID-19 1000 600 200 200 

Pneumonia 856 514 171 171 

Healthy 1000 600 200 200 

Fig. 7 Chest X-rays of normal (From left to right, the first two images are for normal chest X-rays) 
and Pneumonia (the next two are for Pneumonia Chest X-rays) 

Fig. 8 Chest X-rays of healthy (From left to right, the first two images are for normal X-rays) and 
COVID-19 (the next two are for COVID-19 X-rays) 

Medical X-rays typically exist as grayscale images where each pixel carries an 
integer value denoting the image’s color intensity, ranging from 0 to 255. In this scale, 
0 represents complete black, while 255 signifies pure white, with intermediate values 
representing varying shades of gray. Before diving into model development, enhanc-
ing image features stands as a crucial initial step. Each deep learning model operates 
within specific standard dimensions, necessitating resizing the images to fit these 
specifications. Furthermore, optimizing the input image involves various transfor-
mations like resizing, adjustments in brightness, random rotation, positional changes, 
horizontal or vertical flipping, and rescaling of the image data. When executed effec-
tively, this preprocessing method significantly reduces the model’s processing time 
while enhancing the accuracy and efficiency of image categorization
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5 Experiment 

This research was conducted using Google Collaboratory, leveraging multiple 
libraries such as TensorFlow, Matplotlib, Numpy, and Sklearn. Transfer learn-
ing played a pivotal role, incorporating the latest pre-trained models—specifically, 
MobileNet and EfficientNet. The model of the MobileNet body is outlined in Table 1. 
To expedite the learning process, fine-tuning techniques were applied to these mod-
els. Employing a batch size of 32, we utilized the MobileNet v2 224. × 224 and 
EfficientNet B2 224. × 224 models. The study spanned 30 training epochs, employ-
ing the learning rate of 0.02, and convolution layers with a kernel size of 3. × 3 were  
employed. 

The datasets underwent a meticulous division, with 80% allocated to training 
data, 10% to validation data, and the remaining 10% designated for testing. In the 
instance of the tumor dataset, the training dataset consisted of 2027 images, while 
the validate and test datasets both comprised 224 images each. For the lung dataset, 
the training dataset included 1714 images, During the verification and test datasets 
contained 571 images each. This careful data distribution strategy aimed to ensure a 
comprehensive and representative set of samples for train, validate, and test purposes. 
The data distribution is shown in Tables 3 and 4. 

5.1 Results and Discussion 

In evaluation, parameters must first be understood before performing a brief analysis 
of the achievement of an image categorization model. A classifier is evaluated using 
the following factors. 

Precision 

.precision = TP

TP + FP
(2) 

Recall 

.Recall = TP

TP + Fn
(3) 

F1-score 

.F1 score = 2 ∗ precision ∗ recall

precision + recall
(4) 

Accuracy 

.Accuracy = TP + TN

TP + Fn + TN + FP
(5) 

The elementary objective of the study was to thoroughly analyze the efficacy 
of MobileNet and EfficientNet concepts within the context of a medical image


