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Preface 

This book offers proceedings of the in-person and online “Analysis and Applied 
Mathematics” seminars organized jointly by the Bahcesehir University (Istanbul, 
Türkiye), Ghent Analysis and PDE Center (Ghent University, Ghent, Belgium), and 
the Institute of Mathematics and Mathematical Modeling (Almaty, Kazakhstan). 
This book of extended abstracts is part of our series Research Perspectives Ghent 
Analysis and PDE Center, devoted to the publication of abstracts, in an extended 
form, of talks presented at the events associated with the Ghent Analysis and PDE 
Center. We hope that this volume will be of value to professional mathematicians 
as well as advanced students in the fields of analysis and applied mathematics, 
providing an overview of some research topics in the wide area of analysis and 
their relevance to applied mathematics. 

The goal of the joint seminar “Analysis and Applied Mathematics” is to provide 
a forum for researchers and scientists from different regions to communicate their 
recent developments and to present their original results in various fields of analysis 
and applied mathematics. The seminar originated in 2022, after the pandemic, 
mostly in the online format, to bring together mathematicians working in different 
institutions for discussions of joint topics of interest, fuelled by the work of the 
international community on these subjects. The website of the seminar can be found 
at https://sites.google.com/view/aam-seminars. 

Many of the lectures given at the seminar have been recorded and are available on 
the YouTube Channel of the Institute of Mathematics of the University of Georgia. 
This includes many papers included in this volume, as well as other talks given 
at the seminar but do not appear here. The volume contains extended abstracts of 
these and a few related talks which were given at the seminar during the 2022–2023 
period. 

This book presents 23 papers by authors from different countries: Turkey, 
Kazakhstan, USA, Italy, Portugal, Spain, Serbia, Azerbaijan, Jordan, Lithuania, 
India, Iraq, Russian Federation, Uzbekistan, Tajikistan, and Turkmenistan. We are 
especially pleased with the fact that many articles are written by co-authors who 
work at different universities in the world. We are confident that such international

v
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vi Preface

integration provides an opportunity for a significant increase in the quality and 
quantity of scientific publications. 

Publications in this book contain new results or overviews of some relevant 
mathematical areas. The volume reflects the latest developments in the area of 
analysis and applied mathematics and their interdisciplinary applications. This 
volume is organised in four parts. Part I contains the contributed papers focusing on 
various aspects of the analysis and its applications. Part II is devoted to the research 
on the theory of applied mathematics. Part III contains the results of studies on 
ordinary and partial differential equations and their applications. Finally, Part IV is 
focused on the simulation of problems arising in real-world applications of applied 
sciences. 

We would like to express our gratitude to Abdullah S. Erdogan (USA), Chary-
yar Ashyralyyev (Türkiye), Maksat Ashyraliyev (Sweden), Berikbol T. Torebek 
(Belgium), Yasar Sözen (Türkiye), Deniz Agirseven (Türkiye) and Ozgur Yildirim 
(Türkiye) for their valuable assistance for the organization of weekly seminars and 
preparation of this volume. 

Istanbul, Turkey Allaberen Ashyralyev 
Ghent, Belgium Michael Ruzhansky 
Almaty, Kazakhstan Makhmud A. Sadybekov 
January 2024 
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Part I 
Analysis



Chapter 1 
Some Measures of Noncompactness 
and Their Applications 

Eberhard Malkowsky 

Abstract This is the extended abstract of the author’s talk in the Analysis and 
Applied Mathematics Weekly Online Seminar on important results on measures of 
noncompactness, and some recent applications on the characterisations of compact 
operators between certain BK spaces, and in fixed point theorems. 

1.1 Introduction 

Measures of noncompactness are very useful tools in functional analysis, for 
instance, in metric fixed point theory, the characterisations of compact operators 
between Banach spaces, and the study of differential and integral equations. 

We present an axiomatic introduction to measures of noncompactness on the 
class of bounded subsets of complete metric spaces, the definition and most 
important properties of the Kuratowski and Hausdorff measures of noncompactness, 
a study of measures of noncompactness of operators between Banach spaces, and 
some applications to the characterisations of compact linear operators between 
certain BK spaces and the solvability of an infinite system of integral equations. 

Compactness and measures of noncompactness play an important role in fixed 
point theory. There are, however, cases when the operators are not compact and the 
results have to be extended to noncompact operators. Perhaps the most important 
application of a measure of noncompactness is Darbo’s fixed point theorem [4], 
which uses Kuratowski’s measure of noncompactness . α [8]. Darbo’s theorem is a 
generalisation of Schauder’s fixed point theorem [17]. 

E. Malkowsky (✉) 
State University of Novi Pazar, Novi Pazar, Serbia 
e-mail: Eberhard.Malkowsky@math.uni-giessen.de; ema@pmf.ni.ac.rs 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024 
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1.2 Measures of Noncompactness 

Measures of noncompactness are studied in detail and their use is discussed, for 
instance, in the monographs [1, 2, 9, 10, 18]. 

First, we recall the axiomatic introduction of the concept of a measure of 
noncompactness in complete metric spaces. 

Definition 1.2.1 Let .(X, d) be a complete metric space, and .MX be the class of 
bounded subsets of X. A set function .φ :MX → [0,∞) that satisfies the following 
conditions for all . Q,Q1,Q2 ∈MX

. (MNC.1) φ(Q) = 0 if and only if Q is relatively compact (regularity)

(MNC.2) φ(Q) = φ(Q) (invariance under closure)

(MNC.3) φ(Q1 ∪ Q2) = max{φ(Q1), φ(Q2)} (semi–additivity)

is called a measure of noncompactness on .MX and .φ(Q) is called the measure of 
noncompactness of the set Q. 

Proposition 1.2.2 Let .(X, d) be a complete metric space. Any measure of noncom-
pactness . φ on .MX satisfies the following conditions for all . Q,Q1,Q2 ∈MX

.Q1 ⊂ Q2 implies φ(Q1) ≤ φ(Q2) (monotonicity). (1.1) 

φ(Q1 ∩ Q2) ≤ min{φ(Q1), φ(Q2)}. (1.2) 

φ(Q)  = 0 for every finite set Q (non–singularity). (1.3) 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎩ 

If (Qn) is a decreasing sequence of nonempty, closed sets in MX and 

limn→∞ φ(Qn) = 0, then 

Q∞ = ⋂∞ 
n=1 Qn /= ∅  is compact 

(Cantor’s generalised intersection property [18, p. 19]);  

([8, 1930] for φ = α.) 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎭ 

(1.4) 

Now we recall the definitions of the Kuratowski and Hausdorff measures of 
noncompactness in complete metric spaces .(X, d). 

Definition 1.2.3 

(a) ([8] or [18, Definition II.2.1]) The Kuratowski measure of noncompactness is 
the map .α :MX → [0,∞) with 

.α(Q) = inf

⎧

ε > 0 : Q ⊂
n⋃

k=1

Sk, Sk ⊂ X,

diam(Sk) < ε (k = 1, 2, . . . , n ∈ N)} .
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(b) ([21] or [18, Definition II.2.1]) The Hausdorff or ball measure of noncompact-
ness is the map .χ :MX → [0,∞) with 

. χ(Q) = inf

⎧

ε > 0 : Q ⊂
n⋃

k=1

Brk (xk), xk ∈ X,

rk < ε (k = 1, 2, . . . , n ∈ N)} ,

where .Brk (xk), as usual, denotes the open ball of radius . rk and centre in . xk . 

Remark 1.2.4 We note that the functions . α and . χ are measures of noncompactness 
in the sense of Definition 1.2.1. So they satisfy (1.1)–(1.4) ([9, Lemmas 2.6, 2.11,  
Theorem 2.7] and [18, Remark 3.2]). They are also equivalent ([18, Remark 3.2]), 
that is, .χ(Q) ≤ α(Q) ≤ 2·χ(Q) for all .Q ∈MX. Studies on inequivalent measures 
of noncompactness can be found, for instance, in [12, 13]. 

Some measures of noncompactness such as . α and . χ satisfy several important 
conditions that are connected to the linear structure of Banach spaces; the statements 
for . α in (1.5)–(1.8) of Proposition 1.2.5 are due to Darbo [4]. 

Proposition 1.2.5 ([10, Theorems 7.6.7, 7.7.6 (b)]) Let X be a Banach space, 
.Q,Q1,Q2 ∈MX, . ψ be any of the functions . α or . χ , and co.(Q) denote the convex 
hull of Q. Then we have 

.ψ(Q1 + Q2) ≤ ψ(Q1) + ψ(Q2) (sublinearity), . (1.5) 

ψ(Q + x) = ψ(Q)  for each x ∈ X (translation invariance), . (1.6) 

ψ(λQ)  = |λ|ψ(Q)  for each scalar λ (absolute homogeneity). (1.7) 

ψ(Q)  = ψ(co(Q)) (invariance under passage to the convex hull). (1.8) 

If X is infinite dimensional, and .BX and . SX denote the open unit ball and the unit 
sphere in X, then .α(BX) = α(SX) = 2 and .χ(BX) = χ(SX) = 1 ([9, Theorems 
2.9, 2.14]). 

As an application of the results concerning measures of noncompactness we are 
going to state the famous theorem by Goldenštein, Go’hberg and Markus, which 
establishes an estimate for the Hausdorff measure of compactness of bounded sets 
in any Banach space with a Schauder basis. 

Theorem 1.2.6 (Goldenštein, Go’hberg, Markus) (R-BIB.GGM1 or [18, Theo-
rem II.4.2] or [9, Theorem 2.23]) 
Let X be a Banach space with a Schauder basis .(bk). Then the function . μ :MX →
[0,∞) defined by 

.μ(Q) = lim sup
n→∞

⎛

sup
x∈Q

‖Rn(x)‖
⎞

with Rn(x) =
∞⎲

k=n+1

λkbk (1.9)
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for all .x = ∑∞
k=0 λkbk ∈ X satisfies the following inequality for every . Q ∈MX

. 
1

a
· μ(Q) ≤ χ(Q) ≤ μ(Q),

where .a = lim supn→∞ ‖Rn‖ is the basis constant. 

So far, we measured the noncompactness of bounded subsets of complete 
metric spaces and Banach spaces. Now we introduce the concept of measures of 
noncompactness of operators between Banach spaces. 

Definition 1.2.7 ([9, Definition 2.24]) Let . φ1 and . φ2 be measures of noncompact-
ness on the Banach spaces X and Y , respectively. An operator .T : X → Y is said 
to be .(φ1, φ2)–bounded if .T (Q) ∈ MY for each Q ∈ MX, and there exists a real 
number .k > 0 such that .φ2(T (Q)) ≤ kφ1(Q) for each Q ∈MX. 
If an operator T is .(φ1, φ2)–bounded, then .‖T ‖φ1,φ2 defined by 

. ‖T ‖φ1,φ2 = inf{k ≥ 0 : φ2(T (Q)) ≤ kφ1(Q) for each Q ∈MX}

is called .(φ1, φ2)–operator norm of T, or .(φ1, φ2)–measure of noncompactness of 
T, or simply  measure of noncompactness of T. 
If .φ1 = φ2 = φ, then we write .‖T ‖φ instead of .‖T ‖φ,φ . 

Theorem 1.2.8 Let X and Y be Banach spaces, .L ∈ B(X, Y ), . SX and .BX be the 
unit sphere and the closed unit ball in X. 

(a) ([9, Theorem 2.25]) Then we have .‖L‖χ = χ(L(SX)) = χ(L(BX)). 
(b) ([9, Corollary 2.26]) Let .C(X, Y ) be the set of all compact operators in .B(X, Y ). 

Then .‖ · ‖χ is a seminorm on .B(X, Y ), 

.‖L‖χ = 0 if and only if L ∈ C(X, Y ), (1.10) 

and .‖L‖χ ≤ ‖L‖. 

Important applications of the theory of measures of noncompactness are Darbo’s 
fixed point theorem and its generalisation, the Darbo–Sadovskiı̆ theorem. The  
important hypotheses are the condensing property (1.11), the invariance of the 
passage to the convex hull (1.8) of the measures of noncompactness involved, and 
Cantor’s generalised intersection property (1.4). 

Theorem 1.2.9 (Darbo’s Fixed Point Theorem) ([4]) Let C be a non–empty 
bounded, closed and convex subset of a Banach space X and . α be the Kuratowski 
measure of noncompactness on X. If .f : C → C is continuous such that there exists 
a constant .c ∈ [0, 1) with 

.α(f (Q)) ≤ c · α(Q) for every Q ⊂ C, (1.11) 

then f has a fixed point in C.
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Theorem 1.2.10 (Darbo–Sadovskiı̆) (R-BIB.Sad2, [18, Theorem 5.4, p. 40] or 
[10, Theorem 7.10.3]) 
Let X be a Banach space, . φ be a measure of noncompactness which is invariant 
under passage to the convex hull, .C /= ∅ be a bounded, closed and convex subset 
of X and .f : C → C be an operator that satisfies the condensing property (1.11), 
with . φ in place of . α. Then f has a fixed point in C. 

1.3 Some Applications 

Here we apply the results of Sect. 1.2 to the characterisations of some classes of 
bounded linear and compact operators on the generalised Hahn space . hd , and give 
a generalisation of Darbo’s fixed point theorem and its application to the solution of 
an integral equation. We recommend [2] and [3] for further comprehensive studies 
of applications of measures of noncompactness to the solvability of infinite systems 
of differential and integral equations. 

We use the standard notations .ω, 𝓁∞ and . c0 for the sets of all complex, bounded 
and null sequences .x = (xk)

∞
k=1; bs and .bv = {x ∈ ω : ∑∞

k=1 |xk −xk+1| < ∞}, for  
the sets of all bounded series, and of all series of bounded variation. We also write 
.bv0 = bv ∩ c0. If .m ∈ N and .x = (xk)

∞
k=1 ∈ ω, then we write .x[m] = (x

[m]
k )∞k=1 for 

the m–section of x, where .x[m]
k = xk for .1 ≤ k ≤ m and .x[m]

k = 0 for .k > m. 
We refer the reader to [10, Definitions 9.2.1 and 9.2.12] for the concepts and 

fundamental properties of BK and AK spaces. 
Let .d = (dk)

∞
k=1 be a given monotone increasing unbounded sequence of positive 

real numbers. For every sequence .x = (xk)
∞
k=1 ∈ ω, let . Δx = (Δxk)

∞
k=1 =

(xk − xk+1)
∞
k=1 be the sequence of the forward differences of the sequence x. The  

generalised Hahn space is defined as [6] 

. hd =
⎧

x = (xk)
∞
k=1 ∈ ω :

∞⎲

k=1

dk|Δxk| < ∞
⎫

∩ c0.

If .dk = k for all k, then .hd = h, the original Hahn space h [7, 1922], and if 
.d = e = (1, 1, . . . ), then .he = bv0. 

Since . hd is a BK space with AK by Malkowsky et al. [11, Proposition 2.1], 
every .L ∈ B(hd) = B(hd, hd) is given by an infinte matrix .A = (ank)

∞
n,k=1 such 

that .L(x) = Ax = (An(x))∞n=1 for all sequences .x = (xk)
∞
k=1, where . Anx =∑∞

k=1 ankxk for all .n ∈ N, and conversely, if .Ax ∈ hd for all .x ∈ hd , then . LA ∈
B(hd), where .LAx = Ax for all .x ∈ hd ([10, Theorem 9.3.3]). 

First, we need to characterise the class .B(hd) and deternmine the operator norm 
of .L ∈ B(hd).
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Theorem 1.3.1 ([11, Theorem 3.9 and Corollary 3.15 (a)]) We have . L ∈ B(hd)

if and only if .Ax = L(x) ∈ hd for all .x ∈ hd and this is the case if and only if 

. lim
n→∞ ank = 0, for all k, (1.12) 

and 

.‖A‖(hd ,hd ) = sup
m

⎛
1

dm

∞⎲

n=1

dn

|
|
|
|
|

m⎲

k=1

(ank − an+1,k)

|
|
|
|
|

⎞

< ∞. (1.13) 

If .L ∈ B(hd), then 

.‖L‖ = ‖A‖(hd ,hd ). (1.14) 

Proof (Outline) The proof uses the concept of determining sets for BK spaces ([19, 
Definition 7.4.2]), [11, Propositions 3.2 and 2.3] and [19, Theorem 8.3.4]. 

(i) First we note that, by Malkowsky et al. [11, Proposition 3.2], . E ={
(1/dk) · e[k] : k ∈ N}

is a determining set for . hd . Also, by Malkowsky et 
al. [11, Proposition 2.3], the continuous dual . h∗

d of . hd is normisomorphic 
to .bsd = {a ∈ ω : supn(1/dn)| ∑n

k=1 ak| < ∞} with the natural norm 
.‖a‖bsd = supn(1/dn)| ∑n

k=1 ak| for all .a ∈ bsd . 
(ii) Writing .y[m] = (1/dm)·e[m] for all . m ∈ N, we show .supm ‖Ay[m]‖bs < ∞ and 

.Ay[m] ∈ c0 for all .y[m] ∈ E. We note that the first condition is (1.12) and the 
seond condition is equivalent to (1.13). Hence we have obtained Condition (ii) 
in [19, Theorem 8.3.4]. Also condition (i) in [19, Theorem 8.3.4] is redundant, 
since the columns .Ak = (ank)

∞
n=1 of A are in . c0 for each k by (1.12), and 

. ‖Ak‖hd
≤ dk‖Ay[k]‖hd

+ dk−1‖Ay[k−1]‖hd
< ∞

for all k. Thus we obtain the characterization of .B(hd). 
(iii) We obtain .‖L(x)‖hd

≤ ‖A‖(hd ,hd )‖x‖hd
for all . x ∈ hd , so .‖L‖ ≤ ‖A‖(hd ,hd ). 

Conversely .‖L(y[m])‖hd
≤ ‖L‖ for all m yields .‖A‖(hd ,hd ) ≤ ‖L‖. This yields 

(1.14). 
⨅⨆

An application of Theorem 1.3.1 yields the multiplier .M(hd, hd), and the value 
a of the basis constant for . hd . We recall that the multiplier of .X ⊂ ω in .Y ⊂ ω is 
the set 

. M(X, Y ) = {
z ∈ ω : z · x = (zkxk)

∞
k=1 ∈ Y for all x = (xk)

∞
k=1 ∈ X

}
.

We also obtain the value of the basis constant a of . hd .
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Example 1.3.2 ([11, Remark 4.6]) 

(a) It follows from Theorem 1.3.3 that 

. M(hd, hd) =
⎧

z ∈ ω :
⎛

1

dm

·
‖
‖
‖z[m−1]

‖
‖
‖

hd

⎞∞

m=1
∈ 𝓁∞

⎫

.

(b) Let .l ∈ N be given, .(c(l)
m )∞m=1 be the sequence with .c(l)

m = 0 for .1 ≤ m ≤ l and 

.c
(l)
m = 1 + dl/dm for .m ≥ l + 1, then 

. a = lim sup
l→∞

‖Rl‖ = lim sup
l→∞

⎛

sup
m≥l

c(l)
m

⎞

= lim sup
l→∞

⎛

sup
m≥l

⎛

1 + dl

dm

⎞⎞

= 2.

Now we use Theorem 1.3.1 to establish an estimate for .‖L‖χ for every . L ∈
B(hd). 

Theorem 1.3.3 

(a) ([11, Theorem 4.8 (a)]) Let .L ∈ B(hd). We write 

. γ <l>
m = 1

dm

⎛

dl

|
|
|
|
|

m⎲

k=1

al+1,k

|
|
|
|
|
+

∞⎲

n=l+1

dn

|
|
|
|
|

m⎲

k=1

(ank − an+1,k)

|
|
|
|
|

⎞

for all m and l. Then we have 

.
1

2
· lim sup

l→∞

⎛

sup
m

γ <l>
m

⎞

≤ ‖L‖χ ≤ lim sup
l→∞

⎛

sup
m

γ <l>
m

⎞

. (1.15) 

(b) ([11, Theorem 4.10 (d)]) We have .L ∈ C(hd) = C(hd, hd) if and only if 

. lim
l→∞

⎛

sup
m

γ <l>
m

⎞

= 0.

Proof (Outline) Let A be an infinite matrix with the rows .An .(n ∈ N). For each 
.m ∈ N, we write .A<m> for the matrix with the rows .A<m>

n = 0 for .n ≤ m and 
.A<m>

n = An for .n ≥ m + 1. Also let .L<m> denote the operator represented by 
.A<m>. Obviously .L<m> = Rm ◦ L .(m ∈ N) for .L ∈ B(hd). First we have by 
Theorem 1.3.1 for all l 

. ‖L<l>‖ = sup
m

⎛
1

dm

∞⎲

n=1

dn

|
|
|
|
|

m⎲

k=1

(a<l>
nk − a<l+1>

n+1,k )

|
|
|
|
|

⎞

= sup
m

γ <l>
m .

Since .a = 2 by Example 1.3.2 (b), (1.9) yields the inequalities in (1.15). 
Finally, Part (b) follows from (1.15) and (1.10). ⨅⨆
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We apply Theorem 1.3.3 and Example 1.3.2 (a) to obtain two results by Sawano 
and El–Shabrawy [16, Corollary 5.1 and Lemma 5.1]. 

Rhaly [14] introduced the generalised Cesàro operator . Ct on . ω for .t ∈ [0, 1) by 
the matrix .Ct = (ank(t))

∞
n,k=0 with .ank = tn−k/(n+1) for .(0 ≤ k ≤ n) and . ank = 0

for .k > n .(n = 0, 1, . . .). 

Example 1.3.4 ([16, Corollary 5.1]) Let .0 ≤ t < 1. Then .LCt ∈ B(h). 

The special case of .dk = k for all k of the next example yields [16, Lemma 5.1]. 

Example 1.3.5 ([5, Example 10]) Let .(λk)
∞
k=1 be a decreasing sequence of positive 

real numbers which converges to 0 and .D(λ) =diag.(λ1, λ2, . . .) denote the diagonal 
matrix with the sequence . λ on its diagonal. Then .LD(λ) ∈ C(hd). 

We also give an application of our results to Fredholm operators. We recall the 
definition of Fredholm operators ([10, Definition 8.4.1]). Let X and Y be Banach 
spaces, .L ∈ B(X, Y ), and .N(L) and .R(L) denote the null space and the range of L, 
respectively. Then L is said to be a Fredholm operator, if .R(L) is closed, and both 
dimensions .dim N(T ) and .dim X/R(L) are finite. The index of a Fredholm operator 
L is defined as .i(L) = dim N(L) − dim X/R(L). Let us recall that if . L ∈ B(X)

and .‖L‖χ < 1, then .I − L is a Fredholm operator and .i(I − L) = 0 ([20] or [10, 
Section 7.13]). 

Corollary 1.3.6 ([11, Corollary 4.11]) Let .α = (αn)
∞
n=1, .β = (βn)

∞
n=1 and 

.γ = (γn)
∞
n=1 be given sequences of complex numbers, and .A(α, β, γ ) denote the 

tridiagonal matrix with . α on the main diagonal, . γ on the subdiagonal and . β on the 
diagonal above the main diagonal. 
Then the operator .L ∈ B(hd) represented by the matrix . A(γ, α, β) = A(0, α, 0)

.+A(γ, 0, 0) .+A(0, 0, β) is Fredholm with index .i(A(α, β, γ )) = 0 if .A(0, α, 0) is 
Fredholm with index .i(A(0, α, 0)) = 0 and .A(γ, 0, 0) and .A(0, 0, β) are compact. 

Example 1.3.7 ([11, Example 4.12]) Let .dk = k, .αk = 1 − 1/k and . βk = γk =
1/k for all k. Then the operator .L ∈ B(hd) represented by the matrix .A(γ, α, β) is 
Fredholm. 

Finally, we consider a generalisation of Darbos’s fixed point theorem, Theo-
rem 1.2.9, and its application to the existence of solutions of a functional integral 
equation of Volterra type [15, Theorem 3.1]. We need the following definition. 

Definition 1.3.8 ([15, Definition 2.1]) Let X be a Banach space and . φ be a 
measure of noncompactness on .MX which is invariant under the passage to the 
convex hull (1.8), and homogeneous (1.7). Furthermore, let .H : R+ → R

+ be a 
strictly increasing map such that, for each sequence .(an) of positive real numbers, 
.limn→∞ an = 0 if and only if .limn→∞ H(an) = 0. A map .T : X → X is said to 
be a countable H–set contraction if there exists a .τ > 0 such that, for all countable 
.Q ∈MX, .φ(T (Q)) > 0 implies .τ + H(φ(T (Q))) ≤ H(φ(Q)). 

The next result generalises Darbo’s fixed point theorem.
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Theorem 1.3.9 ([15, Theorem 2.8]) Let C be a non–empty, bounded, closed and 
convex subset of a Banach space X, . φ be a measure of noncompactness (as above) 
and .T : X → X be a continuous H–contraction. Then T has a fixed point. 

An application of Theorem 1.3.9 yields a result on the solvability of the nonlinear 
integral equation 

.x(t) = f (t, x(t)) +
⎰ t

0
g(t, s, x(s)) ds (t ∈ R+) (1.16) 

in the space .BC(R+) which consists of all real functions defined continuous and 
bounded on . R+; the norm on .BC(R+) is defined by .‖x‖ = sup

t∈R+{|x(t)|}. 
Theorem 1.3.10 ([15, Theorem 3.1]) We consider the following conditions: 

(i) The function .f : R+ × R→ R is continuous, but, for any nonempty bounded 
subset X of .BC(R+), the family .{f (t, x) : x ∈ X} is equi–continuous for all 
.t ∈ R+, and the function .t |→ f (t, 0) is a member of the space .BC(R+). 
Moreover, there exists .τ > 0 such that 

. |f (t, x)−f (t, y)| /= 0 implies τ+H(|f (t, x)−f (t, y)|) ≤ H(|x−y|).

(ii) The function .g : R+ × R+ × R→ R is continuous and there exist continuous 
functions .a, b : R+ → R

+ satisfying .|g(t, s, x)| ≤ a(t)b(s) for all . t, s ∈ R+
with .s ≤ t and .x ∈ R, where .limt→∞ a(t)

⎰ t

0 b(s) ds = 0. 

(iii) There exists a positive solution . r0 of the inequality .H−1(H(r0) − τ) + q ≤ r0, 

where q is the constant defined by .q = supt≥0

{
|f (t, 0)| + a(t)

⎰ t

0 b(s) ds
}

. 

Let (i), (ii) and (iii) be satisfied. Then the nonlinear integral equation (1.16) has at 
least one solution in the space .BC(R+). 
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3. Banaś, J., Jleli, M., Mursaleen, M., et. al. (eds.): On some results using measures of noncom-
pactness. In: Advances in Nonlinear Analysis via the Concept of Measure of Noncompactness. 
Springer, Berlin (2017) 

4. Darbo, G.: Punti uniti in transformazioni a condomio non compatto. Rend. Sem. Math. Univ. 
Padova 24, 84–92 (1955) 

5. Gabeleh, M., et al.: A survey of measures of noncompactness and their applications. Axioms 
13, 367 (2024). https://www.mdpi.com/journal/axioms

https://www.mdpi.com/journal/axioms
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/journal/axioms


12 E. Malkowsky

6. Goes, G.: Sequences of bounded variation and sequences of Fourier coefficients II. J. Math. 
Anal. Appl. 39, 477–494 (1972) 

7. Hahn, H.: Über Folgen linearer operationen. Monatsh. Math. Phys. 32, 3–88 (1922) 
8. Kuratowski, K.: Sur les espaces complets. Fund. Math. 15, 301–309 (1930) 
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Chapter 2 
Definition of Hessians for . m−Convex 
Functions as Borel Measures 

Azimbay Sadullaev 

Abstract In this work, . m−convex functions are defined in the class of bounded 
upper semi-continuous functions of real arguments and a connection is established 
between . m−convex and well-known violent . m−subharmonic functions. As a 
consequence, we define in the class of . m−convex functions, the Hessians . Hk, k =
1, 2, . . . , n − m + 1, as Borel measures. 

2.1 Introduction 

m−convex functions in Rn are a real analogue of violent m−subharmonic 
(shm) functions in complex space Cn . Let us recall the definition of a class of 
shm−functions, which has become the subject of research by many authors (Blocki 
[1], Dinev and Kolodziej [2], Li [3], Lu [4, 5], Abdullaev and Sadullaev [6, 7], etc.). 

A twice smooth function u(z) ∈ C2(D), D ⊂ Cn, is called violent subharmonic 
u ∈ shm(D), if at each point of the domain D 

. 

shm(D) =
{
u ∈ C2 : (ddcu)k ∧ βn−k ≥ 0, k = 1, 2, . . . , n − m + 1

}

=
{
u ∈ C2 : ddcu ∧ βn−1 ≥ 0, (ddcu)2 ∧ βn−2 ≥ 0, . . . , (ddcu)n−m+1∧

βm−1 ≥ 0
}

,

(2.1) 

where β = ddc ‖z‖2 −is the standard volume form in Cn . 
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Operators (ddc u)k ∧ βn−k are closely related to Hessians. For a doubly smooth 
function u ∈ C2(D), the second order differential 

. ddcu = i

2

⎲
j,k

∂2u

∂zj ∂ z̄k

dzj ∧ d z̄k

(at a fixed point o ∈ D) is Hermitian quadratic form. After a suitable unitary 
coordinate transformation, it is reduced to diagonal form 

. ddcu = i

2
[λ1dz1 ∧ d z̄1 + . . . + λndzn ∧ d z̄n] ,

where λ1 ,  . . . , λn are the eigenvalues of the Hermitian matrix ( ∂2u 
∂zj ∂ z̄k 

), which are 

real: λ = (λ1 ,  . . . , λn ) ∈ Rn. Note that the unitary transformation does not change 
the differential form β = ddc ‖z‖2 . Therefore, it is easy to see that 

. (ddcu)k ∧ βn−k = k!(n − k)!Hk
o (u)βn,

where Hk 
o (u) = ∑

1≤j1<...<jk≤n 
λj1 . . .  λjk is the Hessian of the vector λ = λ(u) ∈ Rn 

of dimension k. 
Consequently, a doubly smooth function u(z) ∈ C2(D), D ⊂ Cn , is violent 

m−subharmonic if at each point o ∈ D we have 

. Hk(u) = Hk
o (u) ≥ 0, k = 1, 2, . . . , n − m + 1. (2.2) 

Note that the concept of a violent m-subharmonic function in the generalized sense 
is determined in the general case. 

Definition 2.1 A function u ∈ L1 
loc(D) is called shm in the domain D ⊂ Cn , if it is 

upper semi-continuous, u(z) ≥ lim 
w→z 

u(w) ∀z ∈ D and for any doubly smooth shm 

functions v1 ,  . . .  , vn−m ∈ C2(D)
⋂

shm(D) the following 

. ddcu ∧ ddcv1 ∧ . . . ∧ ddcvn−m ∧ βm−1,

defined as 

.

⎾
ddcu ∧ ddcv1 ∧ . . . ∧ ddcvn−m ∧ βm−1

⏋
(ω)

= ⎰
u ddcv1 ∧ . . . ∧ ddcvn−m ∧ βm−1 ∧ ddcω, ω ∈ F 0,0 (2.3) 

is positive.
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Blocki in the work [1] proved that this definition is correct, that for u ∈ C2(D) 
functions this definition coincides with the original definition of shm−functions. 
Moreover, in the class of bounded shm−functions, the operators 

. (ddcu)k ∧ βn−k ≥ 0, k = 1, 2, . . . , n − m + 1

are defined as Borel measures in the domain D (see [1, 6]). 

2.2 m− Convex Functions 

Now let .D ⊂ Rn and .u(x) ∈ C2(D). Similar to (2.2), we want to define . m−convex 
functions in the domain .D ⊂ Rn. The matrix .( ∂2u

∂xj ∂ xk
) is orthogonal, i.e., 

.
∂2u

∂xj ∂ xk
= ∂2u

∂xk∂ xj
. Therefore, after a suitable orthonormal transformation, it is 

transformed into a diagonal form, 

. 

⎛
∂2u

∂xj ∂ xk

⎞
→

⎛
⎜⎜⎝

λ1 0 . . . 0
0 λ2 . . . 0
. . . . . . . . . . . .

0 0 . . . λn

⎞
⎟⎟⎠ ,

where .λj = λj (x) ∈ R are the eigenvalues of the matrix .( ∂2u
∂xj ∂ xk

). Let  

.Hk(u) = Hk(λ) = ∑
1≤j1<...<jk≤n

λj 1 . . . λjk
be the Hessians of . k− dimensional of 

the eigenvalue vector .λ = (λ1, λ2, . . . , λn). 

Definition 2.2 A twice smooth function .u ∈ C2(D) is called . m−convex in . D ⊂
R

n, .u ∈ m−cv(D), if its eigenvalue vectors . λ = λ(x) = (λ1(x), λ2(x), . . . , λn(x))

satisfy the conditions 

. m − cv
⋂

C2(D) = {Hk(u) = Hk(λ(x)) ≥ 0, ∀x ∈ D, k = 1, . . . , n − m + 1}

at each point . o ∈ D.

Function theory of .m−cv is not studied much and is a new direction in the theory 
of real geometry. However, when .m = 1 this class 

. 1 − cv
⋂

C2(D) = {H1(λ) ≥ 0} = {λ1 ≥ 0, . . . , λn ≥ 0}

coincides with the class of convex functions in . Rn, and when .m = n the class 
.n − cv

⋂
C2(D) = {λ1+, . . . , λn ≥ 0} coincides with the class of subharmonic, 

.(sh) functions. The class of convex functions has been well studied (Aleksandrov 
[8, 9], Bakelman [10, 11], Pogorelov [12], Artykbaev [20], etc.). For .m > 1 this
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class was studied in a series of works by N. Ivochkina, N. Trudinger, X. Wang, S. 
Li, H. Lu et al.  (see  [3–5, 13–19].) 

The principle difficulty in the theory of .m − cv functions is the introduction of 
class .m − cv

⋂
L1

loc, i.e. the definition of functions .m − cv(D) in the class of upper 
semi-continuous, locally integrable or bounded functions. So, for .m = n (the case 
of subharmonic functions) in the class of upper semi-continuous, locally integrable 
function .u(x) ∈ n − cv(D) is defined as a generalized function, and the Laplace 
operator . Δu is a Borel measure. 

2.3 Definition of Hessians for m − cv Functions 

In this work, we establish a connection between .m − cv functions and violent 
subharmonic .(shm) functions and using the well-known and rich properties of . shm

functions we give the definitions of Hessians .Hk(u), k = 1, . . . , n − m + 1 for 
. m−convex functions, like Borel measures. 
To do this, we embed . Rn

x in .Cn
z , R

n
x ⊂ Cn

z = Rn
x + iRn

y(z = x + iy), as a real 
. n−dimensional subspace of the complex space . Cn

z . 

Theorem 2.1 A twice smooth function .u(x) ∈ C2(D), D ⊂ Rn
x, is .m − cv in D 

if and only if the function .uc(z) = uc(x + iy) = u(x), that does not depend on 
variable .y ∈ Rn

y , is .shm in the domain . D × Rn
y.

Proof Let us establish a connection between the Hessians .Hk(u) and .Hk(uc). We 
have 

. 
∂uc

∂zj

= 1

2

⎾
∂uc

∂xj

− ∂uc

∂yj

⏋
= 1

2

∂uc

∂xj

,

. 
∂2uc

∂zj ∂̄ zk

= 1

2

∂

∂̄ zk

⎾
∂uc

∂xj

⏋
= 1

4

⎾
∂2uc

∂xk∂xj

+ ∂2uc

∂xk∂yj

⏋
= 1

4

∂2uc

∂xk∂xj

.

Thus, 

. 
∂2uc

∂zj ∂ z̄k

= 1

4

∂2u

∂xj ∂ xk

and, therefore, .Hk(u) = Hk(uc) and .Hk(u) ≥ 0, k = 1, . . . , n − m + 1, if and 
only if . Hk(uc) ≥ 0, k = 1, . . . , n − m + 1. ⨅⨆
Now, let .u(x) be an upper semi-continuous function in the domain .D ⊂ Rn

x . Then, 
.uc(z) will also be an upper semi-continuous function in the domain .D × Rn

y ⊂ Cn
z .


