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Foreword

The international series of specialty conferences on Behaviour of Steel Structures in
Seismic Areas (STESSA) continues to bridge the gap between scientific research, design
codification and practical applications in the field of design and assessment of seismic-
resistant steel structures. Since its beginning in Timisoara, Romania, in July 1994,
STESSA has served as a vital international forum, enabling researchers and engineers
to share and discuss the latest developments in this specialized area.

Following its successful launch, STESSA conferences have been hosted every three
years across the globe: Kyoto, Japan (1997); Montreal, Canada (2000); Naples, Italy
(2003); Yokohama, Japan (2006); Philadelphia, USA (2009); Santiago, Chile (2012);
Shanghai, China (2015); Christchurch, NewZealand (2018); and returning to Timisoara,
Romania, for its tenth anniversary in 2022. Each edition has drawn participants world-
wide to explore advances in design, assessment and testing of steel structures, over-
coming challenges and learning from each seismic experience, which is unique in each
location.

The eleventh edition of the STESSA conference is continuing this important tradi-
tion. Scheduled for 2024 in Salerno, Italy, this venue choice reflects STESSA’s ongoing
commitment to covering major earthquake-prone regions of the world, from Southern
Europe to Pacific Asia, the American continent and Oceania. The selection of Salerno
also marks a recovery and a symbolic return to the regular triennial scheduling after the
year lost due to the pandemic.

As in previous years, the STESSA conference in 2024 has gathered leading aca-
demics, researchers and engineers to discuss the myriad of facets in the field of steel
structures in seismic areas. The conference addresses both traditional and emerging top-
ics, such as the behaviour of structural members, connections and systems; mixed and
composite structures; energy dissipation, self-centring and low-damage systems; as well
as assessment, retrofitting, codes and standards. During the conference, 195 scientific
contributions and five keynote lectures are planned to be presented.

The eleventh edition of the STESSA conference is jointly organized by the Depart-
ment of Civil Engineering of the University of Salerno and the Department of Struc-
tures for Engineering and Architecture of the University of Naples “Federico II”, in
cooperation with the CTA “Collegio dei Tecnici dell’Acciaio”.

We greatly appreciate the continuous support of the Technical Committee 13
“Seismic Design” of the European Convention for Constructional Steelwork (ECCS).
Our sincere thanks also goes to the University of Campania “Luigi Vanvitelli,” the “Fon-
dazione Promozione Acciaio”, the “Istituto Italiano della Saldatura”, the “Associazione
Italiana di Metallurgia” and all the sponsors for their invaluable support.

On behalf of the organizing committee of STESSA 2024, we express our profound
gratitude to all keynote speakers, authors, as well as to the members of the international
scientific and advisory committees. We also extend our thanks to all the participants in
this important international scientific event.



vi Foreword

Special recognition is due to the publisher, Springer Nature Switzerland AG, par-
ticularly to Pierpaolo Riva, for his unwavering support in publishing the STESSA 2024
proceedings. This contribution significantly enhances both dissemination and impact of
our collective work on seismic-resistant steel structures.We are committed to continuing
this tradition of excellence and innovation in the study and application of steel structures
in seismic areas.

Federico M. Mazzolani
Vincenzo Piluso

Antonio Formisano
Elide Nastri
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The Resiliency of Steel Moment-Resisting Frame
Structures Against Earthquake: The FUTURE
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Abstract. The article presents the main experimental findings of the FUTURE
project that was funded in the framework of the H2020-INFRAIA SERAprogram.
Shake table tests of four steel mockups were carried out. The tested mockups
were two-story, single-bay moment frames equipped with replaceable dissipa-
tive elements at the beam-to-column joints and column bases. Three mockups
were tested varying the type of prequalified beam-to-column joints (i.e., Reduced
Beam Section, Extended Stiffened End-Plate, and Haunched end-plate). All spec-
imens were equipped with Reduced Column Sections (RCS) at the column bases.
One mockup integrated ductile infill wall and suspended ceiling to explore their
effects on the structural performance. Each mockup underwent more than thirty
incremental near-field (NF) ground motions arranged also to simulate foreshock-
mainshock-aftershock scenarios. The study reveals that despite the severity of
the excitation regimes, all mockups exhibited satisfactory performance, confirm-
ing the effectiveness of the design criteria. Besides, the type of beam-to-column
joints significantly affects the behavior of SMRFs in terms of the maximum and
residual inter-story drift ratios. It is also shown that while the ceiling system
remained almost intact during the excitations, the infill walls experienced higher
accelerations than the expected values and damage due toWall-Frame Interaction.

Keywords: Steel Moment-Resisting Frame · Beam-to-Column Joint · Column
Base · Dissipative Elements · Nonstructural Components

1 Introduction

Steel Moment-Resisting Frames (SMRFs) are versatile lateral force-resisting systems
thanks to their architectural flexibility and high seismic ductility. Previous severe
earthquakes revealed the high vulnerability (e.g., considerable joint damage) and low
resiliency (e.g., extended repair time) of SMRFs in the case of their poor design [1–3].
Besides, many previous investigations outlined the significance of the beam-to-column
joint behavior, the type of ground motion, and the presence of nonstructural components
on the seismic performance of SMRFs [1–5]. Most of the existing experimental studies
on SMRFs typically involved quasi-static tests on single components (beams, columns,
or their assemblies) or dynamic shake-table tests on either the whole or portions of a

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
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frame structure. While the latter offers valuable insights into the actual behavior due to
replicating a real seismic event, their considerable expense and effort have limited the
number of such tests on SMRFs. Moreover, as detailed in the following section, many
shake table tests were conducted on structures designed according to a specific regional
code and technological practice (e.g., US, Japan, and China) that largely differ from
those applied in other regions (e.g., Europe).

In addition to the progress of scientific research, design codes are also evolving,
often in parallel to many studies contemporary running, which often makes unfeasible
the implementation of the most updated knowledge. In Europe, many efforts have been
made to amend the structural Eurocodes since 2015. In this regard, the second generation
of Eurocode 8 (which governs the seismic design of structures) widely differs from its
predecessor [6]. Regarding SMRFs, a set of prequalified beam-to-column joints has been
introduced on the basis of [7, 8]. All joints uniformly employ bolted end plates, elimi-
nating the need for field welding. These joints can be alternatively designed to restrict
the plasticity into either beams or the end plates without yielding in the panel zones. This
also increases the structure’s resiliency by facilitating the replacement of the damaged
elements following a severe earthquake. Nevertheless, despite their resemblance to their
North American counterparts, recent studies revealed their different behavior concern-
ing strength and ductility [9, 10]. Such observations stem from quasi-static experiments
on isolated beam-to-column assemblies, necessitating further evaluation within whole
3D structures and under realistic seismic scenarios.

The design of SMRFs is usually governed by stiffness rather than strength require-
ments. The building codes’ restrictive drift limits often enforce greater beam sizes than
those specified by the strength design, leading to larger sections for other members in
line with the capacity design requirements (e.g., weak-beam-strong-column). In the 2nd

generation of EC8, the interstorey drift limits and the control of P-Delta effects have
been substantially revised, thus permitting more flexible structures than those compliant
with the 1st generation of EC8 [4, 11]. Therefore, in order to minimize the detrimental
consequence of the structural interaction with ancillary elements (e.g., facades, partition
walls, etc.), the ductility and deformation capacity of these system should be qualified
to accommodate larger interstorey drift ratios. In this regard, a series of tests have been
conducted on a set of ductile ceiling and drywall infill solutions patented by the Knauf
company [12–14]. The results showed promising outcomes by delaying the incipient of
crack initiation and minimizing damage from low-intensity and moderate excitations.
Nonetheless, these results were solely obtained using quasi-static or dynamic tests of iso-
lated ceiling and wall solutions without considering their interaction with the structural
members.

All the above-discussed considerations motivated an experimental program in which
shake table tests were conducted at the CEA (Saclay, France) on four steel moment-
resisting frame structures having different types of beam-to-column joints, with one
mockup also incorporating nonstructural components. This experimental campaign was
framed within the European research project “Full-scale experimental validation of steel
moment frame with EU qualified joints and energy-efficient clad-dings under Near
fault seismic scenarios” (FUTURE), which was funded within H2020-INFRAIA SERA
framework [15].
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In the following sections, first, the details on the geometry of the mockups, sensor
distribution, lab facility equipment, and ground motion records are presented. Later,
after an overview of the observed structural and nonstructural damages, the responses
of each mockup are explained in terms of maximum and residual inter-story drift ratio,
floor acceleration, and maximum acceleration ratio in nonstructural components.

2 Experimental Mockup

The mockup was two-thirds scaled from its initial size to comply with the shake-table
limitations. It is a two-story, one-bay SMRF that was basically design according to the
next generation of the Eurocodes. It consisted of two perimeter SMRFs in the loading
direction and two Concentric Brace Frames (SCBFs) in the orthogonal one that were
solely applied to prevent any potential torsional rotations of the floors. All dissipative
elements (i.e., the beam ends and its connections, and the lower segment of the first storey
columns) were made of S235 JR steel grade, while the remaining components were of
S355 JR steel to confine yielding solely into the dissipative elements. Bolted flange and
web plate splices were incorporated to facilitate the replacement of the damaged parts
after each round of excitations. The structure supports two-segment 150mm thick slabs
at each story level with area reductions in each corner to facilitate access and inspection
of the dissipative beam parts. Designing the slab in two parts was necessary to ease lifting
and assembling the slab in the CEA laboratory. Besides, two additional 65 mm thick
steel plates were placed on each slab to increase the seismic masses further. Figure 1
illustrates the details of the mockup components.

As depicted in Fig. 2, three different beam-to-column joints and a unique column
base detail were tested. The beam-to-column joints were of Reduced Beam Section
(RBS), Haunched, and Extended Stiffened End-Plate (ESEP) types recently qualified
in Europe. The first two types were designed to shift the plastic hinge away from the
column face, while the third one was designed to allows for the simultaneous yielding
of the unstiffened portion of the bean and the end-plate connection, thus reducing the
plastic rotation demand in the beam. All connections were replaced after each round of
excitations. The panel zones were designed to behave elastically to further increase the
repairability (i.e., the resiliency).

Regarding the lower segments of the columns at the base level, a Reduced Column
Section (RCS) geometry was implemented in order to (i) reduce the demand on the base
plate connection and (ii) facilitate the formation of the frame sway mechanism.

The first-story ceiling comprised hangers attached from the slab underside, linking
to a grid of main and cross runners. Gypsum panel boards were attached to the grid
by self-screw bolts. Braces were not included, and the hangers were designed to resist
both vertical and horizontal seismic forces. Regarding the infill walls, a supplementary
framing system of Vertical and Horizontal Boundary Elements (HBE and VBE) has
been considered to reduce the Wall-Frame Interaction (WFI). The frontal facades (i.e.,
those orthogonal to the loading direction) were connected to struts at midpoints andVBE
at the extremities. On the other hand, the side walls (i.e., those parallel to the loading
direction) were connected to struts in the middle and directly to the columns at the ends.
Figure 3 depicts the details of the ceiling and the infill walls.



4 R. Landolfo

a) b)

c) d)

Fig. 1. Mockup geometry: (a) 3D view; (b) side views; (c) plan view of the slab; (d) details of
the mounted slab.

(a) (b) (c) (d)

Fig. 2. Mockups’ Beam-to-column connections and column bases: (a) RBS, (b) Haunched, (c)
ESEP, and (d) RCS.

It is also important to outline that the mockup equipped with non-structural elements
(here and after referred to as infilled) also employed the RBS beam-to-column joint type
and RCS at column bases.
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(a)

(b) (c)

Fig. 3. Details of nonstructural elements: (a) ceiling, (b) side walls, and (c) frontal walls.

3 Distribution of the Sensors and Measuring Devices

Figure 4 describes the layout of the sensors and measuring devices that were installed on
themock-up tomeasure its experimental performance. The layout of the instrumentation
is composed of about 120 measurement channels from displacement, velocity, acceler-
ation, and deformation sensors. As shown in Fig. 4, Wire Transducers (WTs) were
utilized to record the story displacements. Multiple Strain Gages (SGs) were attached
to the joints and along the members to estimate the internal forces. Linear Variable
Displacement Transducers (LVDTs) recorded the extent of joint end-plate and column
base-plate rotation. On each floor, AcceloMeters (AM) were placed at each corner near
the columns to record the floor acceleration and check for the integrity of the slabs
during excitations. Multiple AMs were also attached to the ceiling surface and infill
walls to capture their in-plain and out-of-plain accelerations. Figure 5 clarifies how the
measuring instruments were applied to the mockup.
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(a) (b)

Fig. 4. Mockups’ Sensor Distribution: (a) plan view, (b) elevation view.

Fig. 5. The instrumentation and measurement devices installed on the mock-up.

4 Shake Table, Ground Motions, and Testing Procedure

The tests were conducted on AZALEE shake table at the CEA laboratory in France. This
table consists of a 6 m × 6 m aluminum deck connected to a set of actuators, exciting
the table in horizontal and vertical directions. A Safeguard framing system surrounds
the table to eliminate damage to laboratory equipment.

Two different natural records were selected, namely: (i) the Northridge earthquake
(January 17, 1994) recorded at the Newhall Fire station (referred to as NO2–70); (ii) the
Kocaeli earthquake (August 17, 1999), recorded at Izmit (referred to as ST553_Izmit).
These input ground motions have been selected for the following reasons:

1) They are representative of Near-field ground motions;
2) Both longitudinal and vertical accelerations have similar magnitude, thus facilitating

the scaling of both components with the same factors;
3) On the basis of the results of predictive time history analyses [16], the overall perfor-

mance of the mock-up subjected to these strong motions at near col-lapse limit state
is compatible with the capacity of the shake table in terms of overturning moment
and base displacements.
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The selected earthquake records were scaled in the time domain by a factor equal to
0.816, since the mock-up is 2/3 scaled from the reference building, in accordance with
the criterion given in [17]. In addition, the tests were carried out scaling the acceleration
from 0.1g to 1.7g.

Figure 6 (a), (b), and (c) illustrate the shake table as well as the vertical and horizontal
components of the Northridge and Kocaeli ground motions.

(a)

(b) ©

Fig. 6. The shake table in the lab (a), (b) Northridge, and (c) Kocaeli records (horizontal “h” and
vertical “v” components).

Two different natural records were adopted for the shake table tests, namely: (i)
Northridge earthquake (January 17, 1994) recorded at the Newhall Fire station (referred
as NO2–70); (ii) Kocaeli earthquake (August 17, 1999), recorded at Izmit (referred as
ST553_Izmit). These input ground motions have been selected because of the following
reasons:

1) They are representative of Near-field ground motions;
2) Both longitudinal and vertical accelerations have similar magnitude, thus facilitating

the scaling of both components with the same factors;
3) On the basis of the results of predictive time history analyses, the overall performance

of the mock-up subjected to these strong motions at near col-lapse limit state is
compatible with the capacity of the shake table in terms of overturning moment and
base displacements.
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The selected earthquake records were scaled in the time domain by a factor equal to
0.816, since the mock-up is 2/3 scaled from the reference building. In addition, the tests
were carried out scaling the acceleration from 0.1g to 1.7g.

Each mockup was subjected to more than 30 excitations. While having a generally
increasing trend, the excitations were also scaled to represent foreshock-mainshock-
aftershock sequences. Before and after each sequence, white noises were imposed on the
mockup to measure their damping ratio, vibration periods, and associated modal shapes.
After each round of excitations, the dissipative elements (beam ends and column bases)
were replaced. Figure 7 shows the assembled bare mockup with RBS beam-to-column
joints and the mockups with non-structural elements.

(a) (b)

Fig. 7. Examples of the assembled mockups: (a) bare frame with RBS joints, (b) infilled.

5 The Damage Pattern in the Primary Elements

Figure 8 summarizes the damages experienced by the beam-to-column joints and column
bases after the end of the imposed excitations.

As a general comment, it is observed that the presence of the transverse beams did
not appreciably affect the response of the primary moment resisting joints.

The damage of RBS joints is characterized by severe Flange Local Buckling (FLB)
and Web Local Buckling (WLB), resulting in out-of-plane displacement at the second-
story beams within the plastic hinge region. However, the RBS joints in the first story
showed moderate WLB.

In the case of the ESEP connections, post-test observations revealed the end-plate
yielding and base-metal fracture around the stiffener-to-endplate welds. Although yield-
ing occurred, no evidence of FLB or WLB were noticed in the unstiffened segment of
the beam.

Regarding the Haunched joints, only moderate FLB was observed, while residual
plastic rotation was evident into the plastic hinges.

Meanwhile, the RCS column bases showed favorable responses in all tested mock-
ups. In fact, apart from residual plastic rotation, no flexural buckling, lateral-torsional
buckling, FLB, or WLB was observed in the yielded lower segments of the column at
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the base level. This aspect is interesting because it can open the way to discuss about
the possibility to use RCS details in real steel MRFs.

              (a)                   (b)

              (c)                   (d)

Fig. 8. Damage pattern of the dissipative zones after the imposed excitations: (a) RBS, (b) ESEP,
(c) Haunched, and (d) RCS.

Figure 9 summarizes the damage pattern of the non-structural elements that was
observed after the all applied excitations. As it can be observed, the ceiling remained
almost intact during all imposed excitations, as shown in Fig. 9(a) and (b). In fact, except
for the loosening of some panel boards at the center of the ceiling, which is ascribable to
the interaction with the attached accelerometers, no significant damage in terms of panel
crack, yielding of the grid, and separation of the hangers for the slab was observed.

In the case of facades, the response of the panels perpendicular to the horizontal
excitations differed from those exhibited by the other panels. The frontal facades (i.e.,
perpendicularly placed to the direction of loading) did not exhibited any significant
damage. In fact, no loosening, separation, or hanging of the panels were observed, solely
some minor vertical cracks close to the VBEs were evident at the end of all imposed



10 R. Landolfo

signals. On the contrary, the infill walls in the loading direction showed vertical cracks,
fractures, and separation of the panel board at their ends.

(a) (b)

 (c)

(d) (e)

Fig. 9. Damage of nonstructural elements: (a, b) ceiling, (c) mechanism of the infill wall, (d) (d)
horizontal cracks at the bolt holes, and (e) vertical cracks close to the panel and column.

These phenomena mainly occurred due to the difference in the deformed shapes of
the wall struts and the beam-column assemblies, leading to the WFI at the end panel
boards. The mechanism driving this behavior is illustrated in Fig. 9(c), which showcases
the interaction between the beams and columns of the SMRF and the panel boards
of the non-structural infill wall. As shown, the columns deform in double curvature
(fixed-fixed) due to the seismic forces, while the struts undergo single curvature (pin-
pin) deformation resulting from the inertial forces of the panel boards. This distinction


