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Foreword 

The INdAM meeting “The Strong and Weak Lefschetz Properties” took place in 
Cortona from 12 to 16 September 2022 in the beautiful Villa Il Palazzone. The study 
of Lefschetz properties for Artinian algebras, initiated by Richard Stanley, began 
in the 1980s. Introduced as algebraic generalizations of the Hard Lefschetz prop-
erty of the cohomology ring of a complex manifold, these properties soon proved to 
be present and interesting in many branches of mathematics, in particular in alge-
braic geometry, commutative algebra, and algebraic and combinatorial topology, 
and constitute a fertile meeting place for researchers with different backgrounds. 
Thirty-eight mathematicians from 14 countries and three continents participated in 
the Cortona meeting. Care was taken to invite expert researchers who have been 
working in this sector for years, as well as young post-docs and Ph.D. students. 
Furthermore, a significant percentage of female researchers were invited. Adopting 
a formula already tested in previous conferences (Banff 2016; Mittag Leffler 2017; 
Levico 2018; Luminy 2019; Oberwolfach 2020), an important part of the meeting 
was dedicated to group work on specific problems, proposed before the confer-
ence by some of the participants and selected by the organizers, with the aim of 
creating new collaborations, including interdisciplinary ones, and developing new 
techniques. The Cortona meeting was a success, not only because of the high level of 
the scientific talks, but also due to the climate of great friendliness and collaboration 
that was created among the participants, enthusiastic to meet again after the long 
and difficult interval due to the COVID-19 pandemic. This book is a testimony to 
that. The organizing and scientific committee was composed of Karim Adiprasito 
(Hebrew University of Jerusalem, Israel, and University of Copenhagen, Denmark), 
Roberta Di Gennaro (Università degli Studi di Napoli “Federico II”, Italy), Sara 
Faridi (Dalhousie University, Canada), Satoshi Murai (Waseda University, Japan), 
Uwe Nagel (University of Kentucky, USA), and myself. Many thanks to all of them 
for the nice collaboration and for taking care of this volume. The meeting was made

v
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possible, thanks to the PRIN project “Moduli Theory and Birational Classification” 
of the MIUR and to the generous support of the Italian “Istituto Nazionale di Alta 
Matematica Francesco Severi”—INdAM—that provided not only funding but also 
logistical support. Many thanks for making this possible. 

Trieste, Italy 
December 2023 

Emilia Mezzetti



Preface 

This book grew out of a conference focusing on the Lefschetz properties that took 
place in Cortona, Italy, in September 2022. It was part of a series of meetings that was 
initiated by Junzo Watanabe who organized a first workshop on Lefschetz properties 
at Tokai International College, Hawaii, in 2012. Subsequent meetings took place at 
the University of Göttingen, Germany, 2015; Banff International Research Station, 
Canada, 2016; Mittag-Leffler Institute, Sweden, 2017; CIRM, Levico, Italy, 2018; 
CIRM, Luminy, France 2019; MFO, Oberwolfach, Germany, 2020. 

The Lefschetz properties formalize the algebraic properties of the cohomology 
ring of a complex manifold as guaranteed by the Hard Lefschetz Theorem. Their 
investigation revealed connections to many other parts of mathematics. The present 
volume attempts to give an idea of the state of the art and the scope of the current 
research related to the Lefschetz properties. It consists of two survey articles, followed 
by nine research papers and a collection of open problems. 

The first survey discusses the Jordan type of an Artinian algebra over a field, 
which gives more information than the strong Lefschetz property. The second survey 
describes connections to algebraic geometry in the form of hypersurfaces whose 
presence is unexpected based on an intuitive dimension count. 

Some of the following research articles present new results related to topics 
discussed in the surveys. These concern, for example, the presence of the Lefschetz 
properties for certain Gorenstein algebras and for algebras related to graphs or 
flag complexes, results toward a characterization of sets of points whose general 
projection is a complete intersection as well as a method to detect the failure of the 
weak Lefschetz property. Two articles explore combinatorial aspects, a connection to 
nonnegative Toeplitz matrices via the Hodge-Riemann relations and an occurrence

vii
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of the Kostka numbers, respectively. Another paper studies geometric properties 
of permutahedral varieties. This volume ends with an extensive collection of open 
problems covering many aspects of the investigations of the Lefschetz properties. 

Lexington, USA 
Jerusalem, Israel 
Naples, Italy 
Halifax, Canada 
Nishi-Waseda, Japan 
December 2023 

Uwe Nagel 
Karim Adiprasito 

Roberta Di Gennaro 
Sara Faridi 

Satoshi Murai 
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Jordan Type of an Artinian Algebra, 
a Survey 

Nasrin Altafi, Anthony Iarrobino, and Pedro Macias Marques 

Abstract We consider Artinian algebras .A over a field . k, both graded and local 
algebras. The Lefschetz properties of graded Artinian algebras have been long stud-
ied, but more recently the Jordan type invariant of a pair.(l, A)where. l is an element 
of the maximal ideal of . A, has been introduced. The Jordan type gives the sizes of 
the Jordan blocks for multiplication by. l on. A, and it is a finer invariant than the pair 
.(l, A) being strong or weak Lefschetz. The Jordan degree type for a graded Artinian 
algebra adds to the Jordan type the initial degree of “strings” in the decomposition 
of . A as a .k[l] module. We here give a brief survey of Jordan type for Artinian alge-
bras, Jordan degree type for graded Artinian algebras, and related invariants for local 
Artinian algebras, with a focus on recent work and open problems. 
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1 Introduction 

Notation 

Let. A be a graded or local Artinian algebra quotient of.R = k[x1, . . . , xr ] (polynomial 
ring) or of .R = k{x1, . . . , xr } (regular local ring) with maximal ideal .m and highest 
socle degree . j : that is .A j /= 0, but  .Ai = 0 for .i > j . Here, for .A local we take 
.Ai to be the .i-th graded piece of the associated graded algebra . A∗ = ⊕

mi/mi+1

of . A. For  .A graded we let .m = ⊕ j
1 Ai . The Hilbert function of .A is the sequence 

.H(A) = (h0, h1, . . . , h j ) where .hi = dimk Ai ; the  Sperner number of .H(A) is the 
maximum value of.H(A). The  Jordan type .Pl,A of a nilpotent element.l ∈ m of. A is 
the partition.P giving the sizes of the Jordan blocks of the (nilpotent) multiplication 
map.ml. The properties of.(l, A) being strong-Lefschetz (.P = H(A)∨, the conjugate 
of the Hilbert function viewed as a partition) or weak-Lefschetz (the number of parts 
of .P is the Sperner number) of a pair .(l, A), have been investigated as such since 
at least 1978—see [ 34, 66, 73]. Earlier, J. Briançon in 1972 showed the strong 
Lefschetz property .Pl,A = H(A)∨ in characteristic zero for each codimension two 
Artinian algebra. A and a generic.l ∈ R1 [ 17]. But Jordan type is a finer concept: there 
are in general many partitions that can occur for .Pl,A given just the Hilbert function 
.H = H(A). A basic introductory paper is the second two authors’ joint paper with 
McDaniel [ 48]; other resources include [ 16, 23, 47, 49]. Our attention in this note 
will be to the more general notion of Jordan type, as opposed to merely the Lefschetz 
properties. 

Let.H be a sequence that occurs as the Hilbert function of an Artinian quotient of 
. R or. R. First, take. R to be the polynomial ring. We denote by.G(H) and.GGor(H) the 
family of graded or graded Gorenstein, respectively, quotients of .R having Hilbert 
function. H . Now  take. R to be the regular local ring, and denote by.Z(H) or.ZGor(H), 
respectively, the family of all (not necessarily graded) quotients of . R having Hilbert 
function . H , or, respectively, the Gorenstein quotients of . R having Hilbert function 
. H . We regard these in this survey as subvarieties (not necessarily irreducible) of 
the Grassmanian .Grass(R/mn), .n = |H |; but some have also looked at the scheme 
structures, namely the Hilbert scheme .Hilbn(R) (see, for example [ 15, 19, 39, 52, 
58] and [ 40, Appendix C]). We will write .R for both .R and . R, when considering 
both at the same time. There is a natural notion of dominance of Jordan types (see 
Definition 1.5). Our goals in this survey are 

(a) Review the definitions and properties of Jordan type and Jordan degree type. 
(b) Report on progress on the several major questions below, and 
(c) Suggest some further problems.
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1.1 Major Problems 

The development of the subject has been related to some main questions: 

(i) How does Jordan type behave as one deforms the element.l ∈ m, or the algebra 
.A = R/I among algebras of a given Hilbert function? Two cases: graded . A, 
and local .A = R/I . In particular, does the Hilbert function determine a bound 
(in the sense of domination) on the possible Jordan types? 

(ii) For graded. A, there is a refinement of Jordan type to a Jordan degree type [ 48]. 
Determine its properties and avatars (Sects. 2.3 and 2.4 below). 
There is a natural generalization of Jordan type to “contiguous Jordan type” 
for graded algebras having non-unimodal Hilbert function. There are similar 
questions of deformation (see [ 48, Sect. 2F, Definition 2.28ii], not treated here). 

(iii) Generalizations and refinements of Jordan type from graded algebras to local 
algebras [ 43] (see Sect. 3 below). 

(iv) When. A is local Gorenstein, what is the relation of these refinements of Jordan 
type to the symmetric decomposition of . A (see [ 42, 43])? 

(v) Using Jordan type and other invariants to show that various families .Z(H) or 
.ZGor(H) have several irreducible components [ 41] (Sect. 3.1 below). 

(vi) Given the Artinian algebra . A, and a fixed partition .P of .|A|, what is the locus 
.ZP ⊂ P(A1) ∼= P

r−1 of linear forms. l for which.Pl,A = P? The non-Lefschetz 
locus [ 16]? 

(vii) What is the relation between Jordan type and the Betti minimal resolution of 
. A [ 4, 5]? 

(viii) What pairs of Jordan type partitions .Pl,A and .Pl,,A may occur together in an 
Artinian . A? OR, what Jordan types .PM , .PN may occur for a pair .(M, N ) of 
.n × n commuting matrices (see [ 55]). 

Some of these questions are now partially answered, ideas behind them have inspired 
other questions that remain open. We discuss (i)–(v) in more detail below, and then 
pose some specific questions. 

1.2 What Is Jordan Type? 

We first present the definitions and some properties of Jordan type, and then in 
Sect. 2.1 discuss the relationship to the weak and strong Lefschetz properties for 
graded algebras. Since the definition of Jordan type does not require grading, we 
start by stating it in the general setting, for a module over an algebra that may not be 
graded. 

Definition 1.1 (Jordan type) (See also [ 48, Definition 2.1] and [ 34, Sect. 3.5].) Let 
.M be a finitely generated module over the Artinian algebra . A, and let .l ∈ m. The  
Jordan type of. l in.M is the partition of.dimk M , denoted.Pl = Pl,M = (p1, . . . , ps), 
where.p1 ≥ · · · ≥ ps , whose parts.pi are the block sizes in the Jordan canonical form
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matrix of the multiplication map .ml : M → M , .x |→ lx . The  generic Jordan type 
of . A, denoted .PA, is the Jordan type .Pl,A for a generic element . l of .A1 (when . A is 
graded), or of .mA (. A local). 

The Jordan block form for the similarity class of a matrix is sometimes called the 
Segre characteristic, in contrast to its conjugate, the Weyr characteristic (see Note 
1.10 below). 

Definition 1.2 (Jordan basis, pre-Jordan basis) With the notation of the previous 
definition, a pre-Jordan basis for . l is a basis of .M as a vector space over . k of the 
form 

.B = {li zk | 1 ≤ k ≤ s, 0 ≤ i ≤ pk − 1}, (1) 

where .Pl,M = (p1, . . . , ps) is the Jordan type of . l. We call the subsets . Sk =
{zk, lzk, . . . , l

pk−1zk} strings of the basis . B, and each element .li zk a bead of the 
string. The Jordan blocks of the multiplication .ml are determined by the strings . Sk , 
and .M is the direct sum 

.M = ⟨ S1⟩  ⊕ · · · ⊕ ⟨ Ss⟩  . (2) 

If the elements.z1, . . . , zs ∈ M satisfy.lpk zk = 0 for each. k, we call. B a Jordan basis 
for . l, recovering the usual definition in linear algebra, since a matrix representing 
the multiplication by . l with respect to . B, ordering elements as . (lp1−1z1, . . . , z1,
lp2−1z2, . . . , z2, . . . , lps−1zs, . . . , zs), is a canonical Jordan form. In that case the 
.⟨ Sk⟩  are cyclic .k[l]-submodules of . M . 

The following is well-known (see [ 11, Sect. 4.7], [ 75]). 

Lemma 1.3 If . M has a pre-Jordan basis . B as in (1), then for each . k, we have 

. lpk zk ∈ ⟨ lazi | a ≥ pk, i < k⟩  .

There is a Jordan basis of . M derived from the pre-Jordan basis, and having the same 
partition invariant .Pl,M giving the lengths of strings. 

Algorithm 1.4 Often it is useful to consider a pre-Jordan basis (or a Jordan basis) 
to study the Jordan type of an element .l ∈ m. However, to compute the Jordan type 
of an element in a module, we do not need to choose a basis. We can consider the 
sequence .(d0, . . . , d j+1), where .di = dimk M/li M, and compute the sequence of 
differences .Δl = (δ1, . . . , δ j+1), where .δi = di − di−1. Then taking the conjugate 
partition of this sequence, we get the Jordan type of . l in . M (see [ 48, Lemma 2.3]): 

. Pl,M = Δ∨
l .

This is the algorithm we used in Macaulay 2 computations [ 32] in this paper. 

A key notion is specialization of Jordan types, which follows the dominance 
partial order on partitions (Lemma 1.6).
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Fig. 1 Hilbert function, its partition.(3, 2, 2, 1, 1), and conjugate (Example 1.8) 

Definition 1.5 (Dominance order) Let  .P = (p1, . . . , ps), .p1 ≥ · · · ≥ ps , and 
.Q = (q1, . . . , qr ), .q1 ≥ · · · ≥ qr , be two partitions of .n = ∑

pi = ∑
qi . We say  

that .P dominates .Q (written .P ≥ Q, if for each .k ∈ [1,min{s, r}], we have  

. 

k∑

i=1

pi ≥
k∑

i=1

qi .

For example, the partition .(5, 4, 2) ≥ (5, 3, 2, 1), but  .(5, 3, 3, 2) and . (4, 4, 4, 1)
are incomparable. 

Let .P be a partition of . n we denote by .P∨ the conjugate partition of . n: switch 
rows and columns in the Ferrers diagram of . P . Let  .H be a sequence that occurs as 
the Hilbert function of an Artinian algebra, and denote by.PH the associated partition 
of .n = |A|, .H∨ its conjugate. 

The following result is well known. 

Lemma 1.6 ([ 48, Theorem 2.5]) Let . A be a standard graded Artinian algebra, and 
let .l ∈ A1 be a linear form. Then .Pl,A ≤ H(A)∨ in the dominance partial order on 
partitions. 

There is an analogous statement for local algebras . A (ibid.). 

Corollary 1.7 Let . A be an Artinian quotient of . R and let .l ∈ mA. Then .Pl,A has at 
least as many parts as the Sperner number of .H(A). 

Proof That.H(A)∨ ≥ Pl,A and are partitions of.n = dimk A is equivalent to. H(A) =(
H(A)∨

)∨ ≤ P∨
l,A [ 21, Lemma 6.3.1]. So the largest part of .H(A) (viewed as a 

partition) is less or equal the largest part in .P∨
l,A, which is just the number of parts 

of .Pl,A. □

Example 1.8 (Comparison of Jordan type for algebra B and associated graded 
algebra .A = B∗) 

(a) Consider the graded complete intersection (CI) algebra .A = k[x, y]/I , 
.I = (x3, y3) = Ann(X2Y 2), with .H(A) = (1, 2, 3, 2, 1) and . H∨ = (5, 3, 1)
(Fig. 1). Here 

. Pl,A = (5, 3, 1) for l = ax + by when ab /= 0, but Px,A = Py,A = (3, 3, 3).

The strings for.l = x are.{1, x, x2},.{y, xy, x2y},.{y2, xy2, x2y2}, and. (5, 3, 1) >

(3, 3, 3).
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(b) Consider the non-homogeneous CI algebra .B = R/J , with .R = k{x, y}, and 
ideal.J = (x3, y3 − x2y2) = Ann(X2Y 2 + Y 3) satisfying.B∗ = A. We have for  
.char k = 0, again  .Pl,B = (5, 3, 1) for .l = ax + by when .ab /= 0, and . Px,B =
(3, 3, 3). But now.Py,B = (4, 3, 2), as the multiplication.my has pre-Jordan basis 
strings .{1, y, y2, y3 = x2y2}, .{x, xy, xy2}, and .{x2, x2y}. Applying 
Algorithm 1.4, a Jordan basis for .my has the strings .{1, y, y2, y3 = x2y2}, 
.{x, xy, xy2}, and .{x2 − y, x2y − y2}, as . y4, .xy3, and .(x2 − y)y2 are zero. The 
algebra . B is a deformation of . A, and .Py,B = (4, 3, 2) > Py,A = (3, 3, 3) in the 
dominance partial order, consistent with Corollary 3.8. 

The following example illustrates some of the methods of determining Jordan 
type for a non-homogeneous Artinian Gorenstein (AG) algebra. See also [ 41, Sect. 
2.4]. 

Example 1.9 (Determining Jordan type, . C non-homogeneous) Let  . R = k{x, y, z}
and .C = R/AnnG, where .G = X3Y + Y 2Z . Then .C is a non-homogeneous AG 
algebra, not CI, defined by.AnnG = (xz, yz − x3, z2, xy2, y3), with Hilbert func-
tion .H(C) = (1, 3, 3, 2, 1) and .H(C)∨ = (5, 3, 2). 

i. Generic Jordan type of . C . Assume.char k /∈ {2, 3} and consider a general ele-
ment .l ∈ mC . We write .l = ax + by + cz + h, with .h ∈ m 2

C . Suppose .ab /= 0. 
Then .l4 = 4a3bx3y /= 0. Also,  .l3 = a3x3 + 3a2bx2y + h, and . l2x = a2x3 +
2abx2y + h,,, with .h,, h,, ∈ m 4

C (note that .yz = x3 in . A, so  .y2z = x3y ∈ m 4
C ). 

We can easily check that.l3 and.l2x are linearly independent, so we have already 
two strings in a pre-Jordan basis for. l, namely.{1, l, l2, l3, l4} and.{x, lx, l2x}. 
According to Lemma 3.7 the Jordan type of . l in .C is at most .(5, 3, 2), and 
we already have two string of lengths . 5 and . 3, so we will check if we can get 
a new string of length . 2. Note that .m 3

C = ⟨ l3, l2x, l4⟩  , so if there is a further 
string of length two, there must be an order-one element.α ∈ mC \ m 2

C such that 
.lα /∈ ⟨ l2, l3, l4, lx, l2x⟩  . Using  . l and . x to cancel terms in . α if necessary, we 
can assume that .α = z + g, with .g ∈ m 2

C . Now.lα = bx3 + lg ∈ m 3
C , meaning 

there is no new length-two string. Therefore the Jordan type of . l is 

. Pl,C = (5, 3, 1, 1),

and since the set .{ax + by + cz + h ∈ mC : ab /= 0, h ∈ m 2
C} is an open dense 

subset of .mC , this is the generic Jordan type of .C (Definition 1.1). We can 
consider .{z} and .{y2} as new strings to complete the pre-Jordan basis. 

ii. Why we cannot attain a last length-two string. That a last two-length string 
is not attainable is related to a construction from [ 42, Proposition 1.33]. The 
module .QC(1) can be explained by the relations between the terms .Y 2Z and 
.X3Y in .G (we refer to [ 42] for details on the .Q(a) modules, introduced by 
the second author in [ 45]; see also Lemma 3.1 below). Here, .QC(1) has two 
homogeneous terms:
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.QC(1)1 = (0 : m 3
C)

m 2
C + (0 : m 2

C)
and QC(1)2 = m 2

C ∩ (0 : m 2
C)

m 3
C + (0 : mC)

. (3) 

Note that.Y 2 is not a partial of.X3Y , but all further partials of.Y 2 belong to.⟨ 1, Y ⟩  , 
and thus are also partials of .X3Y . So acting on .G with . z yields .z ◦ G = Y 2, 
and this means that the class of . z is non-zero in .QC(1)1 (in fact, it generates 
this module). However, .mRz ◦ G = ⟨ 1, Y ⟩  , so if  .l, ∈ mR is a lifting ot . l, we  
have .l,z ◦ G = bY + d = (bx3 + dx3y) ◦ G, for  some  .d ∈ k, which explains 
why .lz ∈ m 3

C and its class is zero in .QC(1)2, so the module .QC(1) is acyclic. 
Coincidently, .QC(1) = ⟨ z, y2⟩  , so its generators are the elements we chose for 
the last two strings of the pre-Jordan basis. 1

iii. Special Jordan types of . C . When.l = ax + by + cz + h, .h ∈ m 2
C and.ab = 0, 

we find lower Jordan types in the dominance order. For instance, 

.
Px,C = (42, 12), Py+z,C = (4, 23), Py,C = (32, 22),

Px2,C = (24, 12), Pz,C = (23, 14).
(4) 

The strings for a pre-Jordan basis for. z are particularly interesting, and illustrate 
the issues of the non-graded case: since .yz = x3 a possible choice is .{1, z}, 
.{y, x3}, .{y2, x3y}, .{x}, .{x2}, .{xy}, .{x2y}. Note that in the strings .{y, x3} and 
.{y2, x3y} there is a jump in order: the orders of . y and .y2 are . 1 and . 2, but  
multiplying by . z makes these orders jump to . 3 and . 4, respectively. 

iv. Deformation .C(t). Consider the family of Artinian Gorenstein algebras 
.
(
C(t)

)
t∈k, where .C(t) = R/AnnG(t) is defined by the dual generator 

. G(t) = X3Y + Y 2Z + tY Z2.

Then .C(0) = C , and for .t /= 0, .C(t) is a CI algebra, as 

. AnnG(t) = (xz, t y2 − yz + x3, z2 − t x3).

We have.H
(
C(t)

) = H(C) =.(1, 3, 3, 2, 1) for all. t . We can check that for. t /= 0
the Jordan type of .l = ax + by + cz + h, with .h ∈ m 2

C(t) and .ab /= 0, is  

. Pl,C(t) = (5, 3, 2) = H
(
C(t)

)∨
,

admitting strings.{1, l, l2, l3, l4},.{x, lx, l2x}, and.{z, lz}. So the generic Jordan 
type of.C(t), for.t /= 0, strictly dominates that of.C = C(0) which is. (5, 3, 1, 1)
(only domination is required by Lemma 3.7). For . x , .y + z, . y, and . x2, we find 
the same Jordan types in .C(t) as in (4), but .Pz,C(t) = (32, 14) > Pz,C . 

The associated graded algebra is .C(t)∗ = R/(xz, t y2 − yz, z2, x4), with . R =
k[x, y, z], for .t /= 0, and .C(0)∗ = C∗ = R/(xz, yz, z2, xy2, y3, x4). The generic

1 Further examples and discussion of these points are found in [ 41, Sect. 2.4, Remark 2.11ff.]. 
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Jordan type of .C(t)∗ is the same as that of .C(t) likewise for the special Jordan 
types of . x and . x2, but  .Py+z,C(t)∗ = (3, 23, 1), .Py,C(t)∗ = (3, 23, 1), for any .t ∈ k, 
and .Pz,C(t)∗ = (22, 16), for .t /= 0, .Pz,C(0)∗ = (2, 18). All these are dominated by the 
respective Jordan types in .C(t), as expected from Corollary 3.8. 

Note 1.10 The Weyr characteristic is an invariant of the similarity class of a matrix 
introduced by Eduard Weyr in 1885; for our nilpotent maps . ml on . A, it is just the  
conjugate (switch rows and columns of the Ferrers diagram) of the Jordan parti-
tion .Pl,A ([ 68, Sect. 2.4]). See [ 72] for an excellent introduction; K. O’Meara and 
J. Watanabe point out that for some problems the Weyr form may be more useful than 
the Jordan type [ 69]; see also [ 48, Note p. 371] for further references. 

1.3 Historical Note 

Lefschetz properties of the cohomology rings of algebraic varieties had been long 
studied before the algebraists adapted it. R. Stanley showed that graded Artinian com-
plete intersection algebras.A = R/(xa1

1 , . . . , xar
r ) satisfy a strong Lefschetz property 

[ 73]: he proved this using the hard Lefschetz theorem for the cohomology of the prod-
uct.P = P

a1−1 × · · · × P
ar −1 of projective spaces. This inspired many to explore the 

Lefschetz properties of Artinian algebras. Results and open problems at the time 
concerning Lefschetz properties of graded Artinian algebras were well set out in 
the 2013 foundational opus by Harima et al. [ 34] and also surveyed by Migliore 
and Nagel [ 66]. Other articles on the Lefschetz properties include those by Harima 
[ 35, 36] in 1995 and 1999, one by Harbourne, Schenck, and Seceleanu on Gelfand-
Tsetlin patterns and the weak Lefschetz property in 2011 [ 33], and that on singular 
hypersurfaces and Lefschetz properties by Di Gennaro, Ilardi, and Vallès in 2014 
[ 24]. The latter direction was extended by others as E. Mezzetti, R.M. Miró-Roig, 
G. Ottaviani on Laplace Equations and weak Lefschetz in 2013 [ 65], and Miró-Roig 
and Salat on Togliatti equations in 2018 [ 67]. 

Despite advocacy by the second author beginning in 2012 at the Lefschetz con-
ference organized by Junzo Watanabe at Tokai University, for using the finer Jordan 
type invariant of a pair .(l, A), it was not until 2022 that an introduction [ 48] to the  
topic appeared. This was at the instigation of Yong-Su Shin, who asked prior to 
coauthoring [ 70], where one could find an introduction to Jordan type! There was 
none. The authors of [ 48] attempted to give a comprehensive introduction, including 
new results, doing for Jordan type what Migliore and Nagel had done earlier in the 
same journal in “Tour of the strong and weak Lefschetz Properties” [ 66]. For some 
topics, such as modular tensor products, they were able to exhibit several threads of 
work by different communities who seemed unaware of each other’s work on the 
same subject [ 48, Sect. 3B]. Several other articles by the same group treated Jordan 
type for certain free extensions, which are deformations of tensor products: see [ 47, 
Theorem 2.1], and also [ 64] which gives a connection of free extensions to invariant 
theory.
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A main advance in the study of Lefschetz properties of Artinian Gorenstein (or 
AG) algebras was the 2009 article of T. Maeno and J. Watanabe, showing that the 
ranks of multiplication by powers of a linear form . l on the degree components . Ai

of a graded Gorenstein algebra . A was given by the ranks of certain higher Hessians 
formed from the Macaulay dual generator of . A, at a point .pl [ 63]. This result was 
extended and used by many, including Gondim [ 28], Gondim and Zappalà [ 29]; and 
it was generalized by Gondim and Zappalà in 2019 to the mixed Hessians [ 30]. 
These have been used to prove that some Nagata idealization examples of graded 
AG algebras in embedding dimension at least four, are not strong Lefschetz (as [ 20]). 
The Hessian tools have been used recently by a growing cohort to study Jordan types 
for pairs .(A, l) where . A is a graded AG algebra and .l ∈ A1: see, for example [ 6, 8, 
10] and Sect. 2.2 below). 

Recent Articles on Jordan Type and Artinian Algebras 

We here mention several recent articles and research areas, with emphasis on those 
that mention Jordan type. Fixing codimension two, and a Hilbert function. H , we can 
study the “Jordan cells”.V(EP) of the family.G H , comprised of ideals having initial 
monomial ideal.EP in a direction given by a linear form. l, determined by the partition 
. P , which must have “diagonal lengths” . T : see  [  6, Theorem 2.8]. The cell .V(EP) is 
comprised of all graded Artinian algebras .A = k[x, y]/I such that .Pl,A = P . The  
dimension of these cells, and some of their geometric properties were known by 
Yaméogo’s [ 46, 76, 77]; the article [ 6] determines the generic number of generators 
of ideals in each cell [ 6, Theorems 3.11, 5.15] using a decomposition of cells into a 
product of simpler components. See Question 4.3. 

There has been the beginning of tying the Jordan type with the Betti resolution 
of . A, see Abdallah and Schenck [ 4] and Abdallah’s [ 5], and as well Jelisiejew et al. 
[ 51], where they investigate local complete intersections of codimension three, also 
the book-length [ 54] has some Betti number vs. Jordan type calculations. 

Not totally unrelated, the preprint [ 2] studies Jordan types for codimension three 
graded Gorenstein algebras of Sperner number at most. 6 and all linear forms. This is 
facilitated by the D. Buchsbaum–D. Eisenbud Pfaffian structure theorem and related 
work [ 18, 22, 25] which specifies the Betti resolutions possible given .H(A). The  
results are still complex with .26 Jordan types for .H = (1, 3, 4k, 3, 1) when . k ≥ 3
and 47 for .H = (1, 3, 5k, 3, 1) with .k ≥ 4. 

In [ 1] the weak Lefschetz property and Jordan types for linear forms of a class 
of graded AG algebras, called Perazzo algebras, of codimension five were studied. 
For Perazzo algebras, the multiplication map .l j−2 from degree . 1 to degree . j − 1
does not have maximal rank, where. j is the socle degree. Thus, the strong Lefschetz 
property is not satisfied for this family. In [ 1] all Jordan types for linear forms of 
Perazzo algebras of codimension five with the smallest possible Hilbert function 
were determined.
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2 Properties of Jordan Type, and of Jordan Degree Type 

2.1 Lefschetz Properties and Jordan Type 

Definition 2.1 (Lefschetz properties) Let . A be a graded Artinian algebra of highest 
socle degree. j and let.l ∈ A1. We say that the pair.(A, l) isweak Lefschetz (WL) if for 
each .i ≥ 0 the multiplication map .×l : Ai → Ai+1 has maximal rank. The algebra 
.A satisfies the weak Lefschetz property (WLP) if it has a WL element. We say that 
the pair .(l, A) is strong Lefschetz (SL) if for each .i, d ≥ 0 the multiplication map 
.×ld : Ai → Ai+d has maximal rank. The algebra .A satisfies the strong Lefschetz 
property (SLP) if it has a SL element. 

The following result part A is a portion of [ 48, Proposition 2.10]; part B is essen-
tially [ 48, Lemma 2.11], shown when .H(A) is also symmetric in [ 34, Proposition 
3.5]. We say that a Hilbert function .H(A) = (h0, h1, . . . , h j ) is unimodal if there 
is an integer . k such that .h0 ≤ · · · ≤ hk and .hk ≥ hk+1 ≥ · · · ≥ h j . Recall that the 
Sperner number Sperner.(A) is the maximum value of .H(A). 

Lemma 2.2 A. Let . A be a graded Artinian algebra (possibly non-standard), and 
.l ∈ A1. Then the following are equivalent 

(i) The pair .(A, l) is strong Lefschetz; 
(ii) The Jordan type.PA,l = H(A)∨, the conjugate of the Hilbert function viewed 

as a partition. 

B. Assume further that .H(A) is unimodal. Then the following are equivalent 

(i) The pair .(A, l) is weak Lefschetz. 
(ii) The dimension .dimk A/lA = Sperner(A). 

(iii) The number of parts of the Jordan partition.PA,l is.Sperner(A), the minimum 
possible given .H(A) (Corollary 1.7). 

Proof The proof of Lemma 2.2(A) under the hypothesis is a bit subtle see [ 48, 
Proposition 2.10]. For Lemma 2.2(B), the proof of .B(i) ⇔ B(ii) is straightforward 
from the definitions; the proof of .B(ii) ⇔ B(iii) follows from decomposing .A as a 
direct sum of strings (Lemma 1.3). □

2.2 Higher Hessians and Mixed Hessians 

Graded Artinian Gorenstein algebras are determined by a single polynomial in the 
Macaulay dual ring, by a result of Macualay [ 62]. Let .A = R/AnnF be an Artinian 
Gorenstein algebra with dual generator .F ∈ E j = kD P [X1, . . . , Xr ] j , where .AnnF
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is the ideal generated by all the forms.g ∈ R such that.g ◦ F = 0. Maeno and Watan-
abe [ 63] introduced higher Hessians associated to the dual generator. F and provided 
a criterion for Artinian Gorenstein algebras having the SLP. 

We first briefly recall the Macaulay duality [ 60], see [ 26, Sect. 21.2], [ 44]; the 
recent emendation by Kleiman and Kleppe gives a geometric view consistent with 
studying deformation [ 57]. We let.R = k[x1, . . . , xr ] act on. E by contraction 2 where 
for.u ≥ k,.xk

i ◦ Xu
j = δi, j Xu−k

i (we will call this.∂k Xu
j /∂ Xk

i ) and extending this mul-
tilinearly to an action of .h ∈ R on .F ∈ E. 

.h ◦ F = h(∂/∂ X1, . . . , ∂/∂ Xr ) ◦ F, (1) 

so taking .F = X 3
1 X 2

2 + X1X 4
2 we have .x1x 2

2 ◦ F = X 2
1 + X 2

2 . 

Definition 2.3 ([ 63, Definition 3.1]) Let. F be a polynomial in. E and. A = R/AnnF
be its associated Gorenstein algebra. Let .Bk = {α(k)

i }i be an ordered .k-basis of .Ak . 
The entries of the .k-th Hessian matrix of .F with respect to .Bk are 

. Hessk(F) = (α(k)
u α(k)

v F)u,v.

Note that when .k = 1, .Hess1(F) coincides with the usual Hessian. P. Gordan and 
M. Noether proved that the (first) Hessian of every homogeneous form.F in at most 
. 4 variables has non-zero determinant unless. F defines a cone [ 31]. This is no longer 
the case in polynomial rings with at least . 5 variables: a family of forms that do not 
define a cone and for which the Hessian has zero determinant was provided by [ 31, 
71], they are called Perazzo forms. 

Up to non-zero constant multiple, .det Hessk(F) is independent of the choice of 
basis .Bk . For every .0 ≤ k ≤ [ j

2 ] and a linear form .l = a1x1 + · · · + ar xr the rank 
of .×l j−2k : Ak → A j−k is equal to the rank of .Hessk

l(F); i.e. the Hessian matrix 
evaluated at the point.Pl = (a1, . . . , ar )—see Theorem 2.2 below. For now we state, 

Theorem 2.1 ([ 63, Theorem 3.1], [ 74]) An AG algebra .A = R/AnnF with socle 
degree . j has the SLP if and only if there exists linear form .l ∈ R1 such that 

. det Hessk
l(F) /= 0,

for every .k = 0, . . . , [ j
2 ]. 

As mentioned above, for Perazzo forms.F the determinant of the first order Hes-
sian,.Hess1(F), is identically zero. So by the above theorem the associated AG alge-
bra of a Perazzo form fails to have the SLP. The WLP and Jordan types of Perazzo 
algebras in . 5 variables have been studied in [ 1, 27]. 

For an AG algebra for which all higher Hessians have non-vanishing determinants, 
the above theorem shows that for a general enough linear form. l all the multiplication 
maps .l j−2k : Ak → A j−k have maximal rank. It is natural to ask: if an AG algebra

2 When.char k = 0 or.char k > j we may use the usual differentiation action, see [ 40, Appendix A]. 
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.A has at least one Hessian with vanishing determinant, which multiplication maps 
have maximal rank and which ones do not? Gondim and Zappalà [ 30] introduced 
mixed Hessians that generalize the higher Hessians. 

Definition 2.4 ([ 30, Definition 2.1]) Let.A = R/AnnF be the AG algebra associated 
to .F ∈ E j . Let .Bk = {α(k)

i }i and .Bu = {β(u)
i }i be .k-basis of .Ak and .Au respectively. 

The entries of the mixed Hessian matrix of order.(k, u) for. F with respect to .Bk and 
.Bu is given by 

. Hess(k,u)(F) = (α(k)
u β(u)

v F)u,v.

Notice that this generalizes the definition of higher Hessians and we have. Hessk(F) =
Hess(k,k)(F). 

Theorem 2.2 ([ 30, Theorem 2.4]) Let . A be a standard graded AG algebra. Then 
the rank of the mixed Hessian matrix of order .(k, u) evaluated at the point . Pl =
(a1, . . . , ar ) is the same as the rank of the multiplication map .lu−k : Ak → Au for 
.l = a1x1 + · · · + ar xr . 

The method of higher Hessians and mixed Hessians has been used to study the 
Lefschetz properties for graded AG algebras, for instance see [ 8, 27, 28]. The ranks 
of higher and mixed Hessians together at the point.Pl completely determine the ranks 
of multiplication maps by different powers of the linear form . l in all degrees, and 
hence, when the Hilbert function .H(A) is unimodal, also the Jordan degree type of 
.(l, A) (Proposition 2.16). Costa and Gondim in [ 23] determined the Jordan types for 
general linear forms of AG algebras having low codimension and low socle degree 
in terms of the ranks of the associated mixed Hessians. 

The first and second authors with Khatami classified [ 10] all partitions that can 
occur as Jordan types of linear forms for AG algebras in codimension two (these are 
exactly complete intersection algebras by [ 61]) having a fixed Hilbert function. It has 
been shown that in codimension two, the Jordan types of linear forms of AG algebras 
are completely determined by the rank of higher Hessians. In fact, they are uniquely 
determined by the sets of higher Hessians that have vanishing determinants. 

Theorem 2.3 ([ 10, Theorem 3.8]) Assume that .H = (
1, 2, 3, . . . , dk, . . . , 3, 2, 1

)
, 

is a Hilbert function of some complete intersection algebra for .d ≥ 2 and . k ≥ 2
.(k = 1, respectively). Let . P be a partition that can occur as the Jordan type of a 
linear form and an Artinian complete intersection algebra having Hilbert function 
. H. Then the following are equivalent. 

(i) .P = Pl,A for a linear form .l ∈ R1 and an Artinian complete intersection alge-
bra .A = R/AnnF, and there is an ordered partition .n = n1 + · · · + nc of 
an integer . n satisfying .0 ≤ n ≤ d (or .0 ≤ n ≤ d − 1, respectively) such that 
.det Hessn1+···+ni −1

l (F) /= 0, for each .1 ≤ i ≤ c, and the remaining Hessians are 
zero; 

(ii) . P satisfies 
.P = (

pn1
1 , . . . , pnc

c , (d − n)d−n+k−1
)
, (2) 

where .pi = k − 1 + 2d − ni − 2(n1 + · · · + ni−1), for .1 ≤ i ≤ c.


