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Preface

In the March 2020 issue of the IEEE Solid-State Circuits Magazine, IEEE fellow Marcel Pelgrom
writes in one of his excellent and inspiring Associate Editor’s View columns entitled Standing
on Shoulders about the timeless need for textbooks: “…where is the next disruptive view of our
field, something that is desperately needed after this dazzling journey from 10-micron devices to
nanometer electronics for quantum computing?” This book is my take on the field of power man-
agement.

The book delves into the fascinating world of power management IC design. This field has seen
rapid growth in recent years, with the increasing demand for energy-efficient electronics, in partic-
ular, portable battery-operated devices. Power management integrated circuits are used for highly
efficient power supplies and controlling power switches. It is incredible how these technologies
have gained tremendous importance in making electronic solutions for global growth areas such
as renewable energies, transportation, and communications more compact, energy-efficient, and
reliable. Future machine learning and AI applications will only be possible with intelligent power
management to supply complex processors and sensors.

I got into power management when I joined the industry in the early 2000s and went along a steep
learning curve on all kinds of power management systems and design aspects. When I became a
professor in 2010, I created a new course dedicated to power management IC design. However, no
comprehensive textbook was available, and I had to rely on scientific papers and application notes.

A few years later, the idea of this book came up. Since then, I have been fascinated and challenged
by the fast pace of progress and innovation in power management. The book provides a complete
resource for those interested in power management IC design, covering basic concepts, advanced
topics, and recent innovations in this rapidly evolving field. It is intended for students, educators,
professors, and new and experienced engineers who want to learn about power management IC
design, providing valuable insight and practical guidance for designing power management circuits
and systems. Each chapter is organized to make it easy to find specific sub-topics, with numerous
real-world examples illustrating key design concepts and techniques.

When I teach an entire course on power management IC design at a Master’s or advanced
Bachelor’s level, I reduce the content and follow this outline: (1) Introduction (applications,
challenges, physical implementation); (2) Linear Voltage Regulators; (3) Charge Pumps and
Capacitive DC–DC Converters; (4) Power Transistors; (5) Gate Drivers; (6) Protection and Sensing;
(7) Inductive DC–DC Converters; (8) Hybrid Converters. I also offer a design lab based on Spice
simulation accompanying the lecture. Starting the class with the linear regulator right after the
introduction allows the lab to begin early in the semester. I turned a lot of lab assignments and
exercises into the many examples in this book (to my respected future students: I hope I’m not
giving too much away.).



xviii Preface

In his column, Marcel Pelgrom also writes about the burden of writing textbooks. And indeed,
this book is the result of an investment of uncountable hours over several years. Writing a book
also means that there will be missing content, on purpose but also by mistake. My fellow readers:
Despite careful review, there will be mistakes, and I apologize in advance. Any feedback is highly
appreciated. Please get in touch.

This book would not be in your hands without careful review, invaluable feedback, and encour-
agement by many people. I want to thank my former and recent Ph.D. students, in particular,
Peter Renz (who read through the entire draft) and Tobias Funk, Saurabh Kale, Maik Kaufmann,
Tim Kuhlmann, Jens Otten, Christoph Rindfleisch, and Jürgen Wittmann. Thanks to Markus
Henriksen for his feedback on switched-capacitor (SC) and hybrid converters. Hartmut Grabinski
ensured that Maxwell’s equations were correctly applied to interconnections and printed circuit
board (PCB) layout. Detlev Habicht and Niklas Deneke supported in capturing photographs for the
book. I am grateful to the team at Wiley, in particular, to Sandra Grayson, Juliet Booker, Kavipriya
Ramachandran, and Jeevaghan Devapal for their excellent support and patience. I wish to thank
many more people.

Writing such a book is impossible without the support of my family. I want to thank my par-
ents, Siegrid and Eberhard, who have supported my fascination with microelectronic circuits since
I was nine. Thanks go to my children, who became real fans of my book project, even though they
often had to take a back seat, especially when finalizing the manuscript over the last 1–2 years.
I am indebted to my wife, Sabine. This book would not have been possible without her love and
understanding.

Enjoy the exciting journey of exploring the design of power management integrated circuits!

August 2023, Gehrden Bernhard Wicht
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1

Introduction

Power management integrated circuits (PMICs) are essential in today’s electronic devices. They
manage power delivery and consumption, provide efficient power supplies, and drive power
switches that control actuators and motors, as illustrated in Fig. 1.1. PMICs can be integrated into
complex integrated circuits (ICs) or implemented as dedicated ICs. In this book, the term PMIC
will refer to any type of power integrated circuit.

The importance of PMICs has grown significantly in recent years, driving innovation and
progress in various industries, from consumer electronics to automotive and industrial applica-
tions. With the progress of machine learning and artificial intelligence (AI), intelligent power
management is critical to supplying complex processors and sensors.

PMICs have enabled the development of smaller, more energy-efficient, and reliable electronic
solutions. They also play an essential role in environmental aspects and sustainability. By regu-
lating the power supply of electronic devices, PMICs can reduce energy consumption and carbon
emissions. Moreover, PMICs are crucial for the development of renewable energies, such as solar
and wind power, by enabling efficient power conversion and management.

1.1 What Is a Power Management IC and What Are the Key
Requirements?

A PMIC is an electronic component that delivers one or more supply voltages to other circuit
blocks at a sufficient power level out of an electrical energy source, as shown in Fig. 1.1. The
power conversion can happen in a linear way (usually the more straightforward method) or
a switched-mode fashion, delivering energy portions at a specific frequency (usually the more
energy-efficient approach).

The PMIC aims to utilize the energy source at maximum efficiency, while the input and output
voltage may vary during operation. It also reacts to varying load currents from a few microamperes
(standby) to several amperes (full-power operation).

The voltage conversion ratio is the relation Vout∕Vin between the output and input voltage.
The input voltage Vin can be greater or lower than the output voltage Vout, defining a step-down
converter (buck converter) or a step-up converter (boost converter). Buck-boost converters allow
Vin to vary over a wide range below and above Vout.

Design of Power Management Integrated Circuits, First Edition. Bernhard Wicht.
© 2024 John Wiley & Sons Ltd. Published 2024 by John Wiley & Sons Ltd.



2 1 Introduction

Energy

source

ECUs

Sensors

RAM,HD,SSD

ICs

μC, CPU, GPU

Power

management

Figure 1.1 The role of power management: placed between the energy source and the electronics, it
provides one or multiple supply voltages at the correct power level required by the application. Source:
Brunbjorn/Adobe Stock; daniiD/Adobe Stock; Ruslan Kudrin/Adobe Stock; estionx/Adobe Stock.

The power conversion efficiency 𝜂 (sometimes also called PCE) is defined as the ratio between
the output power Pout delivered to the load and the input power Pin dissipated from the energy
source,

𝜂 =
Pout

Pin
=

Pout

Pout + Ploss
, (1.1)

where Ploss accounts for the power dissipated within the power management circuit. It needs to be
delivered from the input but does not contribute to the output power. We want to keep Ploss as low
as possible. For Ploss = 0, the efficiency reaches its maximum, 𝜂 = 1. It is common to express the
efficiency in percent. In that case, we multiply Eqn. (1.1) by 100%.

PMICs typically include various features like voltage regulators, battery chargers, and power
management control algorithms. They may also include monitoring and protection against over-
current, overheating, and other failure cases. In some applications such as automotive, PMICs are
alternatively called smart power ICs, emphasizing the combination of power devices with smart
control and monitoring features, all integrated on a single chip.

One major trend is the increasing integration of PMICs. As more functions are combined onto a
single chip, the resulting system becomes smaller, more efficient, reliable, and less expensive.

To summarize, the key requirements of PMICs are

● Size, volume, footprint, and weight: The PMIC, including external passive components, must often
fit into a confined space like in smartphones or wearables. In portable devices, also the weight is
critical. The lower weight is also crucial in automotive as it reduces gas and energy consumption.

● Power conversion efficiency: High efficiency means low losses. The lower the power losses, the
longer the battery time. It also causes reduced heat and lower cooling effort, which, in turn,
reduces the size and weight of the power management solution.

● Reliability, no disturbances, and low noise: PMICs are noise sources that may impact other sensi-
tive electronic parts due to their switching nature. Handling high voltages and currents causes
stress and reliability issues at the component, package, and assembly levels.

● Cost: Like most microelectronic products, there is always some pressure to reduce the cost of
the IC and the overall bill of materials at the system level. Power management is not always
considered a key differentiator. At the same time, physics cannot be cheated, and PMICs are a
fastly growing market with good margins.
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1.2 The Smartphone as a Typical Example

Looking at Fig. 1.2a), it is impressive to see how far mobile phones have come since the early 1990s.
Back then, phones could only make voice calls and had a standby time of about a day or less. The
picture is not to scale, but it was bulky and about 500 g in weight. It is incredible to think about
all the features and functions that modern smartphones have today, illustrated in Fig. 1.2b). It is a
remarkable example of the outstanding advancements in modern microelectronics. Today’s smart-
phones are much smaller, lighter (typically 150 g), and more powerful. They have considerable
computing power, 4K video capture, high-end gaming, virtual reality functions, and higher display
resolution. This achievement in performance is thanks to ultra-low-power microelectronics and
dedicated power management. Additionally, it is noteworthy that making a phone call is no longer
the primary use case for these advanced devices.

Now we do what we usually do not want to; we drop our precious smartphone and look at the
electronics inside. Figure 1.2c) shows a printed circuit board of the iPhone 13. The entire electron-
ics is implemented on a layered motherboard sandwich of which Fig. 1.2c) shows a major part. The
white frame boxes indicate some of the many PMICs inside the phone. There are more PMICs on
the reverse side and other printed circuit board (PCB) parts, including ICs for the audio amplifier
and wireless charging. PMICs are a considerable part of the smartphone. Connected to the Li-ion
battery with a typical cell voltage of 3.7 V, multi-phase DC–DC converters supply the application
processor that comprises multicore CPU and GPU blocks. The voltage levels are dynamically scaled
in the range of typically 0.25–1.5 V at load currents of more than 10 A (see dynamic voltage and
frequency scaling in Section 1.7). The typical power consumption is in the range of a few watts.
In comparison, desktop PC processors dissipate more than 100 W. Running at high switching fre-
quencies of tens of MHz, the voltage converters achieve small size, ultralow profile, and near-load
integration at high conversion efficiency. No active cooling is required.

Looking closely, we identify hundreds of tiny passive components surrounding the ICs, mainly
capacitors and inductors. As they are energy-storing components, their size can be reduced
by decreasing the storing times, in other words, by increasing the switching frequency of the
power conversion. It defines one of the leading research goals of today’s power management
solutions – achieving faster switching while keeping the conversion efficiency high. We will
continuously address this topic throughout this book.

(a) (b) (c)

Figure 1.2 a) The mobile phone in the early 1990s, b) the smartphone today, and c) the electronics of the
iPhone 13 with PMICs marked by white boxes. Source: a,b) aquatarkus/Adobe Stock; c) ifixit.
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1.3 Fundamental Concepts

There are different ways to implement DC–DC converters that convert an input DC voltage to
another voltage level. To keep it more practical, we consider a scenario of how to convert 12 to 2 V.

1.3.1 Using a Resistor – The Linear Regulator

We can use a simple resistor to convert 12 to 2 V, as shown in Fig. 1.3. For a load current of 1 A,
a resistor of 10 Ω results in Vout = 2 V. In reality, the resistor is replaced by a controlled transistor
such that its conductance is adjusted depending on the operating conditions like input voltage
and load current. This approach works very well. However, the voltage drop between input and
output is converted into heat. That is why there is significant power dissipation in the resistor,
10 V ⋅ 1 A = 10 W in this example. The power loss is even larger than the output power Pout = 2 W.
In terms of energy efficiency, this concept has a significant drawback.

Nevertheless, it is the fundamental principle of a linear voltage regulator and, by far, the most
used power management circuit today. On the positive side, besides its simplicity, it gives a “clean”
output voltage with a fast transient response.

Without the excessive losses, there would be no need for alternative power conversion con-
cepts, as discussed in Sections 1.3.2–1.3.4 below. The lower the voltage drop across the resistor
(the controlled transistor), the lower the power loss. For this reason, linear regulators are often
called low-dropout regulators with the widely used short-term LDO. Chapter 7 is dedicated to linear
regulators.

1.3.2 Using Switches and an Inductor – The Inductive DC–DC Converter

To overcome the limited efficiency of the linear regulator, we again ask the question, how can we
convert 12 to 2 V? We now use switches as shown in Fig. 1.4a). The switches are combined with an
inductor, forming an inductive DC–DC converter as a typical switched-mode power supply (SMPS)
implementation. As there is no resistive element in the power path, this concept has the potential
to achieve much higher power conversion efficiency compared to a linear regulator.

The operation is as follows: The two switches turn on periodically in a complementary way. They
are connected to the so-called switching node. The voltage Vsw at that node sees a square wave with
an amplitude equal to Vin (12 V in this case), as shown in Fig. 1.4b). The switching node feeds into an
L-C low-pass with two functions: filtering and energy storing. The filtering characteristic provides
the average Vsw at the converter’s output. The average corresponds to the area under the switching
node transient curve. Hence, Vout is a DC voltage; see Fig. 1.4b). By changing the on-time ton of S1,
the area under the square wave, and, consequently, the level of Vout can be varied. This concept

Vin = 12 V Vout = 2 V Load

VR

lload = 1 AR = 10 Ω Figure 1.3 Conversion of 12 to 2 V by a
simple resistor. This is the concept of a linear
voltage regulator.
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Vin

Vsw

T = 1/fsw

Vout = (ton/T) Vin

ton

t

VoutC

lload

S1
Filter

LoadS2

(a) (b)

Vin

L
VswVin

Figure 1.4 Voltage conversion using switches and an inductor L achieving high conversion efficiency:
a) the fundamental step-down converter; b) waveforms of the switching node voltage Vsw and the output
voltage Vout .

is called pulse-width modulation (PWM), the most popular control method in DC–DC converters.
The duty cycle D defines the ratio between the on-time and the period time,

D =
ton

T
. (1.2)

For the step-down converter in Fig. 1.4, the duty cycle determines the voltage conversion ratio:
Vout

Vin
= D =

ton

T
(1.3)

There are other topologies of DC–DC converters that have different conversion ratios.
The energy-storing characteristic of the L-C network is required in two ways. If S1 is turned on

(S2 is off), energy is brought into the system. The capacitor C buffers Vout in case of varying load cur-
rents (load transients). C is called a bypass capacitor because it bypasses the actual regulator during
instantaneous load steps before the control loop can respond. Alternatively, C is referred to as the
output buffer capacitor. The inductor L delivers the load current if S1 is active and in the second
switching phase when S2 turns on (S1 is off). Due to the switching nature of the DC–DC converter,
there will always be some finite output voltage ripple. It is a significant disadvantage compared to
linear regulators (Section 1.3.1). The ripple can be reduced by enlarging L and C at the expense of
larger size and reduced power density. Another way of reducing the ripple and, at the same time,
increasing the output power is to use multiple parallel DC–DC converters. Such multi-phase con-
verters operate in a time-interleave scheme, delivering multiple energy packages during each cycle.

When discussing energy efficiency, it is essential to note that in a steady state, there should be no
power loss Ploss at a switch. If the voltage across the switch is V and the current through the switch
is I, the loss is Ploss = V ⋅ I:

Switch turned on: V = 0, I = Iload → Ploss = V ⋅ I = 0 (1.4)

Switch turned off: V = Vmax, I = 0 → Ploss = V ⋅ I = 0 (1.5)

Vmax is the (maximum) blocking voltage of the switch, which is equal to Vin in Fig. 1.4a). The
relationship in Eqns. (1.4) and (1.5) is the fundamental reason, why switched-mode operation is
widely used in power electronics. In actual designs, there will be various loss contributions, such
as the finite on-resistance of the switches. There will also be switching losses and losses in the
passive components. However, these losses are usually much lower compared to a linear regulator
introduced in Section 1.3.1. Conversion efficiencies of more than 90% can be achieved. Chapter 10
covers inductive DC–DC converters comprehensively.
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1.3.3 Switches and Capacitors – The SC Converter

Another way of voltage conversion is the combination of switches with capacitors. This concept
has become very attractive for highly integrated power management designs due to the availability
of high-density integrated capacitors in advanced CMOS technologies. Figure 1.5 shows a typi-
cal circuit along with the equivalent circuits in the two switching phases. During phase 𝜑1, both
capacitors are connected in series to Vin. The capacitors are parallel in phase 𝜑2. The circuit peri-
odically changes from a series to a parallel configuration, reducing the output voltage to half of
the input voltage. Interestingly, this behavior is independent of the actual capacitor values. Their
values determine the amount of charge shared between switching cycles, but in steady state, Vout
will be exactly half of Vin. Note that ideally, no losses have occurred so far.

How can we convert 12 to 2 V? We can use two conversion stages. The first results in 6 V,
the second one gives 3 V. How do we get to the target value of Vout = 2 V? We take advantage
of the fact that C1 can deliver only a limited charge. In other words, we let the load current
discharge the output capacitor C until Vout reaches exactly 2 V. Most easily, this can be achieved
by adjusting the clock frequency. Unfortunately, this is when the SC converter introduces power
loss due to charge redistribution (∼ CV 2). The output voltage drop from 3 to 2 V can be seen as
a voltage drop across an equivalent output resistance. Significant research has been dedicated to
finding improved SC converter topologies and control mechanisms that minimize these losses. SC
converters are further explored in Chapter 9.

1.3.4 Switches and Capacitors and Inductors – The Hybrid Converter

This approach takes the SC converter of Fig. 1.5 and adds an inductor, as illustrated in Fig. 1.6. The
combination of L and C leads to the name hybrid converter. It utilizes the benefits of the inductive
and capacitive conversion concepts presented in Sections 1.3.2 and 1.3.3. Two mechanisms
help improve conversion efficiency. The inductor ensures soft charging of the capacitor, which

Cp

Vout
C

lload

Load

(a)

φ
1

φ
2

φ
2

φ
1

Vin

Cp

Cp Vout
VoutC C

(b)

Phase φ
1

Phase φ
2

Vin

Figure 1.5 Voltage conversion using capacitors: a) the fundamental switched-capacitor voltage converter;
b) the equivalent circuits in phases 𝜑1 and 𝜑2, alternating between series and parallel configurations.

L

VoutC

lload

Load

φ
2

φ
1

φ
1

φ
2

Vin

Cp

Figure 1.6 A hybrid converter formed by
adding an inductor L to an SC converter
resulting in higher conversion efficiency.
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eliminates charge redistribution losses and minimizes the equivalent output resistance. L and
C also form a resonant tank, which can achieve zero-current switching of the power switches.
This way, the switching losses can be significantly reduced. On the downside, this concept has
higher complexity than an inductive or capacitive converter. However, handling complexity is one
of the great benefits of advanced microelectronics. Chapter 11 covers hybrid DC–DC converters
comprehensively.

1.4 Power Management Systems

Electronic systems usually do not require only one supply voltage. Instead, various functional
blocks have different supply voltage and power requirements. Figure 1.7 shows two examples of
power management systems. Dedicated converters are assigned to supply each block at the point
of load (PoL). State-of-the-art power management systems comprise multiple PoL regulators and
DC–DC converters to supply microcontroller units (MCU), processors (CPU, GPU, and DSP), as
well as analog and mixed-signal circuits.

In space-constraint applications such as smartphones, multiple voltage regulators are imple-
mented in a single IC to minimize their footprint. Known as the multirail power supply (MRPS), it
is the leading PMIC type with a market share of 20% (see Section 1.9).

Li-ion

battery

2.5–4.4 V

Car

battery

4–40 V

DC–DC 1

DC–DC 1

DC–DC 2

DC–DC 2

DC–DC 3

Linear

regulator

Linear

regulator

Linear

regulator

Linear

regulator
μProcessor,

digital core

Low power

μC (standby)

CAN, analog

DSP

External

memory

High-voltage

analog

Low-voltage

analog

1.2 V

1.8 V

2.8 V

5 V or 3.3 V

5 V

1.2 V

3.3 V

1.8 V

(a)

(b)

Figure 1.7 Point-of-load (PoL) power management systems: a) handheld devices operating from a Li-ion
battery have lower step-down ratios as compared to b) automotive, industrial, and data center applications
that operate from a higher supply voltage like a car battery.
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For large step-down ratios, linear regulators are not efficient. However, switched-mode DC–DC
converters may not fulfill strict supply ripple and noise requirements for sensitive analog circuits
such as sensor front ends. Hence, various conversion stages are combined, as illustrated in Fig. 1.7.

Combining a DC–DC converter as a first conversion stage with a subsequent linear regulator
(LDO) is beneficial. The DC–DC converter guarantees high efficiency, while the LDO ensures a
“clean” output voltage with a fast transient response. If the intermediate voltage Vmid, provided by
the DC–DC converter, is close to the target output voltage, the linear voltage regulator will also
show an acceptable efficiency. We can calculate the overall efficiency by multiplying the efficiency
values of each stage:

𝜂 =
Pout

Pin
=

Pout

Pmid
⋅

Pmid

Pin
= 𝜂1 ⋅ 𝜂2 (1.6)

For a large step-down ratio, i.e., if Vin is much greater than Vout, achieving high efficiency will be
more challenging.

As illustrated in Fig. 1.7a), a Li-ion battery typically supplies portable devices such as smart-
phones and wearables with a voltage range of 2.5–4.4 V. There is a moderate step-down ratio. The
automotive application shown in Fig. 1.7b) operates from a 12 V lead-acid battery. The board net
voltage can vary a lot, for instance, from 4 to 40 V. Hence, the step-down ratio is much larger than
in devices supplied by a Li-ion battery. A step-up converter (boost converter) is typically inserted
that kicks in if the board net drops toward 4 V and stabilizes the input voltage of the subsequent
stages to typically 10 V (not shown in Fig. 1.7b) for simplicity). This way, the power management
system can still provide 5 V at the output.

1.5 Applications

The application defines the energy source on the left of Fig. 1.1 with several examples shown in
Fig. 1.8. Consequently, the applications also determine the system voltages, which are the power
management input voltages. There is a trend toward higher voltages, as discussed in the following
subsections, motivated by higher energy efficiency. For the same reason, the IC-level voltages of
the electronics on the right of Fig. 1.1 scale into the opposite direction and reach levels of 1 V and
lower. More details on IC-level supply voltages follow in Section 1.6. We discuss various applica-
tions below, starting with the lowest voltages at the bottom left of Fig. 1.8.

1.5.1 IoT Nodes and Energy Harvesting

Internet-of-Things (IoT) wireless nodes, installed in smart homes and office spaces and used
in an industrial environment, are often designed with 10-year battery lifetime targets [1]. To
prolong the life of a 3 V-CR2032 coin cell, the average current needs to be kept below 2.5 μA
(7.5 μW). However, this can be challenging since the wireless node draws around 5 mA when it is
in active mode (transmit). Several blocks contribute to this average power dissipation, including
the CPU, the transceiver, sensors, and power management. Fortunately, continuous operation is
not required, and duty cycling reduces the average current consumption to typically 6 μA. The
sleep current in the order of 1 μA consists of leakage current, memory retention, analog circuits,
such as a power-on reset, and a low-frequency sleep clock.

Energy harvesting can be used to expand the battery time. The ultimate goal is to remove the
battery at all. In addition to the positive environmental impact, it can significantly reduce mainte-
nance effort and cost. Besides the IC, the battery is the most expensive part of the wireless sensor
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12–48 V
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Figure 1.8 The system voltages in various applications define the input voltage for the power
management circuits. On the load side, the supply voltages follow the trend of decreasing supply voltages
toward 1 V and below with a wide load current range. Source: dezign56/Adobe Stock; ifeelstock/Adobe
Stock; Pawinee/Adobe Stock; Scanrail/Adobe Stock, kornkun/Adobe Stock.

node (about 20% [1]). With the decreasing cost of the IC, the battery cost is expected to contribute
a growing percentage of the total node cost over time.

Energy harvesting converts mechanical energy (kinetic energy and vibration), light (via solar
cells), thermal energy, and the energy of radio frequencies (RFs) into usable voltages. RF energy
harvesting is the lowest cost option, but the available power levels are the lowest. Hence, a promis-
ing approach is multisource energy harvesting. Nevertheless, the typical output power is in the
order of 1 mW and below.

Power management circuits in energy harvesting applications operate from very low voltages
in the millivolt range and even below. Charge pumps or similar techniques bring these low input
levels to an intermediate voltage of ∼0.5–1 V, just above the transistor threshold voltage. At this
point, another step-up DC–DC converter (inductive or capacitive) kicks in. It boosts this voltage
to 1.8 V, for instance, suitable for supplying functional electronic blocks. Once the voltage reaches
the power-on reset level, the IoT node transmits a data packet and shuts off until enough power is
available again.

1.5.2 Portable Devices, Smartphones, and Wearables

Many designs run from low-voltage batteries (button cells) in the range of 1–3 V. Li-ion batteries
with a cell voltage of 2.5–4.4 V have become the primary battery technology for portable devices like
laptops, mobile phones, and wearables. Laptops use two or three battery cells in series to supply
input voltages of 7.4 or 11 V. Smartphones are covered as the introductory example in Section 1.2.
The growing field of wearables includes applications like smartwatches, fitness trackers, smart
headphones, glasses, medical monitoring devices, and implants. The power consumption of wear-
ables is typically a few hundred milliwatts, an order of magnitude lower than a smartphone. It
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(a) (b)

2.7 mm

Figure 1.9 Miniaturized DC–DC converters for wearables: a) a fully integrated PMIC with on-chip
integrated passives. Source: Peter Renz et al. [2]/from IEEE; b) A DC–DC converter in a 1.6 mm × 0.9 mm,
8-ball wafer-level chip-scale package (WCSP) with discrete passives (TPS627431, Texas Instruments). Both
photographs are depicted to scale. The size of the objects in the photographs is represented in relation to
one another.

benefits from a smaller display with fewer pixels and a scaled-down CPU that runs at a lower fre-
quency.

PMICs for portable devices must provide high power conversion efficiency to ensure long battery
times. As the primary requirement, the PMIC designs need to be ultracompact and lightweight
in addition to providing high power conversion efficiency. These advantages are achieved by
fast-switching DC–DC converters with miniaturized passive components (see Section 1.8.3 and
more details on integrated passives in Chapter 4).

Figure 1.9 shows two PMIC examples for wearables. Figure 1.9a) is a hybrid DC–DC converter
with fully integrated passives [2]. The output buffer capacitor has a capacitance of 10 nF (lower
right corner of the die photo), and the inductor is a square spiral coil of 9 nH (upper right, see
Fig. 4.10 for an enlarged picture). Due to these small values, the converter operates at switching
frequencies of up to 47.5 MHz. The power management circuits support low quiescent currents
during sleep modes (power levels <25 mW) to achieve high efficiency and long battery times. The
DC–DC converter in Fig. 1.9b) fits in a wafer-level chip-scale package (WCSP). The device is opti-
mized to operate with a 2.2 μH inductor and 10 μF output capacitor, operating at 1.2 MHz. It offers
ultralow quiescent current of typically 360 nA. Despite the compact design, the DC–DC converters
in Fig. 1.9 reach peak efficiencies of more than 85% and 95%, respectively.

Example 1.1 We want to estimate the battery time of a smartwatch supplied by a Li-ion battery
of 270 mAh. The battery voltage of Vbat = 3.6 V is converted to Vout = 1.8 V to supply the internal
electronics at an output power of Pout = 100 mW. We distinguish two types of voltage conversion:
a) an LDO (linear regulator) with an efficiency of 50%; b) a hybrid converter with an efficiency
of 85%.

With an efficiency of less than 100%, the input power Pin will be higher than Pout. Pin determines the
current drawn out to the battery. From Eqn. (1.1), we obtain for case a)

Pin =
Pout

𝜂
= 100 mW

0.5
= 200 mW, (1.7)

Iin =
Pin

Vin
= 200 mW

3.6 V
= 56 mA. (1.8)


