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Preface

Wavelet networks are a new class of networks that combine classic sigmoid neural
networks and wavelet analysis. Wavelet networks were proposed as an alternative to
feedforward neural networks, which would alleviate the weaknesses associated with
wavelet analysis and neural networks while preserving the advantages of each method.

Recently, wavelet networks have gained a lot of attention and have been used with
great success in a wide range of applications: financial modeling; engineering; sys-
tem control; short-term load forecasting; time-series prediction; signal classification
and compression; signal denoising; static, dynamic, and nonlinear modeling; and
nonlinear static function approximation—to mention some of the most important.

However, a major weakness of wavelet neural modeling is the lack of a generally
accepted framework for applying wavelet networks. The purpose of this book is
to present a step-by-step guide for model identification for wavelet networks. We
describe a complete statistical model identification framework for applying wavelet
networks in a variety of ways. Although vast literature on wavelet networks exists,
to our knowledge this is the first study that presents a step-by-step guide for model
identification for wavelet networks. Model identification can be separated into two
parts: model selection and variable significance testing.

A concise and rigorous treatment for constructing optimal wavelet networks is pro-
vided. More precisely, the following subjects are examined thoroughly: the structure
of a wavelet network; training methods; initialization algorithms; variable significance
and variable selection algorithms; model selection methods; and methods to construct
confidence and prediction intervals. The book links the mathematical aspects of the
construction of wavelet network to modeling and forecasting applications in finance,
chaos, and classification. Wavelet networks can constitute a valuable tool in financial
engineering since they make no a priori assumptions about the nature of the dynamics

xiii
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that govern financial time series. Although we employ wavelet networks primarily in
financial applications, it is clear that they can be utilized in modeling any nonlinear
function. Hence, researchers can apply wavelet networks in any discipline to model
any nonlinear problem.

Our goal has been to make the material accessible and readable without excessive
mathematical requirements: for example, at the level of advanced M.B.A. or Ph.D.
students. There is an introduction or tutorial to acquaint nonstatisticians with the
basic principles of wavelet analysis, and a similar but more extensive introduction
to neural networks for noncomputer scientists: first introducing them as regression
models and gradually building up to more complex frameworks.

Familiarity with wavelet analysis, neural wavelets, or wavelet networks will help,
but it is not a prerequisite. The book will take the reader to the level where he or
she is expected to be able to utilize the proposed methodologies in applying wavelet
networks to model various applications.

The book is meant to be used by a wide range of practitioners:

� By quantitative and technical analysts in investment institutions such as banks,
insurance companies, securities houses, companies with intensive international
activities, and financial consultancy firms, as well as fund managers and insti-
tutional investors.

� By those in such fields as engineering, chemistry, and biomedicine.
� By students in advanced postgraduate programs in finance, M.B.A., and mathe-

matical modeling courses, as well as in computational economics, informatics,
decision science, finance, artificial intelligence, and computational finance. It
is anticipated that a considerable segment of the readership will originate from
within the neural network application community as well as from students in
the mathematical, physical, and engineering sciences seeking employment in
the mathematical modeling services.

� By researchers in identification and modeling for complex nonlinear systems,
wavelet neural networks, artificial intelligence, mathematical modeling, and
relevant Ph.D. programs.

Supplementary material for this book may be found by entering ISBN
9781118592526 at booksupport.wiley.com.

During the preparation of the book, the help of my (A.K.A.) wife, Christina
Ioannidou, was significant, and we would like to thank her for her careful reading of
the manuscript.

Antonios K. Alexandridis
Achilleas D. Zapranis

Canterbury, UK
Thessaloniki, Greece
October 2013



1
Machine Learning and
Financial Engineering

Wavelet networks are a new class of networks that combine the classic sigmoid
neural networks and wavelet analysis. Wavelet networks were proposed by Zhang
and Benveniste (1992) as an alternative to feedforward neural networks which would
alleviate the weaknesses associated with wavelet analysis and neural networks while
preserving the advantages of each method.

Recently, wavelet networks have gained a lot of attention and have been used with
great success in a wide range of applications, ranging from engineering; control;
financial modeling; short-term load forecasting; time-series prediction; signal classi-
fication and compression; signal denoising; static, dynamic, and nonlinear modeling;
to nonlinear static function approximation.

Wavelet networks are a generalization of radial basis function networks (RBFNs).
Wavelet networks are hidden layer networks that use a wavelet for activation instead
of the classic sigmoidal family. It is important to mention here that multidimensional
wavelets preserve the “universal approximation” property that characterizes neural
networks. The nodes (or wavelons) of wavelet networks are wavelet coefficients of
the function expansion that have a significant value. In Bernard et al. (1998), various
reasons were presented for why wavelets should be used instead of other transfer
functions. In particular, first, wavelets have high compression abilities, and second,
computing the value at a single point or updating a function estimate from a new
local measure involves only a small subset of coefficients.

Wavelet Neural Networks: With Applications in Financial Engineering, Chaos, and Classification,
First Edition. Antonios K. Alexandridis and Achilleas D. Zapranis.
© 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.
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2 MACHINE LEARNING AND FINANCIAL ENGINEERING

In statistical terms, wavelet networks are nonlinear nonparametric estimators.
Moreover, the universal approximation property states that wavelet networks can
approximate, to any degree of accuracy, any nonlinear function and its derivatives. The
useful properties of wavelet networks make them an excellent nonlinear estimator for
modeling, interpreting, and forecasting complex financial problems and phenomena
when only speculation is available regarding the underlying mechanism that generates
possible observations.

In the context of a globalized economy, companies that offer financial services
try to establish and maintain their competitiveness. To do so, they develop and apply
advanced quantitative methodologies. Neural networks represent a new and exciting
technology with a wide range of potential financial applications, ranging from simple
tasks of assessing credit risk to strategic portfolio management. The fact that neural
and wavelet networks avoid a priori assumptions about the evolution in time of the
various financial variables makes them a valuable tool.

The purpose of this book is to present a step-by-step guide for model identification
of wavelet networks. A generally accepted framework for applying wavelet networks
is missing from the literature. In this book we present a complete statistical model
identification framework to utilize wavelet networks in various applications. More
precisely, wavelet networks are utilized for time-series prediction, construction of
confidence and prediction intervals, classification and modeling, and forecasting of
chaotic time series in the context of financial engineering. Although our proposed
framework is examined primarily for its use in financial applications, it is not limited
to finance. It is clear that it can be adopted and used in any discipline in the context
of modeling any nonlinear problem or function.

The basic introductory notions are presented below. Fist, financial engineering
and its relationship to machine learning and wavelet networks are discussed. Next,
research areas related to financial engineering and its function and applications are
presented. The basic notions of wavelet analysis and of neural and wavelet net-
works are also presented. More precisely, the basic mathematical notions that will be
needed in later chapters are presented briefly. Also, applications of wavelet networks
in finance are presented. Finally, the basic aspects of the framework proposed for
the construction of optimal wavelet networks are discussed. More precisely, model
selection, variable selection, and model adequacy testing stages are introduced.

FINANCIAL ENGINEERING

The most comprehensive definition of financial engineering is the following: Finan-
cial engineering involves the design, development, and implementation of innovative
financial instruments and processes, and the formulation of creative solutions to
problems of finance (Finnerty, 1988). From the definition it is clear that financial
engineering is linked to innovation. A general definition of financial innovation
includes not only the creation of new types of financial instruments, but the devel-
opment and evolution of new financial institutions (Mason et al., 1995). Financial
innovation is the driving force behind the financial system in fulfilling its primary



FINANCIAL ENGINEERING AND RELATED RESEARCH AREAS 3

function: the most efficient possible allocation of financial resources (Ζαπράνης,
2005). Investors, organizations, and companies in the financial sector benefit from
financial innovation. These benefits are reflected in lower funding costs, improved
yields, better management of various risks, and effective operation within changing
regulations.

In recent decades the use of mathematical techniques and processes, derived
from operational research, has increased significantly. These methods are used in
various aspects of financial engineering. Methods such as decision analysis, statistical
estimation, simulation, stochastic processes, optimization, decision support systems,
neural networks, wavelet networks, and machine learning in general have become
indispensable in several domains of financial operations (Mulvey et al., 1997).

According to Marshall and Bansal (1992), many factors have contributed to the
development of financial engineering, including technological advances, globaliza-
tion of financial markets, increased competition, changing regulations, the increasing
ability to solve complex financial models, and the increased volatility of financial
markets. For example, the operation of the derivatives markets and risk management
systems is supported decisively by continuous advances in the theory of the valuation
of derivatives and their use in hedging financial risks. In addition, the continuous
increase in computational power while its cost is being reduced makes it possible to
monitor thousands of market positions in real time to take advantage of short-term
anomalies in the market.

In addition to their knowledge of economic and financial theory, financial engineers
are required to possess the quantitative and technical skills necessary to implement
engineering methods to solve financial problems. Financial engineering is a unique
field of finance that does not necessarily focus on people with advanced technical
backgrounds who wish to move into the financial area but, is addressed to those
who wish to get involved in investment banking, investment management, or risk
management.

There is a mistaken point of view that financial engineering is accessible only by
people who have a strong mathematical and technical background. The usefulness of
a financial innovation should be measured on the basis of its effect on the efficiency of
the financial system, not on the degree of novelty that introduces. Similarly, the power
of financial engineering should not be considered in the light of the complexity of the
models that are used but from the additional administrative and financial flexibility
that it offers its users. Hence, financial engineering is addressed to a large audience
and should be considered within the broader context of the administrative decision-
making system that it supports.

FINANCIAL ENGINEERING AND RELATED RESEARCH AREAS

Financial engineering is a very large multidisciplinary field of research. As a result,
researchers are often focused on smaller subfields of financial engineering. There
are two main branches of financial engineering: quantitative finance and finan-
cial econometrics. Quantitative finance is a combination of two very important and
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Computational
finance

Quantitative finance

Mathematical
finance

Financial
economics

Financial
engineering

Financial
econometrics

Figure 1.1 Research areas related to financial engineering.

popular subfields of finance: mathematical finance and computational finance. On the
other hand, financial econometrics arises from financial economics. Research areas
related to financial engineering are illustrated in Figure 1.1.

The scientific field of financial engineering is closely related to the relevant dis-
ciplinary areas of mathematical finance and computational finance, as all focus on
the use of mathematics, algorithms, and computers to solve financial problems. It
can be said that financial engineering is a multidisciplinary field involving financial
theory, the methods of engineering, the tools of mathematics, and the practice of
programming. However, financial engineering is focused on applications, whereas
mathematical finance has a more theoretical perspective.

Mathematical finance, a field of applied mathematics concerned with financial
markets, began in the 1970s. Its primary focus was the study of mathematics applied to
financial concerns. Today, mathematical finance is an established and very important
autonomous field of knowledge. In general, financial mathematicians study a problem
and try to derive a mathematical or numerical model by observing the output values:
for example, market prices. Their analysis does not necessarily have a link back
to financial theory. More precisely, mathematical consistency is required, but not
necessarily compatibility with economic theory.

Mathematical finance is closely related to computational finance. More precisely,
the two fields overlap. Mathematical finance deals with the development of financial
models, and computational finance is concerned with their application in practice.
Computational finance emphasizes practical numerical methods rather than mathe-
matical proofs, and focuses on techniques that apply directly to economic analyses. In
addition to a good knowledge of financial theory, the background of people working
in the field of computational finance combines fluency in fields such as algorithms,
networks, databases, and programming languages (e.g., C/C++, Java, Fortran).

Today, the disciplinary area of mathematical finance and computational finance
constitutes part of a larger, established, and more general area of finance called
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quantitative finance. In general, there are two main areas in which advanced mathe-
matical and computational techniques are used in finance. One tries to derive math-
ematical formulas for the prices of derivatives, the other one deals with risk and
portfolio management.

Financial econometrics is another field of knowledge closely related (although
more remote) to financial engineering. Financial econometrics is the basic method of
inference in the branch of economics termed financial economics. More precisely, the
focus is on decisions made under uncertainty in the context of portfolio management
and their implications to the valuation of securities (Huang and Litzenberger, 1988).
The objective is to analyze financial models empirically under the assumption of
uncertainty in the decisions of investors and hence in market prices. For example, the
martingale model for capital asset pricing is related to mathematical finance. However,
the empirical analysis of the behavior of the autocorrelation coefficient of the price
changes generated by the martingale model is the subject of financial econometrics.

We illustrate the various subfields of financial engineering by the following exam-
ple. A financial economist studies the structural reasons that a company may have
a certain share price. A financial mathematician, on the other hand, takes the share
price as a given and may use a stochastic model in an attempt to derive the corre-
sponding price of a derivative with the stock as an underlying asset. The fundamental
theorem of arbitrage-free pricing is one of the key theorems in mathematical finance,
while the differential Black–Scholes–Merton approach (Black and Scholes, 1973)
finds applications in the context of pricing options. However, to apply the stochastic
model, a computational translation of the mathematics to a computing and numerical
environment is necessary.

FUNCTIONS OF FINANCIAL ENGINEERING

Financial engineers are involved in many important functions in a financial institution.
According to Mulvey et al. (1997), financial engineering is used widely in four major
functions in finance: (1) corporate finance, (2) trading, (3) investment management,
and (4) risk management (Figure 1.2). In corporate finance, large-scale businesses
are interested in raising funds for their operation. Financial engineers develop new
instruments or enhance existing ones in order to secure these funds. Also, they are
involved in takeovers and buyouts. In trading of securities or derivatives, the objective
of a financial engineer is to develop new dynamic trading strategies. In investment
management the aim is to develop new investment vehicles for investors.

Examples presented by Mulvey et al. (1997) include high-yield mutual funds,
money market funds, and the repo market. In addition, they develop systems for
transforming high-risk investment instruments to low-risk instruments by applying
techniques such as repackaging and overcollaterization. Finally, in risk management,
a financial engineer must, on the one hand, assess the various types of risk of a
range of securities and, on the other hand, use the appropriate methodologies and
tools to construct portfolios with the desired levels of risk and return. These method-
ological approaches relate primarily to portfolio insurance, portfolio immunization
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Financial engineering

Corporate finance Trading
Investment

management
Risk management
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    stochastic
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•   Engineering
    takeovers and
    buyouts

Figure 1.2 Financial engineering activities according to Mulvey et al. (1997).

against changes in certain financial variables, hedging, and efficient assets/liability
management.

Risk management is a crucial part of corporate financial management. The inter-
related areas of risk management and financial engineering find direct applications
in many problems of corporate financial management, such as assessment of default
risk, credit risk, portfolio selection and management, sovereign and country risk, and
financial programing, to name a few.

During the past three decades, a series of new scientific tools derived from the
wider field of operations research and artificial intelligence has been developed for
the most realistic and comprehensive management of financial risks. Techniques that
have been proposed and implemented include multicriteria decision analysis, expert
systems, neural networks, genetic and evolutionary algorithms, fuzzy networks, and
wavelet networks. A typical example is the use of neural networks by Zapranis and
Sivridis (2003) to estimate the speed of inversion within the Vasicek model, used to
derive the term structure of short-term interest rates.

APPLICATIONS OF MACHINE LEARNING IN FINANCE

Neural networks and machine learning in general are employed with considerable
success in primarily three types of applications in finance: (1) modeling for classi-
fication and prediction, (2) associative memory, and (3) clustering (Hawley et al.,
1990). The use of wavelet networks is shown in Figure 1.3.
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Types of
applications of

wavelet
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Modeling Clustering
Associative

memory

PredictionClassification

Figure 1.3 Types of applications of wavelet networks.

Classification includes assignment of units in predefined groups or classes, based
on the discovery of regularities that exist in the sample. Generally, nonlinear non-
parametric predictors such as wavelet networks are able to classify the units correctly
even if the sample is incomplete or additional noise has been added. Typical exam-
ples of such applications are the visual recognition of handwritten characters and the
identification of underwater targets by sonar. In finance, an example of a classification
application could be the grouping of bonds, based on regularities in financial data
of the issuer, into categories corresponding to the rating assigned by a specialized
company. Other examples are the approval of credit granting (the decision as to who
receives credit and how much), stock selection (classification based on the anticipated
yield), and automated trading systems.

The term prediction refers to the development of mathematical relationships
between the input variables of the wavelet network and usually one (although it
can be more) output variable. Artificial networks expand the common techniques
that are used in finance, such as linear and polynomial regression and autoregressive
moving averages (ARMA and ARIMA). In finance, machine learning is used mainly
in classification and prediction applications. When a wavelet network is trained, it
can be used for the prediction of a financial time series. For example, a wavelet
network can be used to produce point estimates of the future prices or returns of a
particular stock or index. However, financial analysts are usually also interested in
confidence and prediction intervals. For example, if the price of a stock moves outside
the prediction interval, a financial analyst can adjust the trading strategy.

In associative memory applications the goal is to produce an output corresponding
to the class or group desired, based on one input vector presented in the neural network
that determines which output is to be produced. For example, the input vector may
be a digitized image of a fingerprint, and the output desired may be reconstruction of
the entire fingerprint.
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Clustering is used to group a large number of different input variables, each of
which, however, has some similarities with other inputs. Clustering is useful for com-
pression or filtering of data without the loss of a substantial part of the information.
A financial application could be the creation of clusters of corporate bonds that cor-
respond to uniform risk classes based on data from financial statements. The number
and composition of the classes will be determined by the model, not by the user. In
this case, in contrast to the use of classification, the categories are not predetermined.
This method could provide an investor with a diversified portfolio.

FROM NEURAL TO WAVELET NETWORKS

In this section the basic notions of wavelet analysis, neural networks, and wavelet
networks are presented. Our purpose is to present the basic mathematical and theoret-
ical background that is used in subsequent chapters. Also, the reasons that motivated
the combination of wavelet analysis and neural networks to create a new tool, wavelet
networks, are discussed.

Wavelet Analysis

Wavelet analysis is a mathematical tool used in various areas of research. Recently,
wavelets have been used especially to analyze time series, data, and images. Time
series are represented by local information such as frequency, duration, intensity, and
time position, and by global information such as the mean states over different time
periods. Both global and local information is needed for the correct analysis of a
signal. The wavelet transform (WT) is a generalization of the Fourier transform (FT)
and the windowed Fourier transform (WFT).

Fourier Transform The attempt to understand complicated time series by breaking
them into basic pieces that are easier to understand is one of the central themes in
Fourier analysis. In the framework of Fourier series, complicated periodic functions
are written as the sum of simple waves represented mathematically by sines and
cosines. More precisely, Fourier transform breaks a signal down into a linear combi-
nation of constituent sinusoids of various frequencies; hence, the Fourier transform
is decomposition on a frequency-by-frequency basis.

Let f : R → C be a periodic function with period T > 0 that satisfies

‖f‖2 = ∫
∞

−∞
|f |2 dt < ∞ (1.1)

Then its FT is given by

f̂ (𝜔) = ∫
∞

−∞
e−2𝜋i𝜔tf (t) dt (1.2)
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and its Fourier coefficients are given by

cn = ∫
∞

−∞
e−2𝜋i𝜔ntf (t) dt (1.3)

where 𝜔n = n∕T and

e2𝜋i𝜔n = cos 2𝜋𝜔n + i sin 2𝜋𝜔n (1.4)

In a common interpretation of the FT given by Mallat (1999), the periodic function
f (t) is considered as a musical tone that the FT decomposes to a linear combination
of different notes cn with frequencies 𝜔n. This method allows us to compress the
original signal, in the sense that it is not necessary to store the entire signal; only the
coefficients and the corresponding frequencies are required. Knowing the coefficients
cn, one can synthesize the original signal f (t). This procedure, called reconstruction,
is achieved by the inverse FT, given by

f (t) = ∫
∞

−∞
e2𝜋i𝜔t f̂ (𝜔) d𝜔 (1.5)

The FT has been used successfully in a variety of applications. The most common
use of FT is in solving partial differential equations (Bracewell, 2000), in image
processing and filtering (Lim, 1990), in data processing and analysis (Oppenheim
et al., 1999), and in optics (Wilson, 1995).

Short-Time Fourier Transform (Windowed Fourier) Fourier analysis performs
extremely well in the analysis of periodic signals. However, in transforming to the
frequency domain, time information is lost. When looking at the Fourier transform of a
signal, it is impossible to tell when a particular event took place. This is a serious draw-
back if the signal properties change a lot over time: that is, if they contain nonstation-
ary or transitory characteristics: drift, trends, abrupt changes, or beginnings and ends
of events. These characteristics are often the most important part of a time series, and
Fourier transform is not suited to detecting them (Zapranis and Alexandridis, 2006).

Trying to overcome the problems of classical Fourier transform, Gabor applied
the Fourier transform in small time “windows” (Mallat, 1999). To achieve a sort
of compromise between frequency and time, Fourier transform was expanded in
windowed Fourier transform or short-time Fourier transform (STFT). WFT uses a
window across the time series and then uses the FT of the windowed series. This is a
decomposition of two parameters, time and frequency. Window Fourier transform is
an extension of the Fourier transform where a symmetric window, g(u) = g(−u), is
used to localize signals in time. If t ∈ R, we define

ft(u) = ḡ(u − t) f (u) (1.6)
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Expression (1.6) reveals that ft(u) is a localized version of f that depends only
on values of f (u). Again following the notation of Kaiser (1994), the STFT of f is
given by

f̃ (𝜔, t) = f̂t (𝜔) = ∫
∞

−∞
e−2𝜋i𝜔u ḡ(u − t) f (u) du (1.7)

It is easy to see that by setting g(u) = 1, the SFTF is reduced to ordinary FT.
Because of the similarity of equations (1.2) and (1.7), the inverse SFTF can be
defined as

f (u) = C−1 ∫
∞

−∞ ∫
∞

−∞
e2𝜋i𝜔ug (u − t)f̃ (𝜔, t) d𝜔 dt (1.8)

where C = ‖g‖2.
As mentioned earlier, FT can be used to analyze a periodic musical tone. However,

if the musical tone is not periodic but rather is a series of notes or a melody, the Fourier
series cannot be used directly (Kaiser, 1994). On the other hand, the STFT can analyze
the melody and decompose it to notes, but it can also give the information when a
given note ends and the next one begins. The STFT has been used successfully in a
variety of applications. Common uses are in speech processing and spectral analysis
(Allen, 1982) and in acoustics (Nawab et al., 1983), among others.

Extending the Fourier Transform: The Wavelet Analysis Paradigm

As mentioned earlier, Fourier analysis is inefficient in dealing with the local behavior
of signals. On the other hand, windowed Fourier analysis is an inaccurate and inef-
ficient tool for analyzing regular time behavior that is either very rapid or very slow
relative to the size of the window (Kaiser, 1994). More precisely, since the window size
is fixed with respect to frequency, WFT cannot capture events that appear outside the
width of the window. Many signals require a more flexible approach: that is, one where
we can vary the window size to determine more accurately either time or frequency.

Instead of the constant window used in WFT, waveforms of shorter duration
at higher frequencies and waveforms of longer duration at lower frequencies were
used as windows by Grossmann and Morlet (1984). This method, called wavelet
analysis, is an extension of the FT. The fundamental idea behind wavelets is to
analyze according to scale. Low scale represents high frequency, while high scales
represent low frequency. The wavelet transform (WT) not only is localized in both
time and frequency but also overcomes the fixed time–frequency partitioning. The
new time–frequency partition is long in time at low frequencies and long in frequency
at high frequencies. This means that the WT has good frequency resolution for low-
frequency events and good time resolution for high-frequency events. Also, the WT
adapts itself to capture features across a wide range of frequencies. Hence, the WT
can be used to analyze time series that contain nonstationary dynamics at many
different frequencies (Daubechies, 1992).
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In finance, wavelet analysis is considered a new powerful tool for the analysis
of financial time series, and it is applied in a wide range of financial problems.
One example is the daily returns time series, which is represented by local infor-
mation such as frequency, duration, intensity, and time position, and by global
information such as the mean states over different time periods. Both global and local
information is needed for a correct analysis of the daily return time series. Wavelets
have the ability to decompose a signal or a time series on different levels. As a result,
this decomposition brings out the structure of the underlying signal as well as trends,
periodicities, singularities, or jumps that cannot be observed originally.

Wavelet analysis decomposes a general function or signal into a series of (orthog-
onal) basis functions called wavelets, which have different frequency and time loca-
tions. More precisely, wavelet analysis decomposes time series and images into
component waves of varying durations called wavelets, which are localized varia-
tions of a signal (Walker, 2008). As illustrated by Donoho and Johnstone (1994),
the wavelet approach is very flexible in handling very irregular data series. Ramsey
(1999) also comments that wavelet analysis has the ability to represent highly com-
plex structures without knowing the underlying functional form, which is of great
benefit in economic and financial research. A particular feature of the signal analyzed
can be identified with the positions of the wavelets into which it is decomposed.

Recently, an increasing number of studies apply wavelet analysis to analyze finan-
cial time series. Wavelet analysis was used by Alexandridis and Hasan (2013) to
estimate the systematic risk of CAPM using wavelet analysis to examine the meteor
shower effects of the global financial crisis. Similarly, one recent research strand of
CAPM has built an empirical modeling strategy centering on the issue of the multi-
scale nature of the systematic risk using a framework of wavelet analysis (Fernandez,
2006; Gençay et al., 2003, 2005; Masih et al., 2010, Norsworthy et al., 2000; Rabeh
and Mohamed, 2011). Wavelet analysis has also been used to construct a modeling
and pricing framework in the context of financial weather derivatives (Alexandridis
and Zapranis 2013a,b; Zapranis and Alexandridis, 2008, 2009).

Moreover, wavelet analysis was used by In and Kim (2006a,b) to estimate the
hedge ratio, and it was used by Fernandez (2005), and In and Kim (2007) to estimate
the international CAPM. Maharaj et al. (2011) made a comparison of developed and
emerging equity market return volatility at different time scales. The relationship
between changes in stock prices and bond yields in the G7 countries was studied
by Kim and In (2007), while Kim and In (2005) examined the relationship between
stock returns and inflation using wavelet analysis. He et al. (2012) studied the value-
at-risk in metal markets, while a wavelet-based assessment of the risk in emerging
markets was presented by Rua and Nunes (2012). Finally, a wavelet-based method
for modeling and predicting oil prices was presented by Alexandridis and Livanis
(2008), Alexandridis et al. (2008), and Yousefi et al. (2005). Finally, a survey of the
contribution of wavelet analysis in finance was presented by Ramsey (1999).

Wavelets A wavelet 𝜓 is a waveform of effectively limited duration that has an
average value of zero. The WA procedure adopts a particular wavelet function called
a mother wavelet. A wavelet family is a set of orthogonal basis functions generated


