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Preface

We are delighted to introduce this conference publication, highlighting the research
papers presented at the “The First International Conference on Green Science”. The
primary objectives of the conference encompass a multifaceted approach towards pro-
moting sustainable development, inspired by Egypt’s pivotal role as the host for the
prestigious UN conference, COP27. Through the integration of basic scientific princi-
ples with sustainability goals, the conference endeavors to foster a deeper understanding
of environmental challenges and somepotential scientificmaneuvering to overcome. The
conference paves theway for interdisciplinary scientific collaboration between academia
research institutions and civil society to bridge knowledge gaps. Moreover, the confer-
ence seeks to strengthen the nexus between scientific research and industries, fostering
partnerships to face environmental concerns. This has ultimately encouraged researchers
to disseminate their findings at scientific forums as pivotal in fostering dialogue and col-
lective action toward mitigating environmental issues. With a broad scope covering
different topics of basic sciences including environmental sciences, chemistry, physics,
microbiology and plants, biotechnology, marine sciences, geology, mathematics, and
computer sciences, the conference serves as a platform to explore and exchange diverse
scientific research aiming at sustainable development goals.

The initial section showcased in this book delves into the realms of “Mathematics
and Computer Science”. In the realm of mathematical modeling, the integration of
innovative methods such as the Shifted Chebyshev Polynomials with Residual Power
Series stands out as a promising approach for tacklingdiverse problemsets.Concurrently,
in the domain of information systems, the application of Neighborhood Morphological
Operators paired with precise Accuracy Measures proves invaluable for enhancing sys-
tem performance. Meanwhile, the Fractional Relaxation Oscillation Equations find a
series of approximate solution, offering a nuanced understanding of complex dynamics.
In the educational sphere, the advent of Deep Learning Methods enables the discern-
ment of intricate student behaviors, heralding advancements in pedagogical strategies.
In agricultural technology, the Optimization of Convolutional Neural Network Models
facilitates the efficient classification ofmulti-plant leaf diseases, bolstering cropmanage-
ment practices. Furthermore, the utilization of Virtual Machine technology for Adaptive
Service Level Agreement adaptation showcases dynamic resource allocation in real-
time scenarios. Lastly, in medical diagnostics, the employment of CNNmodels for lung
diseases detection demonstrates the potential for leveraging cutting-edge technology in
healthcare for early intervention and treatment. Many of the research papers introduced
valuable output with potential applicability to save effort, time, and cost as one step
toward sustainable development.

The papers reported in “Part II: Environmental Science and Oceanography”
encompass a diverse range of environmental research topics. They delve into vari-
ous aspects of environmental management and sustainability. One paper explores air
pollutant loads linked to petroleum production, highlighting its relevance in assessing
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operational efficiency. Another introduces an innovative regressionmodel utilizing envi-
ronmental compliance data to predict risk scores for industrial facilities. Optimization of
environmental inspection operations through data-driven risk classification is explored
in a case study, emphasizing efficiency improvements. Additionally, there is research on
nano-composites for heavy metal sorption from industrial wastewater, and the hydro-
graphic changes in the Red Sea over decades are also included. Furthermore, the role
of environmental engineering and sustainable agriculture in development is discussed,
bridging reality and aspiration. Studies also assess the spatial distribution and pollution
levels of physicochemical properties and heavymetals in water and sediments of specific
drainage systems in the Nile Delta, Egypt. Section two ends by the assessment of carbon
footprints that serves as a proactive response to climate change concerns, emphasizing
the importance of environmental consciousness in modern-day practices.

Part III focuses on research efforts in diverse fields of biotechnology and plant
biology. “Microbiology and Biotechnology are highlighted in a collection of papers
addressing various environmental and medical concerns. The exploration of lipase-
producing bacteria from oil-contaminated sites in Port-Said, Egypt, underscores the
significance of bioprospecting for solutions to environmental challenges.Meanwhile, the
study on auxin and cytokinin-mediated regeneration techniques in Paulownia tomentosa
propagules sheds light on innovative methods for plant propagation and regeneration.
Another paper delves into the synthesis of zinc oxide and copper oxide nanoparticles
mediated by Sesuvium sesuvioides, revealing potential applications in cytotoxicity and
apoptosis studies. Additionally, the role of Staphylococcus aureus biofilm formation in
wound environments is examined, providing insights into antimicrobial resistancemech-
anisms crucial for medical advancements. These studies collectively demonstrate the
multifaceted approaches researchers employ to address pressing issues in environmental
sustainability and human health.

In addition a diverse range of scientific studies focusing on various aspects of research
encountered in “Part IV: Physical Chemistry and Physics”. The establishment of
diagnostic reference levels for patients with renal colic using non-contrast computed
tomography is explored in a pilot study, indicating advancements in medical imaging
techniques. Additionally, thermodynamic, kinetics, and adsorption mechanism studies
investigate the behavior of methyl orange on surfactant-modified activated carbon, shed-
ding light on potential applications in wastewater treatment. Furthermore, research on
Solenostemma Argel as a sustainable and eco-friendly corrosion inhibitor for aluminum
in acidic environments underscores the importance of natural alternatives in mitigating
industrial corrosion, aligning with efforts toward environmental sustainability and green
chemistry initiatives.

The summarized research papers endeavors in “Part V: Biochemistry” cover a
wide array of scientific investigations spanning diverse fields. The studies focused on
the biosynthesis and cytotoxicity of curcumin loaded on CuO NPs against hepatocel-
lular and colorectal carcinoma, emphasizing potential therapeutic applications. Addi-
tionally, green synthesis methods are employed to characterize zinc oxide and copper
oxide nanoparticles conjugated with curcumin, reflecting their antioxidant and anti-
tumor properties both in vitro and in vivo. Further research explores the anti-cancer
activities of basil loaded with ZnONPs against hepatocellular and colorectal carcinoma.
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Genetic associationswithmale infertility risk in theEgyptian population are investigated,
highlighting the involvement of specific gene polymorphisms.

Moreover, in vivo investigations focus on the hypocholesterolemic effects of syn-
thetic cholesterol congeners and predictive biomarkers for COVID-19 severity, includ-
ing neutrophil/lymphocyte and lactate dehydrogenase/lymphocyte ratios. Furthermore,
the ameliorative effects of oleoylchalcones on oxidative damage and hypertrophy in the
liver and cardiac tissues induced by a high-fat diet are examined, demonstrating potential
therapeutic interventions. Lastly, prospective assessment of urinary biomarkers for diag-
nosing recurrence and progression in patients with non-muscle-invasive bladder cancer,
along with the effect of heavy metals on bladder cancer and its relation to the Toll-like
receptor signaling pathway, offer insights into diagnostic and therapeutic strategies for
this malignancy.

We gratefully acknowledge the continuous help and support of the editor of the
“Earth and Environmental Sciences Library book series”, Prof. AbdelazimM. Negm for
his invaluable contributions, including the precise review of articles of the conference
proceedings and unwavering support throughout the entire lifecycle of the conference
proceeding publication. Thanks are also extended to include Springer’s team, starting
from the evaluation of the proposal till the end of the publication processes.

Farid El-Dossoki
Mohamed Hassan

Amer Shehata



Contents

Mathematics and Computer Science

Shifted Chebyshev Polynomials with Residual Power Series Method
for Solving Various Types of Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Saad Z. Rida, Anas A. M. Arafa, Hussein S. Hussein,
Ismail Gad Ameen, and Marwa M. M. Mostafa

Neighborhood Morphological Operators and Accuracy Measures
for Information Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

A. I. Maghrabi, E. M. El-Naqeeb, and Hewayda ElGhawalby

A Series Approximate Solution to the Fractional Relaxation
Oscillation Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Anas A. M. Arafa, Yousef H. Zahran, Samy Ahmed Abdelhafeez,
Ibrahim SH I. Osman, and Moutaz Ramadan

Determining Student Behaviour Using Deep Learning Methods . . . . . . . . . . . . . . 51
Ahmed Mohamed Shitaya, Mohamed El Syed Wahed, A. A. Salama,
Saied Helemy Abd El khalek, and Amr Ismail

Classification of Multi Plant Leaf Diseases Based on Optimization
of the Convolutional Neural Network Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Amr Ismail, Walid Hamdy, Ali H. Ibrahim, and Wael A. Awad

Using Virtual Machine in Changing Resources During Runtime
for Adaptive Service Level Agreement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Doaa Mohammed EL-Matary, Noha Ezzat Al-Attar,
Wael Abd-Elkader Awad, and Ibrahim Mohammed Hanafy

Utilized CNN Model for Lung Diseases Detection . . . . . . . . . . . . . . . . . . . . . . . . . 94
Amr Ismail, Ismail Elansary, and Wael A. Awad

Environmental Science and Oceanography

Air Pollutant Loads Accompanying Petroleum Production Activities
as an Indicator of Operating Efficiency at Khalda Petroleum Company . . . . . . . . 109

Mohamed K. El-Sheikh, Ahmed E. Rakha, and Mokhtar S. Beheary



x Contents

Developing an Innovative Regression Model to Predict Industrial
Facilities’ Risk Scores by Leveraging Environmental Compliance
Assessments Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

Ahmed El-Said Rady, Ashraf A. Zahran, Mokhtar S. Beheary,
and Mossad El-Metwally

Optimizing Environmental Inspection Operations on Industrial Facilities
Through Data-Driven Risk Classification: A Case Study . . . . . . . . . . . . . . . . . . . . 138

Ahmed El-Said Rady, Mossad El-Metwally, Mokhtar S. Beheary,
and Ashraf A. Zahran

Polysaccharides Encapsulate Metal Oxides/Sulphides Based
Nano-composites Beads for Cd(II) Sorption from Industrial Wastewater . . . . . . . 147

Eman Sanad, Khalid Z. Elwakeel, Mokhtar S. Beheary,
and Ahmed Abdelaal

Decadal Changes of Hydrographic Structure and Water Masses of the Red
Sea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

Esraa M. Arafat, Mohamed A. Said, Ahmed El-Gindy,
Fedekar F. Madkour, and Marwa M. Osman

The Role of Environmental Engineering and Sustainable Agriculture
in Development - Between Reality and Aspiration . . . . . . . . . . . . . . . . . . . . . . . . . . 189

Raed Hassan Muhammad Bani Issa, Lamis Raed Bany Issa,
and Momen Hashem Ahmed Al-Azzam

Spatial Distribution and Assessment of Physicochemical Properties
and Heavy Metals Pollution in Water and Sediments of Two Drains, Nile
Delta, Egypt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

Mahy M. Ameen, Dina H. Darwish, Mamdouh S. Serag,
Abeer M. Salama, and Mokhtar S. Beheary

Assessment of Carbon Footprints as a Response to Climatic Changes . . . . . . . . . 245
Omnya A. El-Batrawy, Asmaa M. Abd-El-Shafy, Doaa A. El-Emam,
and Ibrahim A. Hassan

Microbiology and Biotechnology

Bioprospecting of Lipase Producing Bacteria Isolated Form Oil
Contaminated Sites of Port Said, Egypt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

Heba K. Issa, Mohamed I. Abou Dobara, Ahmed K. A. El-Sayed,
and Magdy I. El-Bana



Contents xi

Auxin and Cytokinin-Mediated Regeneration of Whole Paulownia
tomentosa Propagules via Axillary Shoot Multiplication and Root
Organogenesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292

Israa A. Khalifa, Ali H. Ibrahim, Mona M. El-Bous, and Esam A. Hussein

Sesuvium sesuvioides (Fenzl) Mediated Synthesis of Zinc Oxide
and Copper Oxide Nanoparticles and Their Potential Cytotoxic
and Apoptotic Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309

Yara I. Abd El Ghany, Mohamed M. Tawfik, Mona El Bous,
Islam Gomaa, Amal M. Youssef Moustafa, and Nasser Mohammed Hosny

Biofilm Formation by Staphylococcus aureus in Wounds and Their Role
in Antimicrobial Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331

M. Bahgat and Nesma Ahmed Youghly

Physical Chemistry and Physics

Establishment of Diagnostic Reference Levels in Patients with Renal
Colic Using Non-contrast Computed Tomography: A Pilot Study . . . . . . . . . . . . . 347

Hoda Abdelraouf, A. Mokhtar, W. M. Moslem, T. El-Diasty,
and Mossad El-Metwally

Thermodynamic, Kinetics, and Adsorption Mechanism Studies of Methyl
Orange by Surfactant-Modified Activated Carbon . . . . . . . . . . . . . . . . . . . . . . . . . . 364

Farid I. El-Dossoki, Osama K. Hamza, and Esam A. Gomaa

Solenostemma Argel as Sustainable and Natural Eco-friendly Corrosion
Inhibitor for Al in Acidic Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383

Farid I. El-Dossoki, Fatma M. Abed El-Aziz, and Abd El-Aziz S. Fouda

Biochemistry

Biosynthesis and Cytotoxicity of Curcumin Loaded on CuO NPs Against
Hepatocellular (HEPG-2) and Colorectal (HCT-116) Carcinoma . . . . . . . . . . . . . 405

Farid I. El Dossoki, Sarah Rady, Lamiaa A. A. Barakat,
and Nasser M. Hosny

Effect of ZnO, CuO and Curcumin Nanocomposite on Liver and Kidney
Functions in Hepatocellular Carcinoma (HCC) Rats . . . . . . . . . . . . . . . . . . . . . . . . 416

Lamiaa A. A. Barakat, Sarah Rady, Farid I. El Dossoki,
and Nasser M. Hosny



xii Contents

Green Synthesis of Basil Loaded with ZnO NPs and Assessing It’s
Anti-Cancer Activities on Hepatocellular (HEPG-2) and Colorectal
(HCT-116) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433

Lamiaa A. A. Barakat, Sarah Rady, Farid I. El Dossoki,
and Nasser M. Hosny

Association of TNF-α-308, IL-1b and Glutathione-S-1 Transferases GSTS
(M1/T1) Genes Polymorphism with Male Infertility Risk in Egyptian
Population . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445

Afaf M. Elsaid, Atef Elsayed Ramzy, Youssef El-Bayoumi,
and Lamiaa A. Barakat

In vivo Hypocholesterolemic Investigation of Synthetic Cholesterol
Congeners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465

Doaa A. A. N. M. Aldanjawi, Mohamed K. Hassan,
Eslam S. Elsherbiny, and Mohamed R. E. Aly

Neutrophil/Lymphocyte and Lactate Dehydrogenase/Lymphocyte Ratios
as Predictors of COVID-19 Severity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485

Mohammed El Behery, A. F. Abdel-Aziz, Elsherbiny H. Elsayed,
Doaa M. El-Diasty, and Sara I. Taha

Ameliorative Effects of Oleoyl Chalcones on Liver and Cardiac Tissues
Oxidative Damage and Hypertrophy Induced by High Fat Diet in Rats . . . . . . . . 497

Mohamed R. E. Aly, Azza A. M. Al Khathamy, Hossam H. Saad,
Fared A. Fared, Eman S. El-Shafey, Mamdouh R. El Nahas,
and Eslam S. Elsherbiny

Prospective Assessment of Multiple Urinary Biomarkers to Diagnose
Recurrence and Progression in Patients with Non-muscle-Invasive Bladder
Cancer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509

Lamiaa A. A. Barakat, Mohamed G. A. El-Gazzar, Amira Awadalla,
Ahmed El-Assmy, Ahmed M. Harraz, Asmaa E. Ahmed,
Mohamed S. El-Ghreb, and Hassan Abol-Enein

Effect of Heavy Metals on Non-muscle Invasive Bladder Cancer and Its
Relation to TLR Signaling Pathway . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524

Amira Awadalla, Mohamed G. A. El-Gazzar, Asmaa E. Ahmed,
Ahmed El-Assmy, Ahmed M. Harraz, Mohamed S. El-Ghreb,
Hassan Abol-Enein, and Lamiaa A. A. Barakat

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 533



Mathematics and Computer Science



Shifted Chebyshev Polynomials
with Residual Power Series Method
for Solving Various Types of Models

Saad Z. Rida1, Anas A. M. Arafa2,3, Hussein S. Hussein1, Ismail Gad Ameen1,
and Marwa M. M. Mostafa1(B)

1 Department of Mathematics, Faculty of Science, South Valley University, Qena
83523, Egypt

{hshafei,marwa.masoud}@sci.svu.edu.eg, ismailgad@svu.edu.eg
2 Department of Mathematics, College of Science, Qassim University, Buraydah,

Saudi Arabia
a.arafa@qu.edu.sa

3 Department of Mathematics and Computer Science, Faculty of Science, Port Said
University, Port Said, Egypt
anas arafa@sci.psu.edu.eg

Abstract. Recently, Chebyshev’s polynomials have attracted much
attention in finding solutions for fractional order differential equations
(FODEs).

In this research study, we represent shifted second-kind Chebyshev
orthonormal polynomials (SSKCOP) with residual power series (RPS)
technique to solve various types of models such as diffusion model, Back-
ward Kolmogorov model, homogeneous and nonhomogeneous advection
models taking into account with time fractional derivative in Caputo
manner. By utilization of SSKCOP and their orthogonality properties,
these models will be reduce into system of FODEs which can be solved
by using RPS technique. The numerical simulations and outcomes are
presented through various graphs and tables demonstrating that present
method is accurate and powerful to obtain approximate solutions of non-
linear models that arise in engineering and physics.

Keywords: Collocation Method · Residual Power Series Technique ·
Fractional Derivative · Fractional Diffusion Model · Backward
Kolmogorov Model · Advection Partial Differential Equation

1 Introduction

Liouville, Riemann, Grunwald, Leibniz, Letnikov and others developed the frac-
tional calculus theory (FC) [1–5]. The FC is one of the branches of mathematical
analysis which interested with studying non integer order of integrals and deriva-
tives. In last few decades, it has played a significant role in different applications,
for instance fluid mechanics, entropy, physics, economic, engineering and biolog-
ical applications [6–9]. As a result, all modeling of problems in life depend on
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
F. El-Dossoki et al. (Eds.): ICGS 2023, EESL, pp. 3–20, 2024.
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the current and previous time that can be done by FC (for details, see [10–13]).
Fractional partial differential equations (FPDEs) have become a powerful instru-
ment to model scientific phenomena (more details, see [14–17]). The solutions
of FODEs have an important role to describe the characteristics of non-linear
models which appear in nature. Its complex to get an actual solutions for FODEs
to describe non-linear phenomena, therefore there exist many various analytical
and numerical techniques. Such techniques are: tanh method [18], variational
iteration method (VIM) [19], finite difference method [20], Homotopy analysis
method (HAM) [21–24], spectral collocation method [25], Adomian decomposi-
tion method(ADM) [26,27], diferential quadrature method [28] and RPS tech-
nique [29–32].

In recent years, orthonormal Chebyshev polynomials have a huge significance
in numerical analysis, from the points of view both of theoretical and practical.
These polynomials have been used widely for approximations due to their accu-
racy to solve many problems [33,34].

The target of this research study is to construct the approximate solution of
different types of problems by using second-kind shifted Chebyshev collocation
method with RPS technique.

The rest of the research is structured as follows: In Sect. 2, we review some
mathematical definitions and theorems of FC and fractional power series (FPS).
In Sect. 3, we give the basic features of SSKCOP. In Sect. 4, we provide our algo-
rithm to solve various types of problems such as diffusion problem, Backward
Kolmogorov equation, homogeneous and nonhomogeneous advection partial dif-
ferential equation by using the second-kind shifted Chebyshev collocation with
RPS technique. In Sect. 5, we represent numerical outcomes and simulations
which shown the accuracy and the high efficiency for present method. Section 6
contains concluding remarks.

2 Fundamental Concepts and Theories

This section includes the definitions of Riemann-Liouville (RL), Caputo’s frac-
tional derivative (CFD) [2,35] and FPS-related theorems [36,37].

Definition 1. RL fractional integral Iμ of order μ for a function V(t) ∈ Cκ,
κ � −1 is given by:

Iμ
V(t) =

⎧
⎨

⎩

1
Γ (μ)

∫ t

0

(t − s)μ−1
V(s)ds, t > 0, μ > 0,

V(t), μ = 0.
(1)

Definition 2. The CFD of order μ is defined as:

Dμ
V(t) = In−μDn

V(t) =
1

Γ (n − μ)

∫ t

0

(t − s)n−μ−1
V

(n)(s)ds, (2)
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t > 0, n − 1 < μ < n, n ∈ N, where Dn refers to n order classic differential
operator.

Definition 3. Caputo fractional partial derivative (CFPD) of order μ for a
function V(x, t) ∈ Cκ, κ � −1 is given as below:

D
μ
t V(x, t) =

⎧
⎨

⎩

1
Γ (n−μ)

∫ t

0

(t − s)n−μ−1 ∂n
V(x, s)
∂sn

ds, n − 1 < μ < n,

∂n
V(x,t)
∂tn , μ = n ∈ N.

(3)

Definition 4. A power series expansion of the formula

∞∑

n=0

An(t − t0)nμ = A0 + A1(t − t0)μ + A2(t − t0)2μ + ...,

where 0 ≤ n − 1 < μ ≤ n, n ∈ N and t ≥ t0 is called FPS about t0.

Theorem 1. Assume that Y has FPS representation at t = t0 of the form

Y (t) =
∞∑

n=0

An(t − t0)nμ = A0 + A1(t − t0)μ + A2(t − t0)2μ + ...,

where 0 ≤ n − 1 < μ ≤ n, n ∈ N and t0 ≤ t ≤ t0 + R, where R is a radius
of convergence for multiple FPS. If Dnμ Y (t) are continuous on (t0, t0 + R),
n = 0, 1, 2, ..., then

An =
DnμY (t0)
Γ (nμ + 1)

, nμ > −1.

Definition 5. A power series expansion is defined as:

∞∑

n=0

Yn (t − t0)nμ = Y0 + Y1 (t − t0)μ + Y2 (t − t0)2μ + ...,

is called multiple FPS about t = t0.

Theorem 2. Assume that V(x, t) has a multiple FPS representation at t0 is
given by:

V(x, t) =
∞∑

n=0

Yn(x)(t − t0)nμ,

where x ∈ I, 0 ≤ n − 1 < μ ≤ n, n ∈ N and t0 ≤ t ≤ t0 + R.
If Dnμ

t V(x, t)) are continuous on I × (t0, t0+R), n = 0, 1, 2, ..., then coefcients
is given by:

Yn(x) =
D

nμ
t V(x, t0)
Γ (nμ + 1)

.
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3 Second-Kind Chebyshev Orthonormal Polynomials
(SKCOP)

The SKCOP U̧n(x) of degree n are defined on [−1, 1] as [38]:

U̧n(x) =
sin(n + 1)α

sin(α)
,

where x = cos(α), α ∈ [0, π]. The orthogonal property of U̧n(x) on [−1, 1] is
given below:

<U̧n(x), U̧m(x)> =
∫ 1

−1

w(x)U̧n(x)U̧m(x)dx =

{
0 if n �= m,
π
2 if n = m,

with respect to weight function w(x) =
√

1 − x2.
The polynomials U̧n(x) may be created by utilizing recurrence relation as:

U̧n(x) = 2xU̧n−1(x) − U̧n−2(x), n = 2, 3, 4, ...,

where
U̧0(x) = 1, U̧1(x) = 2x.

The SSKCOP on the interval x ∈ [0, 1] are given as:

U̧∗
n(x) = U̧n(2x − 1).

The orthogonality relation of SSKCOP according to weight function w∗(x) =√
x − x2 is:

<U̧∗
n(x), U̧∗

m(x)> =
∫ 1

0

w∗(x) U̧∗
n(x)U̧∗

m(x)dx =

{
0 if n �= m,
π
8 if n = m.

The recurrence relation of SSKCOP:

U̧∗
n(x) = 2(2x − 1)U̧∗

n−1(x) − U̧∗
n−2(x), n = 2, 3, 4, ...,

where
U̧∗

0(x) = 1, U̧∗
1(x) = 4x − 2.

Analytical formula of SSKCOP U̧∗
n(x) of degree n is expressed as:

U̧∗
n(x) =

n∑

i=0

(−1)i 22n−2iΓ (2n − i + 2)
Γ (2n − 2i + 1)Γ (i + 1)

xn−i, n > 0. (4)

Let V(x, t) the expansion series of SSKCOP as:

V(x, t) =
∞∑

i=0

Ai(t)U̧∗
i (x), (5)



Shifted Chebyshev Polynomials with Residual Power Series Method 7

where the coefficients Ai(t) are given by:

Ai(t) =
8
π

∫ 1

0

√
x − x2 V(x, t)U̧∗

i (x)dx, i = 0, 1, 2, .... (6)

In practice, we truncate the infinite series up to (m + 1) terms of SSKCOP as
follows:

Vm(x, t) =
m∑

i=0

Ai(t)U̧∗
i (x). (7)

Theorem 3. The μth fractional-order derivative of the function approximation
V(x, t) which is defined in Eq. (7) is calculated as

D
μ
xVm(x, t) =

m∑

i=�μ�

i−�μ�∑

k=0

Ai(t) Υ
(μ)
i,k xi−k−μ, (8)

where �μ� the smallest integer number greater than or equal to μ and Υ
(μ)
i,k is

defined as:

Υ
(μ)
i,k = (−1)k 22i−2kΓ (2i − k + 2) Γ (i − k + 1)

Γ (k + 1)Γ (2i − 2k + 2)Γ (i − k − μ + 1)
, ∀ i = �μ�, �μ� + 1, ..., m.

4 Technique of Proposed Method

Here, we need to construct an analytic solution for diffusion model, Backward
Kolmogorov model and advection partial differential equation.

4.1 Fractional Diffusion Model

D
μ
t V(x, t) = g(x) D

2
xV(x, t) + H(x, t), 0 < μ ≤ 1, (x, t) ∈ [0, 1] × [0, 1], (9)

with initial conditions (ICs)

V(x, 0) = λ(x), (10)

and boundary conditions (BCs)
{
V(0, t) = Ψ1(t),
V(1, t) = Ψ2(t),

(11)

where g(x) and H(x, t) are called diffusion coefficient and source function, respec-
tively.
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� By substituting from Eqs. (7) and (8) into Eq. (9), we get

m∑

i=0

D
μ
t Ai(t)U̧∗

i (x) = g(x)
m∑

i=�2�

i−�2�∑

k=0

Ai(t) Υ
(2)
i,k xi−k−2 + H(x, t). (12)

� We collocate Eq. (12) at the roots xp, p = 0, 1, 2, ...,m − �μ� are collocation
points of SSKCOP U̧∗

m+1−�μ�(x), we obtain a system of FODEs as:

m∑

i=0

D
μ
t Ai(t)U̧∗

i (xp) = g(xp)
m∑

i=�2�

i−�2�∑

k=0

Ai(t) Υ
(2)
i,k xi−k−2

p + H(xp, t). (13)

� Appling Eq. (7) into the ICs and BCs in Eqs. (10) and (11) leads a system of
algebraic equations:

m∑

i=0

Ai(0)U̧∗
i (xp) = λ(xp), xp, p = 0, 1, 2, ...,m − �μ�, m − 1 < μ ≤ m, (14)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

m∑

i=0

Ai(t)U̧∗
i (0) = Ψ1(t),

m∑

i=0

Ai(t)U̧∗
i (1) = Ψ2(t).

(15)

Hence, we get (m + 1) system of algebraic equations and FODEs in Ai(t), ∀ i =
0, 1, 2, ...,m. These system of FODEs solved by using RPS technique.

4.2 Backward Kolmogorov Model

D
α
t V(x, t) = −B1(x, t) DxV(x, t) + B2(x, t) D

2
xV(x, t), 0 < μ ≤ 1, (x, t) ∈ [0, 1] × R,

(16)
with ICs

V(x, 0) = F (x), (17)

and BCs {
V(0, t) = Φ1(t),
V(1, t) = Φ2(t),

(18)

where B1(x, t) is diffusion coefficients and B2(x, t) is drift coefficients.

� By substituting from Eqs. (7) and (8) into Eq. (16), we obtain

m∑

i=0

D
μ
t Ai(t)U̧∗

i (x) = −B1(x, t)
m∑

i=�1�

i−�1�∑

k=0

Ai(t) Υ
(1)
i,k xi−k−1

+B2(x, t)
m∑

i=�2�

i−�2�∑

k=0

Ai(t) Υ
(2)
i,k xi−k−2. (19)



Shifted Chebyshev Polynomials with Residual Power Series Method 9

� By collocating Eq. (19) at the roots xp, p = 0, 1, 2, ...,m − �μ� are collocation
points of SSKCOP U̧∗

m+1−�μ�(x), we get system of FODEs as:

m∑

i=0

D
μ
t Ai(t)U̧∗

i (xp) = −B1(xp, t)
m∑

i=�1�

i−�1�∑

k=0

Ai(t) Υ
(1)
i,k xi−k−1

p

+B2(xp, t)
m∑

i=�2�

i−�2�∑

k=0

Ai(t) Υ
(2)
i,k xi−k−2

p . (20)

� By appling Eq. (7) into the ICs and BCs in Eqs. (17) and (18) leads a system
of algebraic equations:

m∑

i=0

Ai(0)U̧∗
i (xp) = F (xp), xp, p = 0, 1, 2, ...,m−�μ�, m− 1 < μ ≤ m, (21)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

m∑

i=0

Ai(t)U̧∗
i (0) = Φ1(t),

m∑

i=0

Ai(t)U̧∗
i (1) = Φ2(t).

(22)

Therefore, we obtain (m+1) system of algebraic equations and FODEs in Ai(t),
∀ i = 0, 1, 2, ...,m. These system of FODEs solved by using RPS technique.

4.3 Advection Partial Differential Equations (PDEs)

D
α
t V(x, t) = f

(

V(x, t),DxV(x, t)
)

+K(x, t), 0 < μ ≤ 1, (x, t) ∈ [0, 1]×R, (23)

with ICs
V(x, 0) = Z(x), (24)

and BCs {
V(0, t) = Θ1(t),
V(1, t) = Θ2(t),

(25)

where f is a nonlinear function and K(x, t) is the source function.

• By substituting from Eqs. (7) and (8) into Eq. (23), we get
m∑

i=0

D
μ
t Ai(t)U̧∗

i (x) = f

(

Vm(x, t),DxVm(x, t)
)

+ K(x, t). (26)

• Now, we collocate Eq. (26) at the roots xp, p = 0, 1, 2, ...,m−�μ� are collocation
points of SSKCOP U̧∗

m+1−�μ�(x), we obtain a system of FODEs as:

m∑

i=0

D
μ
t Ai(t)U̧∗

i (xp) = f

(

Vm(xp, t),DxVm(x, t)|x = xp

)

+ K(xp, t). (27)
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Table 1. Absolute errors at m = 2 and t = 1 at various values of μ for Problem 1.

x μ = 1 μ = 0.9 μ = 0.7

A B C A B C A C B

0 0 0 0 0 0 0 0 0 0

0.1 1.61516e−05 2.69e−03 5.16e−04 5.09416e−05 6.53e−03 9.89e−04 4.45161e−04 3.52e−02 3.43e−03

0.2 1.09251e−09 4.78e−03 2.06e−03 1.57668e−08 1.16e−02 3.96e−03 2.40266e−06 6.25e−02 1.37e−02

0.3 4.52416e−15 6.27e−03 4.65e−03 3.85025e−13 1.52e−02 8.90e−03 1.67122e−09 8.20e−02 3.09e−02

0.4 0 7.16e−03 8.26e−03 0 1.74e−02 1.58e−03 3.24851e−13 9.38e−02 5.49e−02

0.5 0 7.46e−03 1.29e−02 0 1.81−02 2.47e−02 0 9.77e−02 8.58e−02

0.6 1.11022e−16 7.16e−03 1.86e−02 2.22045e−16 1.74e−02 3.56e−02 0 9.38e−02 1.24e−01

0.7 2.22045e−16 6.27e−03 2.53e−02 0 1.52e−02 4.85e−02 2.22045e−16 8.20e−02 1.68e−01

0.8 0 4.78e−03 3.30e−02 0 1.16e−02 6.33e−02 0 6.25e−02 2.20e−01

0.9 0 2.69e−03 4.18e−02 4.44089e−16 6.53e−03 8.01e−02 4.44089e−16 3.52e−02 2.78e−01

1 0 0 5.16e−02 0 0 9.89e−02 0 0 3.43e−01
A present method
B Chebyshev collocation method and RPSM
C HAM

• By appling Eq. (7) into the ICs and BCs in Eqs. (24) and (25) leads a system
of algebraic equations:

m∑

i=0

Ai(0)U̧∗
i (xp) = Z(xp), xp, p = 0, 1, 2, ...,m−�μ�, m− 1 < μ ≤ m, (28)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

m∑

i=0

Ai(t)U̧∗
i (0) = Θ1(t),

m∑

i=0

Ai(t)U̧∗
i (1) = Θ2(t).

(29)

Then, we get (m + 1) system of algebraic equations and FODEs in Ai(t),
∀ i = 0, 1, 2, ...,m. These system of FODEs solved by using RPS technique.

5 Numerical Simulation and Discussions

Problem 1. Consider the time-fractional diffusion problem [39]:

D
μ
t V(x, t) =

x2

2
D

2
xV(x, t), 0 < μ ≤ 1, 0 ≤ x, t ≤ 1, (30)

with ICs
V(x, 0) = x2, (31)

and BCs {
V(0, t) = 0,

V(1, t) = Eμ(tμ),
(32)
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Fig. 1. Exact and approximate solution figures at μ = 1 for Problem 1.
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Fig. 2. The different fractional order graph of approximate solution for Problem 1.

which has an exact solution at μ = 1 is V(x, t) = x2Eμ(tμ), where Eμ(tμ) the
Mittag-Leffler function.

In Table 1, we have been compared the outcomes obtained by present
method with Chebyshev collocation method with RPSM and HAM [39]. Figure 1
expressed the comparison of an actual and computational results of present
method for Problem 1. Figure 2 displays the three dimensions graphs for approx-
imate solution of the present method when μ = {1, 0.8, 0.6, 0.4} for Problem1.

Problem 2. Consider the Backward Kolmogorov equation [40,41]:

D
μ
t V(x, t) = (x + 1) DxV(x, t) + x2 et

D
2
xV(x, t), 0 < μ ≤ 1, (x, t) ∈ [0, 1] × R,

(33)
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with ICs
V(x, 0) = x + 1, (34)

and BCs {
V(0, t) = et,

V(1, t) = 2et,
(35)

which has an exact solution at μ = 1 is V(x, t) = (x + 1) et.
In Tables 2 and 3, we have been compared the outcomes obtained by the

present method with Q-HATM [40] and new iterative method (NIM) [41]. In
Table 4, we have been presented the approximate solution at different value of
μ. Figure 3 expressed the comparison of an actual and computational results
of present method for Problem2. Figure 4 shows the three dimensions graphs
for approximate solution of the present method when μ = {1, 0.8, 0.6, 0.4} for
Problem 2.

Problem 3. Consider the nonlinear time-fractional advection PDE [44]

D
μ
t V(x, t) + V(x, t) DxV(x, t) = x + xt2, t > 0, 0 ≤ x ≤ 1, 0 < μ ≤ 1, (36)

with ICs
V(x, 0) = 0, (37)

Table 2. Numerical outcomes at various t and x for μ = 1 for Problem 2.

t x Exact Approximate solutions Absolute error

present method Q-HATM present method Q-HATM

0.1 0 1.105171 1.105171 1.105166 0 4.251e−6

0.1 0.2 1.326205 1.326205 1.326200 3.99680e−15 5.102e−6

0.1 0.4 1.547239 1.547239 1.547233 8.88178e−16 5.952e−6

0.1 0.6 1.768273 1.768273 1.547239 8.88178e−16 6.802e−6

0.1 0.8 1.989308 1.989308 1.989300 6.66134e−16 7.652e−6

0.1 1 2.210342 2.210342 2.210333 4.44089e−16 8.503e−6

0.2 0 1.221403 1.221400 1.221333 2.22045e−16 6.9425e−5

0.2 0.2 1.465683 1.465683 1.465600 1.84275e−12 8.3310e−5

0.2 0.4 1.709964 1.709964 1.709866 4.44089e−16 9.7194e−5

0.2 0.6 1.954244 1.954244 1.954133 4.44089e−16 1.11080e−4

0.2 0.8 2.198525 2.198525 2.198400 0 1.24964e−4

0.2 1 2.442806 2.442806 2.442666 4.44089e−16 1.38849e−4
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Table 3. Numerical outcomes at x = 0.1 for μ = 1 for Problem 2.

t Exact Approximate solutions Absolute error

present method NIM present method NIM

0.2 1.343543 1.343543 1.343466 2.08722e−14 7e−5

0.3 1.484845 1.484845 1.484450 1.20459e−12 3e−4

0.4 1.641007 1.641007 1.639733 2.15881e−11 1e−3

0.5 1.813593 1.813593 1.810416 2.02952e−10 3e−3

0.6 2.004331 2.004331 1.997600 1.26860e−09 6e−3

0.7 2.215128 2.215128 2.202383 5.98331e−09 1e−2

0.8 2.448095 2.448095 2.425866 2.29638e−08 2e−2

0.9 2.705563 2.705563 2.669150 7.52985e−08 3e−2

Table 4. Numerical solutions at x = 0.1 for μ = 0.99 and μ = 0.85 for Problem 2.

t μ = 0.99 μ = 0.85

present method NIM present method NIM

0.2 1.347334 1.349248 1.411917 1.447511

0.3 1.490063 1.492376 1.577614 1.492376

0.4 1.647637 1.649728 1.757935 1.649728

0.5 1.821670 1.822452 1.955363 1.822452

0.6 2.013924 2.011662 2.172205 2.011662

0.7 2.226332 2.218455 2.410817 2.218455

0.8 2.461028 2.4439194 2.673696 2.443919

0.9 2.720365 2.705563 2.963541 2.689133
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Fig. 3. Exact and approximate solution figures at μ = 1 for Problem 2.
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Table 5. Numerical outcomes of present method with other existing techniques for
Problem 3.

x t Exact present method VIM [42] ADM [42] HPM [43] VHPIM [43] PIA [44]

0.2 0.25 0.050000 0.050000 0.0503090 0.0500000 0.0499876 0.0499876 0.0500001

0.2 0.5 0.100000 0.100000 0.1006190 0.1000000 0.0999780 0.0999746 0.1000002

0.2 0.75 0.150000 0.150000 0.1509280 0.1500010 0.1499680 0.1499620 0.1500004

0.2 1 0.200000 0.200000 0.2012370 0.2000010 0.1999570 0.1999510 0.2000005

0.4 0.25 0.100000 0.100000 0.1018940 0.1000230 0.0995290 0.0996450 0.1000158

0.4 0.5 0.200000 0.200000 0.2037870 0.2000460 0.1990590 0.1992900 0.2000316

0.4 0.75 0.300000 0.300000 0.3056810 0.3000690 0.2985880 0.2989350 0.3000475

0.4 1 0.400000 0.400000 0.4075750 0.4000920 0.3981180 0.3985800 0.4000633

0.6 0.25 0.150000 0.150000 0.1530940 0.1504110 0.1471580 0.1456900 0.1502739

0.6 0.5 0.300000 0.300000 0.3061880 0.3008230 0.2943170 0.2913800 0.3005478

0.6 0.75 0.450000 0.450000 0.4592820 0.4512340 0.4414750 0.4370700 0.4508218

0.6 1 0.600000 0.600000 0.6123760 0.6016460 0.5886340 0.5827590 0.6010957

and the BCs {
V(0, t) = 0,

V(1, t) = t,
(38)

which has an exact solution at μ = 1 is V(x, t) = xt.
In Table 5, we have been compared the outcomes obtained by the present

method with VIM, ADM [42], variational homotopy perturbation iteration
method (VHPIM), HPM [43] and Perturbation Iteration Algorithm (PIA) [44].
Figure 5 expressed the comparison of an actual and computational results of
present method for Problem 3. Figure 6 represents the three dimensions graphs
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Fig. 6. The different fractional order graph of approximate solution for Problem 3.

for approximate solution of the present method when μ = {1, 0.8, 0.6, 0.4} for
Problem 3.

Problem 4. Consider the nonlinear time-fractional homogeneous advection
PDE [45]

D
μ
t V(x, t) + V(x, t) DxV(x, t) = 0, t > 0, 0 ≤ x ≤ 1, 0 < μ ≤ 1, (39)

with ICs
V(x, 0) = −x, (40)
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Table 6. Numerical solutions of present method with LWM at μ = 1 for Problem 4.

x t Exact solution Approximate solution Absolute error

present method LWM [45] present method LWM [45]

0.25 0.2 −0.312500 −0.312500 −0.312 2.56000e−09 7e−04

0.25 0.4 −0.416667 −0.416653 −0.415 1.39810e−05 1e−03

0.25 0.6 −0.625000 −0.622279 −0.607 2.72098e−03 1.8e−02

0.25 0.8 −1.250000 −1.078201 −0.987 1.71799e−01 2.63e−1

0.5 0.2 −0.625000 −0.625000 −0.624 3.41333e−09 1e−03

0.5 0.4 −0.833333 −0.833315 −0.831 1.86414e−05 2e−03

0.5 0.6 −1.250000 −1.246372 −1.215 3.62797e−03 3.5e−02

0.5 0.8 −2.500000 −2.270935 −1.975 2.29065e−01 5.25e−01

0.75 0.2 −0.937500 −0.937500 −0.937 2.56000e−09 2e−04

0.75 0.4 −1.250000 −1.249986 −1.247 1.39810e−05 3e−03

0.75 0.6 −1.875000 −1.872279 −1.822 2.72098e−03 5.3e−2

0.75 0.8 −3.750000 −3.578201 −2.963 1.71799e−01 7.87e−1
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Fig. 7. Exact and approximate solution figures at μ = 1 for Problem 4.

and the BCs ⎧
⎨

⎩

V(0, t) = 0,

V(1, t) =
1

t − 1
,

(41)

which has an exact solution at μ = 1 is V(x, t) =
x

t − 1
.

In Table 6, we have been compared the outcomes obtained by present
method with Legendre wavelets method (LWM) [45] with exact solution. Figure 7
expressed the comparison of an actual and computational results of present
method for Problem4. Figure 8 shows the three dimensions graphs for approxi-
mate solution of the present method when μ = {1, 0.8, 0.6, 0.4} for Problem4.
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Fig. 8. The different fractional order graph of approximate solution for Problem 4.

6 Concluding Remarks

In this article, we determined second-kind shifted Chebyshev collocation method
with RPS technique for solving different models such as fractional diffu-
sion model, Backward Kolmogorov model, homogeneous and nonhomogeneous
advection partial differential equation. By using shifted Chebyshev collocation
method, these models are turned to a system of FODEs. Hence, we obtain sys-
tem of algebraic equations with the help ICs and BCs. Resulting, we get system
contains FODEs and algebraic equations. This system solved by utilization RPS
technique. Tables and graphs illustrations the high accuracy and efficiency of the
present method. All numerical results introduced in this paper were obtained by
MATLAB software package.

7 Recommendation

According to the abovementioned numerical and results simulations, it is rec-
ommended to employ the present method for solving complex non-linear models
that appear in engineering and mathematical physics due to its accurate and
efficience.
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