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Preface 

The aim of this volume is to present new developments and ideas in various fields of 
Analysis and Partial Differential Equations, including harmonic analysis, operator 
theory, function spaces, inequalities, integral equations, and applications. It provides 
a comprehensive review of some latest results and ideas in these rapidly expanding 
fields. It also contains some open problems, which we hope will inspire further 
research. The book contains 21 research articles and covers a broad spectrum of 
topics and applications. 

The contributing authors have given talks at, have participated in, or are related 
in some way to Tbilisi Analysis . & PDE seminar and Tbilisi Analysis . & PDE 
workshop. The seminars are held bi-weekly since 2020, and the workshop will be 
organised annually following the first workshop that was held at the University of 
Georgia, Tbilisi, on 30 August 30–2 September 2023. Participants of the workshop 
and the seminars have enjoyed inspiring talks by Maria Esteban, Pavel Exner, 
Hans Feichtinger, Gerd Grubb, Ari Laptev, Volker Mehrmann, Lars-Erik Persson, 
Michael Ruzhansky, Kristian Seip, Mikhail Sodin, and by many others. 

The Seminars and Workshops advance mathematics research in Georgia, enhance 
its visibility, and foster collaboration between mathematicians from the region 
and from other countries. They aim to offer a general perspective of the current 
mathematics research in Georgia. Georgia has a strong tradition in Analysis, Integral 
and Partial Differential Equations (PDEs), and the seminar organisers continue 
efforts to inspire the young generation in Georgia to follow the traditions of the 
Georgian Mathematical School. We are particularly happy that a good proportion of 
the papers in this volume present research by young mathematicians in Georgia. 

This series is supported by our partner—the Ghent Analysis and PDE Center, 
which has provided us with a framework to publish this book in the series: Research 
Perspectives Ghent Analysis and PDE Center. We thank the Editor in Chief of the 
series, Prof. Dr. Michael Ruzhansky, for his support, without which of our project 
would not have been possible. 

We would like to extend our cordial thanks to our colleagues Lars-Erik Persson 
(UiT - The Arctic University of Norway), Michael Ruzhansky (Ghent Analysis and 
PDE Center), and Duvan Cardona (Ghent Analysis and PDE Center), who have
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vi Preface

served as reviewers for this volume, for all the unconditional support they have given 
to this series. Also, we thank all our colleagues involved in the organisation of our 
past seminars and workshop, namely, Medea Tsaava (The University of Georgia), 
Davit Baramidze (The University of Georgia), Giorgi Tutberidze (The University of 
Georgia), and Zurab Vashakidze (The University of Georgia). We also thank Kunda 
Kambaso and Daniel Jagadisan from Birkhäuser-Springer for their help. 

Tbilisi, Georgia Roland Duduchava 
London, United Kingdom Eugene Shargorodsky 
Tbilisi, Georgia George Tephnadze 
April 2024 
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2 J. Jørgensen Ågotnes et al.

1 Continuous/Family Hölder-Type Inequalities 

The integral Hölder inequality reads: if p and q are positive numbers such that 
.
1
p

+ 1
q

= 1 and if f and g are non-negative functions on the measure space .(Y, ν), 
such that .f ∈ Lp(Y ), .g ∈ Lq(Y ), then 

.

⎰
Y

f (t)g(t) dν(t) ≤
⎛⎰

Y

f p(t) dν(t)

⎞1/p ⎛⎰
Y

gq(t) dν(t)

⎞1/q

. (1.1) 

The Hölder inequality (1.1) can obviously be formulated also for . n = 3, 4, 5, . . .

functions involved. However, to get a hint how to generalize it with infinitely many 
functions involved, we rewrite (1.1) as an inequality between two geometric means: 

. 

⎰
Y

f 1/p(t)g1/q(t) dν(t) ≤
⎛⎰

Y

f (t) dν(t)

⎞1/p ⎛⎰
Y

g(t) dν(t)

⎞1/q

.

The continuous version of the Hölder inequality (as an inequality between 
generalized geometric means) reads: 

Theorem 1.1 Let u and v be weight functions on the measure spaces .(X,μ) and 
.(Y, ν), respectively, such that .

⎰
X

u(x) dμ(x) = 1. Let f be a positive function on 
.X × Y and measurable with respect to the measure .μ × ν. Then 

. 

⎰
Y

exp

⎛⎰
X

log f (x, y)u(x) dμ(x)

⎞
v(y) dν(y)

≤ exp

⎛⎰
X

log

⎛⎰
Y

f (x, y)v(y) dν(y)

⎞
u(x) dμ(x)

⎞
. (1.2) 

Corollary 1.2 Let .w1, . . . wm ≥ 0 be real numbers and let .u ≥ 0, .p > 0, . ai > 0

.(i = 1, 2, . . . , m) be functions on X such that .
⎰

X

u(x)

p(x)
dμ(x) = 1 and . ap

i are 

measurable on X. Then 

.

m⎲
i=1

wi exp

⎛⎰
X

log ai(x)u(x) dμ(x)

⎞

≤ exp

⎛⎰
X

log

⎛
m⎲

i=1

wia
p(x)
i (x)

⎞
u(x)

p(x)
dμ(x)

⎞
.
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Remark 1.3 Putting in Corollary 1.2: .m = 2, .w1 = w2 = 1, .p(x) = 1 we get the 
following result, which can be described as superadditivity of geometric means: 

. exp

⎛⎰
X

log a1(x)u(x) dμ(x)

⎞
+ exp

⎛⎰
X

log a2(x)u(x) dμ(x)

⎞

≤ exp

⎛⎰
X

log
⎛
a1(x) + a2(x)

⎞
u(x) dμ(x)

⎞
.

Example 1.4 Let .N = 2, 3, . . ., .X = [0, 1], .dμ(x) = dx, .u ≡ 1, .pi > 1 for 
.i = 1, 2, . . . , N , with .

∑N
i=1

1
pi

= 1, .f (x, y) = f
p1
1 (y), .0 ≤ x ≤ 1

p1
, . f (x, y) =

f
p2
2 (y), . 1

p1
< x ≤ 1

p1
+ 1

p2
, . . ., .f (x, y) = f

pN

N , .
∑N−1

i=1
1
pi

< x ≤ 1. Then (1.2) 
reads: 

. 

⎰
Y

N∏
i=1

fi(y)v(y) dν(y) ≤
N∏

i=1

⎛⎰
Y

f
pi

i (y)v(y) dν(y)

⎞1/pi

,

i.e. it is a standard form of the Hölder inequality involving N functions. 

There exists some refinements of several of the classical inequalities. Such 
refinements can also be proved for several continuous inequalities. Our refinement 
of the continuous Hölder inequality in Theorem 1.1 reads: 

Theorem 1.5 Let .f (x, y) be a positive and measurable function on . (X × Y,μ ×
ν) and let .u(x) and .v(y) be weight functions on X and Y , respectively, such that 
.

⎰
X

u(x) dμ(x) = 1 and .
⎰
Y

f (x, y)v(y)dν(y) > 0 .μ-a.e. Moreover, let .(Z, dz) be 

a measure space and .α(z, y) be a non-negative integrable function on .Z × Y such 
that .

⎰
Y

α(z, y)f (x, y)v(y)dν(y) > 0 .μ-a.e and .
⎰
Z

α(z, y) dz = 1, for .y ∈ Y. Then 
the following refinement of continuous form (1.2) of the Hölder inequality holds: 

.

⎰
Y

exp

⎛⎰
X

log f (x, y)u(x) dμ(x)

⎞
v(y) dν(y)

≤
⎰

Z

⎾
exp

⎰
X

log

⎛⎰
Y

α(z, y)f (x, y)v(y) dν(y)

⎞
u(x) dμ(x)

⏋
dz

≤ exp

⎾⎰
X

log

⎛⎰
Y

f (x, y)v(y)dν(y)

⎞
u(x) dμ(x)

⏋
.
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2 Continuous/Family Minkowski-Type Inequalities 

The main result in this case reads: 

Theorem 2.1 Let .f (x, y) be non-negative and measurable on .(X × Y,μ × ν) and 
let .u(x) and .v(y) be weight functions. 

(a) If .p ≥ 1, then 

. 

⎛⎰
Y

⎛⎰
X

f (x, y)u(x) dμ(x)

⎞p

v(y) dν(y)

⎞ 1
p

≤
⎰

X

⎛⎰
Y

f p(x, y)v(y) dν(y)

⎞ 1
p

u(x) dμ(x). (2.1) 

(b) If .0 < p < 1 and 

(i) .
⎰

X

⎛⎰
Y

f (x, y)v(y) dν(y)

⎞p

u(x) dμ(x) > 0 μ-a.e. and 

. 

⎰
Y

f (x, y)v(y) dν(y) > 0 ν-a.e.,

then the reverse inequality in (2.1) holds. 

If .p < 0, the above-mentioned assumptions (i) and the additional one 

(ii) . 
⎰

X

f p(x, y)u(x) dμ(x) > 0 ν-a.e.

hold, then the reverse inequality in (2.1) holds. 

Example 2.2 Let .X1, . . . , XN be a partition of X, .
⎰
Xi

u(x) dμ(x) = αi , and 

.f (x, y) = fi(y)
αi

, for x ∈ Xi , .(i = 1, 2, . . . , N). 
If .p ≥ 1, then (2.1) becomes: 

.

⎛
⎝

⎰
Y

⎛
N⎲

i=1

fi(y)

⎞p

v(y) dν(y)

⎞
⎠

1
p

≤
N⎲

i=1

⎛⎰
Y

f
p
i (y)v(y) dν(y)

⎞ 1
p

, (2.2) 

i.e. the usual Minkowski inequality for integrals with N non-negative functions 
involved. 

If .0 < p < 1, then, with the obvious restrictions on the integrals, (2.2) holds in 
the reversed direction. 

A standard proof of the Minkowski inequality (2.1) is just to use the correspond-
ing Hölder inequality. In the continuous family situation, we even have the following 
remarkable equivalence theorem: 

Theorem 2.3 Let .f (x, y) be positive and measurable on .(X × Y,μ × ν). Assume 
that .p ≥ 1 and that .u(x) and .v(y) are weight functions. Then the following 
statements are equivalent:
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(i) The continuous Hölder inequality (1.2) holds for all .X, u(x) and .μ(x) such 
that . 

⎰
X

u(x) dμ(x) = 1.

(ii) The continuous Minkowski inequality (2.1) holds for all .X, u(x) and .μ(x) such 
that . 

⎰
X

u(x) dμ(x) < ∞.

As in the case of the Hölder inequality, we can also state the refinement of the 
continuous Minkowski inequality. 

Theorem 2.4 Let .f (x, y) be a non-negative and measurable function on . (X ×
Y,μ×ν), let .u(x) and .v(y) be weight functions on X and . Y, respectively. Moreover, 
let .α(z, y) be a non-negative function such that .

⎰
Z

α(z, y) dz = 1 for .y ∈ Y. If 
.p ≥ 1, then 

. 

⎰
Y

⎛⎰
X

f (x, y)u(x) dμ(x)

⎞p

v(y) dν(y)

≤
⎰

Z

⎾⎰
X

⎛⎰
Y

α(z, y)f p(x, y)v(y) dν(y)

⎞1/p

u(x) dμ(x)

⏋p

dz

≤
⎾⎰

X

⎛⎰
Y

f p(x, y)v(y) dν(y)

⎞1/p

u(x) dμ(x)

⏋p

.

3 Continuous/Family Popoviciu and Bellman-Type 
Inequalities 

Popoviciu-type inequalities are some type of reversed Hölder-type inequalities. We 
just state one such result involving two functions: 

Proposition 3.1 Let .p, q be positive real numbers such that . 1
p

+ 1
q

= 1. Let f 
and g be non-negative measurable functions on the measure space .(Y, ν). Then the 
following inequality 

. v0c1c2 −
⎰

Y

v(y)f (y)g(y) dν(y)

≥
⎛

v0c
p

1 −
⎰

Y

v(y)f p(y) dν(y)

⎞ 1
p

⎛
v0c

q

2 −
⎰

Y

v(y)gq(y) dν(y)

⎞ 1
q

(3.1) 

holds, where .v(y) is a weight, 

.v0c
p

1 −
⎰

Y

v(y)f p(y) dν(y) ≥ 0, and v0c
q

2 −
⎰

Y

v(y)gq(y) dν(y) ≥ 0.
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Our continuous version of Proposition 3.1 reads: 

Theorem 3.2 Let .u(x) and .v(y) be weight functions on the measure spaces . (X,μ)

and .(Y, ν), respectively, such that .
⎰
X

u(x) dμ(x) = 1, let  .f (x, y) be a positive 
measurable function on .X × Y , .v0 ∈ (0,∞), and assume that .f0(x) is a function 
on X such that .v0f0(x) >

⎰
Y

f (x, y)v(y) dν(y), for all .x ∈ X. Then the following 
continuous form of the Popoviciu inequality holds: 

. exp

⎛⎰
X

log(v0f0(x))u(x) dμ(x)

⎞

−
⎰

Y

exp

⎛⎰
X

log f (x, y)u(x) dμ(x)

⎞
v(y) dν(y)

≥ exp

⎾⎰
X

log

⎛
v0f0(x) −

⎰
Y

f (x, y)v(y) dν(y)

⎞
u(x) dμ(x)

⏋
.

Example 3.3 Let .u(x) = 1, .X = X1 ∪ X2, .X1 ∩ X2 = ∅ with . 
⎰

X1

dμ(x) =
1

p
,

⎰
X2

dμ(x) = 1

q
, where .

1

p
+ 1

q
= 1, 

. f0(x) =
⎧

c
p

1 , x ∈ X1

c
q

2 , x ∈ X2
and f (x, y) =

⎧
f p(y), x ∈ X1

gq(y), x ∈ X2
.

Then we rediscover the Popoviciu inequality (3.1) in the finite form with .v0 = 1. 

Theorem 3.2 also implies the following result of independent interest: 

Corollary 3.4 Let .w1 > 0, .w2, . . . , wm ≥ 0 be reals, .p, ai, i = 1, 2, . . . , m, be 

positive functions on X such that .
⎰

X

dμ(x)

p(x)
= 1 and . a

p
i are measurable on X. Then 

. w1 exp

⎛⎰
X

log a1(x) dμ(x)

⎞
−

m⎲
i=2

wi exp

⎛⎰
X

log ai(x) dμ(x)

⎞

≥ exp

⎧⎰
X

log

⎾
w1(a1(x))p(x) −

m⎲
i=2

wi(ai(x))p(x)

⏋
dμ(x)

p(x)

⎫
,

provided that all integrals exist. 

Our refinement of the continuous Popoviciu inequality reads: 

Theorem 3.5 Let .u(x) and .v(y) be weight functions on the measure spaces . (X,μ)

and .(Y, ν), respectively, where .
⎰
X

u(x) dμ(x) = 1. Let .f (x, y) be a positive 
measurable function on .X × Y , .v0 ≥ 0, and assume that .f0(x) is a function on 
X such that .v0f0(x) >

⎰
Y

f (x, y)v(y) dν(y), for all .x ∈ X. Moreover, let .α(z, y)
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be a non-negative integrable function on .Z × Y such that .
⎰

Z

α(z, y) dz = 1 for 

.y ∈ Y, where .(Z, dz) is a . σ−finite measure space. Then the following refinement 
of the continuous form of the Popoviciu inequality holds: 

. exp

⎛⎰
X

log
⎛
v0f0(x)

⎞
u(x) dμ(x)

⎞

−
⎰

Y

exp

⎛⎰
X

log(f (x, y))u(x) dμ(x)

⎞
v(y) dν(y)

≥ exp

⎛⎰
X

log
⎛
v0f0(x)

⎞
u(x) dμ(x)

⎞

−
⎰

Z

⎾
exp

⎰
X

log

⎛⎰
Y

f (x, y)α(z, y)v(y) dν(y)

⎞
u(x) dμ(x)

⏋
dz

≥ exp

⎾⎰
X

log

⎛
v0f0(x) −

⎰
Y

f (x, y)v(y) dν(y)

⎞
u(x) dμ(x)

⏋
≥ 0.

Example 3.6 Using a suitable choice for the measure . μ and functions u and f , 
we get the following refinement of the integral Popoviciu inequality (3.1) for two 
functions with .v0 = 1. 

. c1c2 −
⎰

Y

v(y)f (y)g(y) dν(y)

≥ c1c2 −
⎰

Z

⎛ ⎰
Y

α(z, y)f p(y)v(y) dν(y)
⎞1/p

⎛ ⎰
Y

α(z, y)gq(y)v(y) dν(y)
⎞1/q

dz

≥
⎛

c
p

1 −
⎰

Y

v(y)f p(y) dν(y)

⎞1/p ⎛
c
q

2 −
⎰

Y

v(y)gq(y) dν(y)

⎞1/q

.

Bellman-type inequalities are just a type of reversed Minkowski-type inequalities 
in a similar way as the Popoviciu inequality was related to the Hölder inequality. Our 
continuous form of this inequality reads: 

Theorem 3.7 Let .f0(x), f (x, y), v0, u(x), v(y),X, Y, μ, ν be defined as in Theo-
rem 3.2. Then, for . p ≥ 1,

.

⎛⎰
X

⎾
v0f

p

0 (x) −
⎰

Y

f p(x, y)v(y) dν(y)

⏋ 1
p

u(x) dμ(x)

⎞p

≤ v0

⎾⎰
X

f0(x)u(x) dμ(x)

⏋p

−
⎰

Y

⎾⎰
X

f (x, y)u(x) dμ(x)

⏋p

v(y) dν(y),
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whenever .v0f
p

0 (x) ≥ ⎰
Y

f p(x, y)v(y) dν(y), for all . x ∈ X.

Example 3.8 By applying Theorem 3.7 with .u(x) = v(y) = 1, .v0 = 1, . X =⋃n
i=1 Xi, .Xi = [i − 1, i) for .i = 1, 2, . . . , n, .dμ(x) = dx, .f (x, y) = fi(y) and 

.f0(x) = ci for each .x ∈ Xi, i = 1, 2, . . . , n, we get the following version of 
Bellman’s inequality: 

. 

n⎲
i=1

⎛
c
p
i −

⎰
Y

f
p
i (y)dν(y)

⎞ 1
p ≤

⎛⎛
n⎲

i=1

ci

⎞p

−
⎰

Y

⎛
n⎲

i=1

fi(y)

⎞p

dν(y)

⎞ 1
p

whenever 

. ci ≥
⎛⎰

Y

f
p
i (y) dν(y)

⎞ 1
p

, i = 1, 2, . . . , n.

Our refinement of the continuous Bellman inequality reads: 

Theorem 3.9 Let the assumptions of Theorem 2.4 hold. Assume that .v0 ≥ 0 and 
.f0(x) is a function on X such that .v0f

p

0 (x) − ⎰
Y

f p(x, y) .v(y) dν(y) ≥ 0. Let 
.α(z, y) satisfies the assumptions of Theorem 3.5. 

Then the following refinement of the continuous Bellman inequality holds for 
.p ≥ 1: 

. v0

⎾⎰
X

f0(x)u(x) dμ(x)

⏋p

−
⎰

Y

⎛⎰
X

f (x, y)u(x) dμ(x)

⎞p

v(y) dν(y)

≥ v0

⎾⎰
X

f0(x)u(x) dμ(x)

⏋p

−
⎰

Z

⎾⎰
X

⎛⎰
Y

α(z, y)f p(x, y)v(y) dν(y)

⎞1/p

u(x) dμ(x)

⏋p

dz

≥
⎛⎰

X

⎾
v0f

p

0 (x) −
⎰

Y

f p(x, y)v(y) dν(y)

⏋ 1
p

u(x) dμ(x)

⎞p

.

4 Continuous Beckenbach-Dresher-Type Inequalities 

The Beckenbach-Dresher inequality in its original form looks like a Minkowski-
type inequality with the Gini means involved. Inspired by an extension of this result 
by Peetre-Persson, the continuous version reads:
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Theorem 4.1 Let .(X,μ), .(Y, ν) and .(Y, λ) be measure spaces. Let .f, g be non-
negative functions on .X × Y such that f is integrable with respect to the measure 
.μ × ν and g is integrable with respect to .μ × λ. 

(a) If 

(i) .u ≥ 1 and .q ≤ 1 ≤ p .(q /= 0), or  
(ii) .u < 0 and .p ≤ 1 ≤ q .(p /= 0), and all terms exist, then 

. 

⎛⎰
Y

⎛ ⎰
X

f (x, y)dμ(x)
⎞p

dν(y)

⎞ u
p

⎛⎰
Y

⎛ ⎰
X

g(x, y)dμ(x)
⎞q

dλ(y)

⎞ u−1
q

≤
⎰

X

⎛⎰
Y

f p(x, y)dν(y)

⎞ u
p

⎛⎰
Y

gq(x, y)dλ(y)

⎞ u−1
q

dμ(x). (4.1) 

If (iii) .0 < u ≤ 1, .p ≤ 1 and .q ≤ 1, .p, q /= 0, then inequality (4.1) is 
reversed. 

(b) If .u ≥ 1 and .p ≥ 1, then 

. 

⎛⎰
Y

⎛ ⎰
X

f (x, y)dμ(x)
⎞p

dν(y)

⎞ u
p

× exp

⎛
1 − u⎰
Y

dλ

⎰
Y

log

⎛⎰
X

g(x, y)dμ(x)

⎞
dλ(y)

⎞

≤
⎰

X

⎛⎰
Y

f p(x, y)dν(y)

⎞ u
p

exp

⎛
1 − u⎰
Y

dλ

⎰
Y

log g(x, y)dλ(y)

⎞
dμ(x).

Remark 4.2 Using a discrete measure . μ in (4.1), we can formulate the following 
Beckenbach-Dresher inequality (of Peetre-Persson type) for integrals: If . u, p, q

satisfy the assumptions of Theorem 4.1 (a), then 

.

⎛⎰
Y

⎛ n⎲
i=1

fi(y)
⎞p

dν(y)

⎞ u
p

⎛⎰
Y

⎛ n⎲
i=1

gi(y)
⎞q

dλ(y)

⎞ u−1
q

≤
n⎲

i=1

⎛⎰
Y

f
p
i (y)dν(y)

⎞ u
p

⎛⎰
Y

g
q
i (y)dλ(y)

⎞ u−1
q

.
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5 Final Remarks 

Proofs of all results in this paper can be found in papers [1–5] and in the book [6]. 
In this book, we also pointed out that the close connection between convexity and 
interpolation theory is partly kept also in this general continuous/family situation. 
In particular, in the Appendix in [6], it is given a short introduction to the theory 
of interpolation between infinite many Banach spaces, even between families of 
Banach spaces (in the classical case only two or finite many Banach spaces are 
involved). It was in this connection two of the present authors first met the need 
to prove a classical inequality of Hölder-type in continuous/family form. We also 
mention that this new book manuscript contains more than 100 references on the 
subject, several other examples of classical inequalities in continuous/family form 
(e.g. those by Jensen, Jensen-Mercer and Hardy) and a view on some inequalities 
in Banach lattice norm settings. Finally, we pronounce that the research presented 
in this paper implies, in our opinion, an interesting direction of research, namely to 
prove some corresponding continuous/family forms of other inequalities than those 
covered in the book [6]. 
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Abstract In this paper we improve and complement a result by Móricz and Siddiqi 
(J Approx Theory 70(3):375–389, 1992). In particular, we prove that their estimate 
of the Nörlund means with respect to the Vilenkin system holds also without 
their additional condition. Moreover, we prove a similar approximation result in 
Lebesgue spaces for any .1 ≤ p < ∞. 
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1 Introduction 

Concerning some definitions and notations used in this introduction we refer to 
Sect. 2. 

It is well-known (see e.g. [20, 39, 56]) that, for any .1 ≤ p ≤ ∞ and . f ∈
Lp(Gm), there exists an absolute constant .Cp, depending only on p such that 

. ‖σnf ‖p ≤ Cp ‖f ‖p .
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Moreover, (for details see [39]) if .1 ≤ p ≤ ∞, .MN ≤ n < MN+1, . f ∈ Lp(Gm)

and .n ∈ N, then 

. ‖σnf − f ‖p ≤ 2R5
N⎲

s=0

Ms

MN

ωp (1/Ms, f ) , (1.1) 

where .R := supk∈N mk and .ωp(δ, f ) is the modulus of continuity of . Lp, 1 ≤ p ≤
∞ functions defined by 

. ωp(δ, f ) = sup
|t |<δ

‖f (x + t) − f (x)‖, δ > 0.

It follows that if .f ∈ lip (α, p) , i.e., 

. lip(α, p) := {f ∈ Lp : ωp(δ, f ) = O(δα) as δ → 0},

then 

. ‖σnf − f ‖p =
⎧
⎨

⎩

O (1/MN) , if α > 1,

O (N/MN) , if α = 1,

O
(
1/Mα

n

)
, if α < 1.

Moreover, (for details see [39]) if .1 ≤ p < ∞, .f ∈ Lp(G) and 

. 
‖‖σMnf − f

‖‖
p

= o (1/Mn) , as n → ∞,

then f is a constant function. 
The weak-.(1, 1) type inequality for the maximal operators of Vilenkin-Fejer 

means . σ ∗, defined by 

. σ ∗f = sup
n∈N

|σnf |

can be found in Schipp [40] for Walsh series and in Pĺ, Simon [33] and Weisz [54] 
for bounded Vilenkin series. Boundedness of the maximal operators of Vilenkin-
Féjer means of the one- and two-dimensional cases can be found in Fridli [15], 
Gát [17], Goginava [18], Nagy and Tephnadze [29–32], Simon [42, 43], Tephnadze 
[44–49], Tutberidze [37, 50], Weisz [25, 38, 55]. 

Convergence and summability of Nörlund means with respect to Vilenkin 
systems were studied by Areshidze and Tephnadze [3] (see also [2]), Baramidze, 
Persson and Tephnadze [4–8], Blahota et al. [13] (see also [10–12, 34–36]), Fridli 
et al. [16], Goginava [19], Nagy [26–28] (see also [9, 14]), Memic [21, 22].


