Advance Materials Series

ADVANCED HEALTHCARE MATERIALS

Edited By Ashutosh Tiwari

WILEY

Advanced Healthcare Materials

Scrivener Publishing

100 Cummings Center, Suite 541J Beverly, MA 01915-6106

Advance Materials Series

The Advance Materials Series provides recent advancements of the fascinating field of advanced materials science and technology, particularly in the area of structure, synthesis and processing, characterization, advanced-state properties, and applications. The volumes will cover theoretical and experimental approaches of molecular device materials, biomimetic materials, hybrid-type composite materials, functionalized polymers, superamolecular systems, information- and energy-transfer materials, biobased and biodegradable or environmental friendly materials. Each volume will be devoted to one broad subject and the multidisciplinary aspects will be drawn out in full.

Series Editor: Dr. Ashutosh Tiwari

Biosensors and Bioelectronics Centre Linköping University SE-581 83 Linköping Sweden E-mail: ashutosh.tiwari@liu.se

Publishers at Scrivener Martin Scrivener(martin@scrivenerpublishing.com) Phillip Carmical (pcarmical@scrivenerpublishing.com)

Advanced Healthcare Materials

Edited by

Ashutosh Tiwari

Biosensors and Bioelectronics Centre, Linköping University, Sweden

Copyright © 2014 by Scrivener Publishing LLC. All rights reserved.

Co-published by John Wiley & Sons, Inc. Hoboken, New Jersey, and Scrivener Publishing LLC, Salem, Massachusetts. Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our Customer Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic formats. For more information about Wiley products, visit our web site at www.wiley.com.

For more information about Scrivener products please visit www.scrivenerpublishing.com.

Cover design by Russell Richardson

Library of Congress Cataloging-in-Publication Data:

ISBN 978-1-118-77359-8

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

Contents

	Preface xvii List of Contributors xix					
Pa	rt 1:	Fun	ctional Therapeutics	1		
1	Stimu	ıli-Resp	oonsive Smart Nanoparticles for Biomedical A	Application 3		
	Arn	ab De,	Sushil Mishra and Subho Mozumdar			
	1.1	A Brie	ef Overview of Nanotechnology	4		
	1.2	Nanop	particulate Delivery Systems	5		
	1.3		ery Systems	6		
			Hydrogels	6		
			Dendrimers	7		
			Liposomes	8		
			Niosomes	8		
			Polymersomes	9		
			Solid Lipid Nanoparticle (SLN)	10		
			Micro- and Nanoemulsions	11		
			Micelles	12		
			Carbon Nanomaterials	13		
	1.4	•	ers for Nanoparticle Synthesis	13		
			Polyesters	13		
			Poly-e-caprolactone	14		
			Poly(alkyl cyanoacrylates)	15		
		1.4.4		16		
	1.5		esis of Nanovehicles	17		
			Top-Down Approach	17		
			Bottom-Up Approach	18		
		1.5.3	Hybrid Approach	18		
	1.6	-	rsion of Preformed Polymers	18		
			Emulsification-Solvent Evaporation	18		
		1.6.2	Solvent-Displacement, -Diffusion, or			
			Nanoprecipitation	19		

		1.6.3	Emulsification-Solvent Diffusion (ESD)	20
		1.6.4	Salting-Out	20
		1.6.5	Dialysis	21
			Supercritical Fluid Technology	21
	1.7		sion Polymerization	22
		1.7.1	Conventional Emulsion Polymerization	22
			Surfactant-Free Emulsion Polymerization	22
		1.7.3	Mini-Emulsion Polymerization	23
		1.7.4	Micro-Emulsion Polymerization	23
		1.7.5	Interfacial Polymerization	23
	1.8		cation of Nanoparticle	24
		1.8.1	Evaporation	24
		1.8.2	Filtrations Through Mesh or Filters	24
			Centrifugation	25
		1.8.4	Ultracentrifugation	25
		1.8.5	Dialysis	25
		1.8.6	Gel Filtration	26
	1.9	Dryin	g of Nanoparticles	26
		1.9.1	Freeze Drying	26
		1.9.2	Spray-Drying	27
	1.10	Drug	Loading	27
			Release	28
	1.12	Concl	usion	29
	Refe	rences		29
2	Diag	nosis a	nd Treatment of Cancer—Where We are and	
	When	re We h	ave to Go!	37
	Raji	v Loch	an Gaur and Richa Srivastava	
			er Pathology	38
			er Diagnosis	39
	2.3	Treatr	nent	43
	Con	clusion	L	44
	Refe	rences		44
3	Adva	nced M	Iaterials for Biomedical Application and	
		Delive		49
	•		r Titinchi, Mayank P. Singh, Hanna S. Abbo	
			. Green	
	3.1		luction	50
	3.2		ancer Drug Entrapped Zeolite Structures as Drug	2.0
			ery Systems	50
			<i>i i</i>	

	3.3	Mesop	porous Silica Nanoparticles and Multifunctional	
		Magne	etic Nanoparticles in Biomedical Applications	54
	3.4	BioM	OFs: Metal-Organic Frameworks for Biological and	
		Medic	cal Applications	66
		3.4.1	Introduction	66
		3.4.2	Synthesis, Properties and Structures of MOFs	67
			MOFs as Drug Delivery Agents	69
		3.4.4	e , e	73
		3.4.5	•	75
	3.5	Concl	usions	77
	Refe	rences		77
4	Nano	particl	es for Diagnosis and/or Treatment of	
	Alzho	eimer's	Disease	87
	<i>S.G.</i>	Antim	isiaris, S. Mourtas, E. Markoutsa, A. Skouras,	
		K. Pap		
	4.1		luction	87
	4.2	Nanor	particles	88
		4.2.1		91
		4.2.2		
			on the in vivo Fate of Nanoparticle Formulations	96
	4.3	Physic	ological Factors Related with Brain-Located	
		•	logies: Focus on AD	98
		4.3.1	Neurodegenerative Diseases; AD and Related	
			Pathologies	98
		4.3.2		99
			4.3.2.1 BBB Physiology	99
			4.3.2.2 Methods to Overcome the BBB	102
		4.3.3	In vitro and in vivo Models for BBB Permeability and	l
			AD Diagnostic/Therapeutic Approach Assesment	106
			4.3.3.1 In vitro Methods	106
			4.3.3.2 In vivo (and in situ) Methods	108
	4.4	Curre	nt Methodologies to Target AD-Related Pathologies	112
		4.4.1	Tau-targeted Strategies—Available Ligands	112
			4.4.1.1 Ligands Available for Tau Targeting	119
		4.4.2	Amyloid Plaque or Aβ- species Targeted Strategies	123
			4.4.2.1 Aβ Peptide Formation	123
			4.4.2.2 $A\beta$ Transport Across the BBB-Strategies	
			for Therapy	124
			4.4.2.3 Aβ Peptide Species	125
			4.4.2.4 Ligands Available to Target Aβ	126

		4.4.3	Is Passing the BBB Always Needed?—Sink Theory	135
		4.4.4	Functionalization of Ligands to NPs	135
	4.5	Nanop	particles for Diagnosis of AD	138
		4.5.1	Introduction	138
		4.5.2	Organic NPs for AD Diagnosis	138
		4.5.3	Inorganic NPs for AD Diagnosis	144
		4.5.4	Other NP-Types for Diagnosis of AD	147
	4.6	Nanop	particles for Therapy of AD	148
		4.6.1	/ 1/	148
		4.6.2	1	156
		4.6.3	/1	158
	4.7		nary of Current Progress and Future Challenges	162
			gments	163
	Refe	rences		163
Part	t 2:	Poin	nt-of-care Diagnostics	181
			aterials for Human Health: Hemocompatible 1icro- and Nanoparticles and Their Application	
	•	osensoi		183
	Cho	ng Sun,	, Xiaobo Wang, Chun Mao and Jian Shen	
	5.1	0	luction	183
	5.2	Desig	n and Preparation of Hemocompatible Polymeric	
		Micro	- and Nanoparticles	185
	5.3	The Bi	iosafety and Hemocompatibility Evaluation System	
		for Po	lymeric Micro- and Nanoparticles	187
		5.3.1	0	188
			Complement and Platelet Activation Detection	188
		5.3.3		190
		5.3.4	1 0 0	190
		5.3.5		191
	5.4		ruction of Biosensor for Direct Detection	102
			ole Blood Evaluation of GOx/(Hep-PU) Hybrids	192 192
		5.4.1		192
		5.4.3		195
		5.4.5	GCE and Calibration Curve	195
		5.4.4		195
	5.5		usion and Prospect	198
			T T T T	199

6	The C	Contrib	ution of Smart Materials and Advanced Clinical			
	Diag	nostic N	Micro-Devices on the Progress and Improvement			
	of Human Health Care					
	<i>F.R.</i>	R. Teles	s and L.P. Fonseca			
	6.1	Introd	uction	204		
	6.2	Physiological Biomarkers as Targets in Clinical				
		•	ostic Bioassays	206		
		6.2.1	•	206		
		6.2.2	Antigens and Antibodies	206		
			Nucleic Acids	207		
		6.2.4	Whole Cells	208		
	6.3	Bioser	ISOTS	209		
		6.3.1	Principles and Transduction Mechanisms	209		
		6.3.2	Immunosensors vs. Genosensors	211		
		6.3.3	Optical vs. Electrochemical Detection	212		
		6.3.4	Merging Electrochemistry with Enzyme Biosensors	214		
		6.3.5	Strip-Tests and Dipstick Tests	215		
		6.3.6	Biosensor Arrays and Multiplexing	216		
		6.3.7	Microfluidic-Based Biosensors	217		
		6.3.8	Lab-on-a-chip (LOC)	220		
	6.4	Advan	ced Materials and Nanostructures for Health			
			Applications	221		
	6.5		cations of Micro-Devices to Some Important			
			al Pathologies	227		
			Diabetes	227		
		6.5.2	Cholesterol and Cardiovascular Disease	229		
			Cancer	230		
	6.6		usions and Future Prospects	231		
		nowledg	gment	231		
	Refe	rences		232		
Pa	art 3:	Tran	uslational Materials	237		
7	Hiora	rchical	l Modeling of Elastic Behavior of Human Dental			
,			l on Synchrotron Diffraction Characterization	239		
			d Alexander M. Korsunsky	239		
	7.1		luction	239		
	7.2		imental Techniques	242		
		-	Micro-CT Protocol	242		

7.2.2 In situ X-Ray Scattering Measurements 242

			7.2.2.1 Mechanical Loading Setup	242
			7.2.2.2 Beamline Diffraction Setup	244
	7.3	Mode	l Formulation	244
		7.3.1	Geometrical Assumptions	244
			7.3.1.1 Dentine Hierarchical Structure	244
			7.3.1.2 Enamel Hierarchical Structure	246
		7.3.2	Multi-Scale Eshelby Model	247
			7.3.2.1 First-Level Eshelby Model	247
			7.3.2.2 Second-Level Eshelby Model	248
	7.4	Exper	imental Results and Model Validation	251
		7.4.1	Nano-Scale HAp Distribution and Mechanical	
			Response	251
		7.4.2	Evaluation and Testing of the Multi-Scale	
			Eshelby Model	256
	7.5	Discu		257
		7.5.1		257
		7.5.2		258
		7.5.3	1	258
		7.5.4	1 - /	259
	7.6		usions	261
			gments	262
		endix		262
	Refe	rences		266
8	Biod	egradal	ble Porous Hydrogels	269
	Mar	tin Pra	dny, Miroslav Vetrik, Martin Hruby and Jiri Michalel	k
	8.1	Introd	luction	269
	8.2	Metho	ods of Preparation of Porous Hydrogels	271
		8.2.1	Crosslinking Polymerization in the Presence of	
			Substances that are Solvents for Monomers, but	
			Precipitants for the Formed Polymer	271
		8.2.2	Crosslinking Polymerization in the Presence	
			of Solid Porogen	272
		8.2.3	Crosslinking Polymerization in the Presence of	
			Substances Releasing a Gas	273
		8.2.4	Freeze-Drying (Lyophilization) of the Hydrogel	
			Swollen in Water	274
		8.2.5	Fibrous Materials	274
		8.2.6	Cryogelation	275
		8.2.7	Combined Techniques	276

8.3	Hydro	gels Cros	slinked With Degradable Crosslinkers	277
	8.3.1	Hydroge	els Degradable by Hydrolysis of the	
		N-O Bo	nds	278
	8.3.2	Hydroly	tic Splitting of Crossing Chain Based on	
		Poly(Ca	prolactone)	279
	8.3.3	Reductiv	ve Splitting of S-S Bond which is Part of	
		Crossing		280
8.4	Hydro	gels Degi	adable in the Main Chain	282
	8.4.1	Polycapi	rolactone-Based Hydrogels	282
	8.4.2	Polysach	naride-Based Hydrogels	283
	8.4.3	Polylact	ide-Based Hydrogels	284
	8.4.4	Polyviny	lalcohol-Based Hydrogels	285
	8.4.5	Poly(eth	ylene oxide)-Based Hydrogels	286
	8.4.6	Peptide-	Based Hydrogels	286
8.5	Concl	usions		287
Ack	nowled	gments		287
Refe	erences			289
	•	d Wound d Sirousa	Care zar, Mehrdad Forough, Khalil Farhadi,	295
			and Rahim Molaei	
9.1		luction		295
9.2		of Hydro	gels	296
9.3	• •	rties of H	0	301
9.4	-		thods of Hydrogels	305
	9.4.1		Methods	305
		9.4.1.1		305
		9.4.1.2	÷ .	306
		9.4.1.3		306
		9.4.1.4	ë , ë ë	307
		9.4.1.5	Crosslinking by Maturation	308
	9.4.2	Chemic	al Methods	309
		9.4.2.1	Crosslinking of Polymer Chains	309
		9.4.2.2	Grafting	310
		9.4.2.3	Crosslinking Using Enzymes	311
9.5			n of Hydrogels	311
	9.5.1		Spectroscopy	311
	9.5.2		Diffraction Analysis (XRD)	312
	9.5.3	Nuclear	Magnetic Resonance (NMR)	312

	9.5.4	Atomic Force Microscopy (AFM)	312
	9.5.5	Differential Scanning Calorimetry (DSC)	313
	9.5.6	Electron Microscopy	313
	9.5.7	Chromatography	314
	9.5.8	Other Techniques	314
9.6	Biomed	lical Applications of Hydrogels	314
	9.6.1	Tissue Engineering	317
		Drug Delivery	319
9.7	, ,	gels for Wound Management	325
		Wound Care and Wound Dressings	325
		Types of Wound Dressings	327
	9.7.3	Hydrogel Wound Dressings	331
		9.7.3.1 Preparation Methods of Hydrogel	
		Wound Dressings	335
		9.7.3.2 Characterization of Hydrogel Wound	
		Dressings	339
9.8		Developments on Hydrogels	343
9.9	Conclu	isions	346
	rences		347
Rele	1011000		
rt 4:	Emer	rging Bio-engineering Devices	359
rt 4: Modi	Emer ified Nat	tural Zeolites—Functional Characterization	
rt 4: Modi and F	Emer ified Nat Biomedia	tural Zeolites—Functional Characterization cal Application	359 361
rt 4: Modi and F <i>Jela</i>	Emer fied Nat Biomedia <i>Milić, A</i>	tural Zeolites—Functional Characterization cal Application <i>leksandra Daković, Danina Krajišnik</i>	
rt 4: Modi and F Jela and	Emer fied Nat Biomedia <i>Milić, A</i> George	tural Zeolites—Functional Characterization cal Application leksandra Daković, Danina Krajišnik E. Rottinghaus	361
rt 4: Modi and F Jela and	Emer ified Nat Biomedia <i>Milić, A</i> <i>George I</i> Introdu	tural Zeolites—Functional Characterization cal Application leksandra Daković, Danina Krajišnik E. Rottinghaus	361 362
rt 4: Modi and F Jela and	Emer fied Nat Biomedia Milić, A George I Introdu 10.1.1	tural Zeolites—Functional Characterization cal Application leksandra Daković, Danina Krajišnik E. Rottinghaus action Clinoptilolite	361 362 363
rt 4: Modi and F Jela and 10.1	Emer fied Nat Biomedic Milić, A George Introdu 10.1.1 10.1.2	tural Zeolites—Functional Characterization cal Application <i>leksandra Daković, Danina Krajišnik</i> <i>E. Rottinghaus</i> action Clinoptilolite Biomedical Application of Natural Zeolites	361 362 363 366
rt 4: Modi and F Jela and 10.1	Emer fied Nat Biomedia Milić, A George Introdu 10.1.1 10.1.2 Surfact	tural Zeolites—Functional Characterization cal Application <i>leksandra Daković, Danina Krajišnik</i> <i>E. Rottinghaus</i> action Clinoptilolite Biomedical Application of Natural Zeolites ant Modified Zeolites (SMZs)	361 362 363 366 367
rt 4: Modi and H Jela and 10.1	Emer fied Nat Biomedia Milić, A George I Introdu 10.1.1 10.1.2 Surfact 10.2.1	tural Zeolites—Functional Characterization cal Application <i>leksandra Daković, Danina Krajišnik</i> <i>E. Rottinghaus</i> action Clinoptilolite Biomedical Application of Natural Zeolites ant Modified Zeolites (SMZs) Application of SMZs as Sorbents of Mycotoxin	361 362 363 366 367 5 369
rt 4: Modi and H Jela and 10.1	Emer fied Nat Biomedic Milić, A George Introdu 10.1.1 10.1.2 Surfact 10.2.1 Minera	tural Zeolites—Functional Characterization cal Application <i>leksandra Daković, Danina Krajišnik</i> <i>E. Rottinghaus</i> action Clinoptilolite Biomedical Application of Natural Zeolites ant Modified Zeolites (SMZs) Application of SMZs as Sorbents of Mycotoxin ils as Pharmaceutical Excipients	361 362 363 366 367 369 374
rt 4: Modi and H Jela and 10.1	Emer fied Nat Biomedie Milić, A George Introdu 10.1.1 10.1.2 Surfact 10.2.1 Minera 10.3.1	tural Zeolites—Functional Characterization cal Application <i>leksandra Daković, Danina Krajišnik</i> <i>E. Rottinghaus</i> action Clinoptilolite Biomedical Application of Natural Zeolites ant Modified Zeolites (SMZs) Application of SMZs as Sorbents of Mycotoxin Is as Pharmaceutical Excipients Minerals and Modified Drug Delivery	361 362 363 366 367 5 369
rt 4: Modi and H Jela and 10.1	Emer fied Nat Biomedic Milić, A George Introdu 10.1.1 10.1.2 Surfact 10.2.1 Minera	tural Zeolites—Functional Characterization cal Application <i>leksandra Daković, Danina Krajišnik</i> <i>E. Rottinghaus</i> action Clinoptilolite Biomedical Application of Natural Zeolites ant Modified Zeolites (SMZs) Application of SMZs as Sorbents of Mycotoxin ils as Pharmaceutical Excipients Minerals and Modified Drug Delivery Clinoptilolite as Potential Pharmaceutical	361 362 363 366 367 369 374 376
rt 4: Modi and H Jela and 10.1 10.2 10.3	Emer fied Nat Biomedia Milić, A George J Introdu 10.1.1 10.1.2 Surfact 10.2.1 Minera 10.3.1 10.3.2	tural Zeolites—Functional Characterization cal Application <i>leksandra Daković, Danina Krajišnik</i> <i>E. Rottinghaus</i> action Clinoptilolite Biomedical Application of Natural Zeolites ant Modified Zeolites (SMZs) Application of SMZs as Sorbents of Mycotoxin ils as Pharmaceutical Excipients Minerals and Modified Drug Delivery Clinoptilolite as Potential Pharmaceutical Excipient/Drug Delivery	361 362 363 366 367 369 374
rt 4: Modi and H Jela and 10.1 10.2 10.3	Emer fied Nat Biomedia Milić, A George J Introdu 10.1.1 10.1.2 Surfact 10.2.1 Minera 10.3.1 10.3.2	tural Zeolites—Functional Characterization cal Application <i>leksandra Daković, Danina Krajišnik</i> <i>E. Rottinghaus</i> action Clinoptilolite Biomedical Application of Natural Zeolites ant Modified Zeolites (SMZs) Application of SMZs as Sorbents of Mycotoxin ils as Pharmaceutical Excipients Minerals and Modified Drug Delivery Clinoptilolite as Potential Pharmaceutical Excipient/Drug Delivery for Pharmaceutical Application	361 362 363 366 367 374 376 376
rt 4: Modi and H Jela and 10.1 10.2 10.3	Emer fied Nat Biomedia Milić, A George J Introdu 10.1.1 10.1.2 Surfact 10.2.1 Minera 10.3.1 10.3.2 SMZs f	tural Zeolites—Functional Characterization cal Application <i>leksandra Daković, Danina Krajišnik</i> <i>E. Rottinghaus</i> action Clinoptilolite Biomedical Application of Natural Zeolites ant Modified Zeolites (SMZs) Application of SMZs as Sorbents of Mycotoxin ils as Pharmaceutical Excipients Minerals and Modified Drug Delivery Clinoptilolite as Potential Pharmaceutical Excipient/Drug Delivery or Pharmaceutical Application Preparation and Characterization of SMZs	361 362 363 366 367 374 376 376
rt 4: Modi and H Jela and 10.1 10.2 10.3	Emer fied Nat Biomedia Milić, A George J Introdu 10.1.1 10.1.2 Surfact 10.2.1 Minera 10.3.1 10.3.2 SMZs f	tural Zeolites—Functional Characterization cal Application <i>leksandra Daković, Danina Krajišnik</i> <i>E. Rottinghaus</i> action Clinoptilolite Biomedical Application of Natural Zeolites ant Modified Zeolites (SMZs) Application of SMZs as Sorbents of Mycotoxin ils as Pharmaceutical Excipients Minerals and Modified Drug Delivery Clinoptilolite as Potential Pharmaceutical Excipient/Drug Delivery for Pharmaceutical Application	361 362 363 366 367 374 376 376 376 380
rt 4: Modi and H Jela and 10.1 10.2 10.3	Emer fied Nat Biomedia Milić, A George J Introdu 10.1.1 10.1.2 Surfact 10.2.1 Minera 10.3.1 10.3.2 SMZs f	tural Zeolites—Functional Characterization cal Application <i>leksandra Daković, Danina Krajišnik</i> <i>E. Rottinghaus</i> action Clinoptilolite Biomedical Application of Natural Zeolites ant Modified Zeolites (SMZs) Application of SMZs as Sorbents of Mycotoxin ils as Pharmaceutical Excipients Minerals and Modified Drug Delivery Clinoptilolite as Potential Pharmaceutical Excipient/Drug Delivery for Pharmaceutical Application Preparation and Characterization of SMZs for Drug Delivery	361 362 363 366 367 374 376 376 376 380 380
rt 4: Modi and H Jela and 10.1 10.2 10.3	Emer fied Nat Biomedia Milić, A George J Introdu 10.1.1 10.1.2 Surfact 10.2.1 Minera 10.3.1 10.3.2 SMZs f	tural Zeolites—Functional Characterization cal Application <i>leksandra Daković, Danina Krajišnik</i> <i>E. Rottinghaus</i> nction Clinoptilolite Biomedical Application of Natural Zeolites ant Modified Zeolites (SMZs) Application of SMZs as Sorbents of Mycotoxin ils as Pharmaceutical Excipients Minerals and Modified Drug Delivery Clinoptilolite as Potential Pharmaceutical Excipient/Drug Delivery for Pharmaceutical Application Preparation and Characterization of SMZs for Drug Delivery 10.4.1.1 Physicochemical Analysis of ZCPCs	361 362 363 366 367 374 376 376 376 380 380

Contents	xiii
	205
10.5 Conclusions	397
Acknowledgement	398
References	398
11 Supramolecular Hydrogels Based on Cyclodextrin	
Poly(Pseudo)Rotaxane for New and Emerging Biomedical	
Applications	405
Jin Huang, Jing Hao, Debbie P. Anderson and Peter R. Chang	
11.1 Introduction	406
11.2 Fabrication of Cyclodextrin Poly(pseudo)rotaxane-Based	
Hydrogels	408
11.2.1 Homopolymers as Guest Molecules	408
11.2.2 Block-Copolymers as Guest Molecules	412
11.2.2.1 Diblock Copolymer	412
11.2.2.2 Triblock Copolymer	413
11.2.3 Graft-Copolymers as Guests	414
11.2.4 Other Branched Polymers as Guests	415
11.3 Stimulus-Response Properties of Cyclodextrin	
Poly(pseudo)rotaxane Based Hydrogels	417
11.3.1 Stimulus-Response Properties Derived from	
Cyclodextrin Poly(pseudo)rotaxanes and their	
Aggregates	418
11.3.1.1 Shear-Thinning	418
11.3.1.2 Temperature-sensitivity	419
11.3.2 Stimulus-Response Properties Derived from	
Uncovered Segments	420
11.3.2.1 pH Sensitivity	420
11.3.2.2 Reduction Sensitivity	421
11.4 Nanocomposite Supramolecular Hydrogels	421
11.4.1 Nanocomposite Hydrogel Filled with Carbon	
Nanoparticles	422
11.4.2 Nanocomposite Hydrogels Filled with	
Metal-Based Nanoparticles	423
11.4.3 Nanocomposite Hydrogel Filled with	
Polysaccharide Nanoparticles	425
11.4.4 Role of Nanoparticles	425
11.4.4.1 Reinforcement	426
11.4.4.2 Other Functions	428
11.5 Biomedical Application of Cyclodextrin	100
Poly(pseudo)rotaxane-Based Hydrogels	428

		11.5.1	Drug Carriers	428
		11.5.2	Gene Carriers	431
		11.5.3	Cell-Adhesive Scaffold	432
	11.6	Conclu	sions and Prospects	433
		rences	-	433
12	Polyh	iydroxya	alkanoate-Based Biomaterials for Applications	
	in Bio	omedica	l Engineering	439
	Cher	nghao Z	hu and Qizhi Chen	
	12.1	Introdu	iction	440
	12.2	Synthes	sis of PHAs	441
	12.3	Process	ing and its Influence on the Mechanical	
		Propert	ties of PHAs	443
	12.4	Mechar	nical Properties of PHA Sheets/Films	444
	12.5	PHA-B	ased Polymer Blends	447
		12.5.1	Miscibility of PHAs with Other Polymers	447
		12.5.2	Degradability of PHA-Based Polymer Blends	451
		12.5.3	1 / /	453
		12.5.4	Mechanical Properties of PHA-Based	
			Polymer Blends	454
		Summ	lary	459
	Refe	rences		459
13	Biom	imetic N	Molecularly Imprinted Polymers as Smart	
	Mate	rials and	l Future Perspective in Health Care	465
	Moh	ammad	Reza Ganjali, Farnoush Faridbod	
	and	Parviz I	Norouzi	
	13.1	Molecu	larly Imprinted Polymer Technology	466
	13.2	Synthes	sis of MIPs	466
		13.2.1		469
		13.2.2	1 0 7	470
		13.2.3	Nano-Molecularly Imprinted Polymers	
			(Nano-MIPs)	470
			ation of MIPs	471
			netic Molecules	472
			s Receptors in Bio-Molecular Recognition	473
			s Sensing Elements in Sensors/Biosensors	474
			s Drug Delivery Systems	475
	13.8	MIPs as	s Sorbent Materials in Separation Science	483

	13.9 Future	Perspective of MIP Technologies	488
	13.10 Concl	usion	488
	References		488
14	The Role of I	mmunoassays in Urine Drug Screening	493
	Niina J. Ron	kainen and Stanley L. Okon	
	14.1 Introdu	iction	494
	14.2 Urine a	nd Other Biological Specimens	497
	14.3 Immun	*	499
		Assay Design	501
		Antibody-Antigen Interactions	502
	14.3.3	Common Immunoassay Formats for	
		Drug Screening	505
		14.3.3.1 Enzyme Immunoassays	505
	14.3.4	Fluorescent Immunoassays	509
		14.3.4.1 Fluorescence Polarization	
		Immunoassay (FPIA)	509
	14.3.5		510
		14.3.5.1 Kinetic Interaction of Microparticles	
		in Solution Immunoassays (KIMS)	511
		Lateral Flow Immunoassay	512
	•	creening with Immunoassays	512
	14.4.1	On-Site Drug Testing	512
	14.4.2	Point of Care Drug Testing	513
		oassay Specificity: False Negative and False	
		e Test Results	515
		matory Secondary Testing Using Chromatography	
	Instrun		518
	14.6.1	Gas Chromatography–Mass	
		Spectrometry (GC-MS)	519
	14.6.2	Liquid chromatography-Mass Spectrometry/	
		Mass Spectrometry (LC-MS/MS)	520
	Conclusion		521
	References		522
Ind	lex		525

Preface

Advanced healthcare materials are attracting strong interest in fundamental as well as applied medical science and technology. *Advanced Healthcare Materials* summarizes the current state of knowledge in the field of Advanced Materials for functional therapeutics, point-of-care diagnostics, translational materials and up-and-coming bioengineering devices. In this book we have highlighted the key features which enable the design of stimuli-responsive smart nanoparticles, novel biomaterials, and nano/micro devices for either diagnosis or therapy, or both, called theranostics. The latest advancements in healthcare materials and medical technology are also presented. In narrative outline, this volume of the Advanced Materials series includes fourteen chapters divided into four main areas: "Functional Therapeutics," "Point-of-Care Diagnostics," "Translational Materials" and "Up-and-Coming Bioengineering Devices."

The chapter "Stimuli-Responsive Smart Nanoparticles for Biomedical Application," describes the synthesis and engineering of stimuli-responsive polymeric nanosystems and their use in sensors, logic operations, biomedicine, tissue engineering and regenerative medicine, synthetic muscles, "smart" optical or microelectromechanical systems, membranes, electronics and self-cleaning surfaces. The chapter entitled "Diagnosis and Treatment of Cancer - Where We Are and Where We Have to Go!" is an overview of new methods and technology such as functional nanoparticles-based drug delivery and diagnostics systems for overcoming obstacles in cancer diagnosis and treatment. Also, exploratory fundamental and cutting-edge accounts of advanced materials including nanoparticles, nanopolymers, metal-organic frameworks and zeolites in drug delivery and diagnostics are presented in the chapter, "Advanced Materials for Biomedical Application and Drug Delivery." Another chapter, "Nanoparticles for Diagnosis and/ or Treatment of Alzheimer's Disease," focuses on the nanotheranostic approach to Alzheimer's treatment.

The chapters "Novel Biomaterials for Human Health: Hemocompatible Polymeric Micro- and Nanoparticles and Their Application in Biosensor"

and "The Contribution of Smart Materials and Advanced Clinical Diagnostic Micro-Devices on the Progress and Improvement of Human Health Care," cover the application of advanced healthcare materials for point-of-care diagnostics. The notable advantages and limitations of translational biomaterials are described in the chapters "Hierarchical Modeling of Elastic Behavior of Human Dental Tissue Based on Synchrotron Diffraction Characterization," "Biodegradable Porous Hydrogels," and "Hydrogels: Properties, Preparation, Characterization and Biomedical Applications in Tissue Engineering, Drug Delivery and Wound Care." Up-and-coming bioengineering devices are covered in the chapters entitled "Modified Natural Zeolites - Functional Characterization and Application," "Supramolecular Hydrogels Biomedical Based on Cyclodextrin Poly(Pseudo)Rotaxane for New and Emerging Biomedical Applications," "Polyhydroxyalkanoate-Based Biomaterials for Applications in Biomedical Engineering," "Biomimetic Molecularly Imprinted Polymers as Smart Materials and Future Perspective in Health Care," and "The Role of Immunoassays in Urine Drug Screening."

This book has been written for a large readership including university students and researchers from diverse backgrounds such as chemistry, materials science, physics, pharmacy, medical science, and biomedical engineering. It can be used not only as a textbook for both undergraduate and graduate students, but also as a review and reference book for researchers in materials science, bioengineering, medical, pharmacy, biotechnology and nanotechnology. We hope the chapters of this book will provide readers with valuable insight into the important area of advanced healthcare materials, especially the cutting-edge technology in functional therapeutics, point-of-care diagnostics, translational materials and up-and-coming bioengineering devices. The interdisciplinary nature of the topics in this book will help young researchers and senior academicians. The main credit for this book goes to the contributors who have comprehensively written their updated chapters in the field of Advanced Healthcare Materials.

> Ashutosh Tiwari, PhD, DSc Linköping, Sweden March 6, 2014

List of Contributors

Debbie P. Anderson works as a researcher in the Bioproducts and Bioprocesses National Science Program, Agriculture and Agri-Food Canada, Government of Canada, and her research interests are centered around applications of biopolymers.

Sophia G. Antimisiaris is Professor in the Department of Pharmacy, University of Patras & FORTH/ICES, Patras), Greece

Peter R. Chang serves as a Research Scientist and Professor in the Bioproducts and Bioprocesses National Science Program, Agriculture and Agri-Food Canada, Government of Canada, and his primary interests reside in functional systems derived from biopolymers.

Q.Z. Chen is an Associate Professor in the Department of Materials Engineering at Monash University, Australia and works in the field of elastomeric biomaterials for applications in soft tissue engineering.

Aleksandra Daković is a Full Research Professor at the Institute for Technology of Nuclear and Other Mineral Raw Materials, Belgrade, Serbia.

Arnab De is in the Department of Microbiology and Immunology, Columbia University where she obtained her PhD and researches in the interface of chemistry and biology.

Khalil Farhadi is a Professor of Chemistry, Department of Chemistry, Urmia University, Iran.

Farnoush Faridbod is an Assistant Professor in analytical chemistry at the University of Tehran, Iran.

Luis P. Fonseca is an Associate Professor in the Department of Bioengineering of Instituto Superior Tecnico at the University of Lisbon,

XX LIST OF CONTRIBUTORS

Portugal and Senior Researcher of Bioengineering Research Group of the Institute for Biotechnology and Bioengineering in Lisbon.

Mehrdad Forough is a PhD Student in the Department of Chemistry, Urmia University, Iran.

Mohammad R. Ganjali is a Professor in the Center of Excellence in Electrochemistry, Faculty of Chemistry at the University of Tehran, Iran.

Rajiv Lochan Gaur is a Research Associate in the School of Medicine, Stanford University, Palo Alto, California, USA.

Jing Hao works as a researcher at the College of Chemical Engineering, Wuhan University of Technology, China and her research interests focus on biomedical materials based on assembly.

Jin Huang is a full professor, College of Chemical Engineering, Wuhan University of Technology, Wuhan, China, and his research interests include, but are not limited to, fabrication and application of assemblies and composites.

Alexander M. Korsunsky is a Professor of Engineering Science whose research group is based at Oxford and Harwell and pursues multi-scale modeling, multi-modal microscopy and "rich" tomography of biomaterials and engineered materials, including metallic alloys, ceramics, polymers, composites, and coatings.

Danina Krajišnik is an Assistant Professor at the Department of Pharmaceutical Technology and Cosmetology of the University of Belgrade, Faculty of Pharmacy, Belgrade, Serbia.

Chun Mao is a Professor at the Jiangsu Key Laboratory of Biofunctional Materials at Nanjing Normal University, China and his research activities focus on surface modification, biomaterials and biological molecule detection.

Eleni Markoutsa is a PhD student in the Department of Pharmacy, University of Patras, Greece.

Jela Milić is a Full Professor at the Department of Pharmaceutical Technology and Cosmetology of the University of Belgrade, Faculty of Pharmacy, Belgrade, Serbia.

Sushil Mishra is a graduate student pursuing his PhD in Dr. Mozumdar's lab at the University of Delhi, India.

Rahim Molaei is a PhD Student in the Department of Chemistry, Urmia University, Iran.

Spyridon Mourtas is a Post-Doc Researcher in the Department of Pharmacy, University of Patras, Greece.

Subho Mozumdar is a pioneer of nanotechnology in India. He obtained his PhD from SUNY, Buffalo and continued his post-doctoral research at Johns Hopkins. In recognition of his discoveries, he recently became the Academic Editor of *Plos One*.

Parviz Norouzi is a Professor in the Center of Excellence in Electrochemistry, Faculty of Chemistry at the University of Tehran, Iran.

Stanley L. Okon is a Resident Physician in the Department of Psychiatry at Advocate Lutheran General Hospital located in Park Ridge, Illinois.

Konstantina Papadia is a PhD student in the Department of Pharmacy, University of Patras, Greece

Niina J. Ronkainen is an Associate Professor of Chemistry at Benedictine University located in Lisle, Illinois, USA.

George E. Rottinghaus is Clinical Professor at the Veterinary Medical Diagnostic Laboratory, College of Veterinary Medicine, University of Missouri, Columbia, USA.

Yasaman Shaabani is a MSc Student at the Faculty of Chemical Engineering, Urmia University of Technology, Iran.

Jian Shen is a Leader at the Jiangsu Key Laboratory of Biofunctional Materials at Nanjing Normal University, China and his current research areas are anticoagulant materials and biomaterials.

Athanassios Skouras, PhD student in the Department of Pharmacy, University of Patras, Greece.

M. Sirousazar is an Assistant Professor of Chemical Engineering , Faculty of Chemical Engineering, Urmia University of Technology, Urmia, Iran.

xxii List of Contributors

Richa Srivastava works in the Biotechnology Division, Central Institute of Medicinal and Aromatic Plants, Lucknow, India.

Chong Sun is a doctoral candidate at Nanjing Normal University of Science and Technology, China and her current research interests are nanomaterials and electrochemistry analytical methods.

Tan Sui is a post-doctoral researcher in the Department of Engineering Science, University of Oxford, and specializes in imaging, structural analysis and modeling of mineralized biological tissues.

Fernando Teles works as an Assistant Researcher at the Institute of Hygiene and Tropical Medicine, Lisbon, Portugal with the tasks of Science Manager of the Institute and Microbiology Researcher at its Unit of Medical Microbiology.

Xiaobo Wang is a doctoral candidate at Nanjing Normal University, China and her current research interests are surface modification and biomaterials.

C.H. Zhu is a PhD candidate in the Department of Materials Engineering at Monash University, Australia.

Part 1 FUNCTIONAL THERAPEUTICS

Stimuli-Responsive Smart Nanoparticles for Biomedical Application

Arnab De², Sushil Mishra and Subho Mozumdar^{1,*}

¹Department of Chemistry, University of Delhi, Delhi-110007, India ²Department of Microbiology and Immunology, Columbia University, USA

Abstract

Biological systems consist largely of regulation systems; these natural feedback regulation systems are very important to stabilize such non-equilibrium systems like a living organism. One example is release of hormones from secretory cells, which is regulated by physiological cycles or by specific input signals. It is not surprising that regenerative medicine and drug delivery are also utilizing similar responsive strategies in a biomimetic fashion. During the last two decades, scientists have been trying to mimic nature in designing "smart" synthetic materials from various functional molecular building blocks that respond to stimuli such as temperature, pH, ionic strength, light, electric or magnetic field, chemical and biochemical stimuli in order to mediate molecular transport, shape changes, tune adhesion and wettability, or to induce signal transduction of (bio-)chemical or physical stimuli into mechanical, optical or electrical responses. Biomimetic approaches have been employed in the design, synthesis and engineering of stimuli-responsive polymeric systems, which undergo reversible abrupt phase transitions upon variation of a variable around a critical point and their use in a plethora of applications, including sensors, logic operations, biomedicine, tissue engineering and regenerative medicine, synthetic muscles, "smart" optical or microelectromechanical systems, membranes, electronics and self-cleaning surfaces has been explored.

Keywords: Biological systems, nanomedicine, nanoparticles, biomedical applications

^{*}Corresponding author: subhoscom@yahoo.co.in

Ashutosh Tiwari (ed.) Advanced Healthcare Materials, (1-36) 2014 © Scrivener Publishing LLC

1.1 A Brief Overview of Nanotechnology

Nanotechnology has emerged in the last decades of the 20th century with the development of new enabling technologies for imaging, manipulating, and simulating matter at the atomic scale. The frontier of nanotechnology research and development encompasses a broad range of science and engineering activities directed toward understanding and creating improved materials, devices and systems that exploit the properties of matter that emerge at the nanoscale. The results promise benefits that will shift paradigms in biomedicine (e.g., imaging, diagnosis, treatment, and prevention); energy (e.g., conversion and storage); electronics (e.g., computing and displays); manufacturing; environmental remediation; and many other categories of products and applications.

Amongst leading scientists, there is growing awareness about the tremendous impact this field will have on society and the economy. It is forecasted to become possibly even more important than, for example, the invention of the steam engine or the discovery of penicillin.

The landmark lecture by eminent Nobel Laureate Richard Feynman in 1959 entitled "There's plenty of room at the bottom," brought life (to) the concept of nanotechnology, which has been influencing all the different fields of research involving hard core science such as chemistry, physics, and other applied fields of science, such as electronics, materials science and biomedical science, agrochemicals, medicine and pharmaceutical sciences etc. [1].

Nanotechnology and nanoscience are widely seen as having a great potential to bring benefits to many areas of research and applications. They are attracting increasing investments from governments and private sector businesses in many parts of the world. Concurrently, the application of nanoscience is raising new challenges in the safety, regulatory, and ethical domains that will require extensive debates on all levels.

The prefix nano is derived from the Greek word dwarf. One nanometer (nm) is equal to one-billionth of a meter, that is, 10⁻⁹ m. The term "nano-technology" was first used in 1974, when Norio Taniguchi, a scientist at the University of Tokyo, Japan, referred to materials in nanometers.

At the nanometer scale, the physical, chemical and biological properties of nanomaterials are fundamentally different from those of individual atoms, molecules, and bulk materials. They differ significantly from other materials due to two major principal factors: the increased surface area and quantum effects. A larger surface area usually results in more reactive chemical properties and also affects the mechanical or electrical properties of the materials. At the nanoscale, quantum effects dominate the behaviors of a material, affecting its optical, electrical and magnetic properties. By exploiting these novel properties, the main purpose of research and development in nanotechnology is to understand and create materials, devices and systems with improved characteristics and performances [2].

1.2 Nanoparticulate Delivery Systems

The nanoparticulate system comprises of particles or droplets in the submicron range, i.e., below 1 μ m, in an aqueous suspension or emulsion, respectively. This small size of the inner phase gives such a system unique properties in terms of appearance and application. The particles are too small for sedimentation; they are held in suspension by the Brownian motion of the water molecules. They have a large overall surface area and their dispersions provide a high solid content at low viscosity.

Historically, the first nanoparticles proposed as carriers for therapeutic applications were made of gelatin and cross-linked albumin [3]. Use of proteins may stimulate the immune system, and to limit the toxicity of the cross-linking agents, nanoparticles made from synthetic polymers were developed. At first, the nanoparticles were made by emulsion polymerization of acrylamide and by dispersion polymerization of methylmethacrylate [4]. These nanoparticles were proposed as adjuvants for vaccines. Couvreur et al. [5] proposed to make nanoparticles by polymerization of monomers from the family of alkylcyanoacrylates already used in vivo as surgical glue. During the same period of time, Gurny et al. [6] proposed a method for nanoparticle synthesis from another biodegradable polymer consisting of poly(lactic acid) used as surgical sutures in humans. Based on these initial investigations, several groups improved and modified the original processes mainly by reducing the amount of surfactant and organic solvents. A breakthrough in the development of nanoparticles occurred in 1986 with the development of methods allowing the preparation of nanocapsules corresponding to particles displaying a core-shell structure with a liquid core surrounded by a polymer shell [7]. The nanoprecipitation technique was proposed as well as the first method of interfacial polymerization in inverse microemulsion [8]. In the succeeding years, the methods based on salting-out [9], emulsion-diffusion [10], and double emulsion [11] were described. Finally, during the last decade, new approaches were considered to develop nanoparticles made from natural origin such as polysaccharides [12]. These nanoparticles were developed for peptides and nucleic acid delivery. A further development was surface modification of nanoparticles to produce long circulating particles able to avoid the

capture by the macrophages of the mononuclear phagocyte system after intravenous administration [13].

1.3 Delivery Systems

The specific delivery of active principles to the target site, organ, tissue, or unhealthy cells by carriers is one of the major challenges in bioactive delivery research. Many of the bioactive compounds have physicochemical characteristics that are not favorable to transit through the biological barriers that separate the administration site from the site of action. Some of the active compounds run up against enzymatic barriers, which lead to their degradation and fast metabolization. Therapeutically, distribution of such active molecules to the diseased target zones can therefore be difficult. Moreover, the accumulation of drugs in healthy tissues can cause unacceptable toxic effects, leading to the abandonment of treatment despite its effectiveness [14].

In order to overcome the above challenges an ideal delivery system must possesses basically two elements: the ability to transport loaded payload to the target site and control its release. The targeting will ensure high efficiency of loaded payload at the site of core interest and reduces any unwanted biological effects. Various delivery devices have been developed and an overview of each type of nanocarrier is given in the following section.

According to the process used for the preparation of nanoparticles, nanospheres or nanocapsules can be obtained. Nanospheres are homogeneous matrix systems in which the drug is dispersed throughout the particles. Nanocapsules are vesicular systems in which the drug is confined to a cavity surrounded by a polymeric membrane [15].

1.3.1 Hydrogels

Hydrogels are three-dimensional networks composed of hydrophilic polymer chains. They have the ability to swell in water without dissolving. The type of cross-linking between the polymer chains can be chemical (covalent bonds) or physical (hydrogen bonds or hydrophobic interactions). The high water content in these materials makes them highly biocompatible. There are natural hydrogels such as DNA, proteins, or synthetic, e.g., poly(2-hydroxyethyl methacrylate), poly(N-isopropylacrylamide) or a biohybrid [16]. The release mechanism can be induced by temperature