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Preface

Advanced and creative materials are other names for smart materials. They can be described 
as advanced materials that react intuitively to environmental changes or as materials that 
can return to their original shape in response to certain stimuli. Based on their characteris-
tics, such as active or passive response, smart materials are classified. There are two types of 
active materials; the first kind cannot change its characteristics when subjected to outside 
stimuli, such as photochromatic spectacles, which only alter their colour when exposed to 
sunlight. The other kinds, like piezoelectric materials, can change one sort of energy (ther-
mal, electrical, chemical, mechanical, and optical) into another. When subjected to exter-
nal pressure, it can generate an electric charge. As an example, optical fibers can transmit 
electromagnetic waves. In contrast, passive smart materials can transmit a specific sort of 
energy. They have some amazing qualities that set them apart from other materials, such as 
transiency—they can react to different kinds of external stimuli, immediacy—the response 
time is much shorter, self-actuation—the capacity to change their appearance and shape, 
selectivity—the response is divided and expected, directness—the response is limited to 
the activating event, shape-changing—the material can change its shape to external stimuli, 
self-diagnostic—their ability to determine their own health, and self-healing – their ability 
to recover and fixed issue by themselves.

The ability to synthesize novel materials has substantially progressed thanks to science 
and technology over the past 20 years. They fall mostly into the following four categories: 
polymers, ceramics, metals, and smart materials. Among these, smart materials are gain-
ing in popularity since they have more uses than conventional materials. Smart materials 
are unusual substances that have the ability to alter their properties, such as those that can 
immediately change their phase when placed near a magnet or their shape simply by apply-
ing heat. The human race will be significantly impacted by this new era of smart materials. 
For instance, some of them can adapt their properties to the environment, some have sen-
sory capabilities, some can repair themselves automatically, and some can degrade them-
selves. These extraordinary properties of smart materials will have an effect on all facets of 
civilization. There are many different types of intelligent materials, including magnetorhe-
ological materials, electro-rheostat materials, shape memory alloys, piezoelectric materials, 
and more. This book describes many forms of smart materials and their possible uses in 
various fields. Thus, this book titled “Smart Materials for Science and Engineering” cover 
most of the significant areas of smart materials and useful for the readers.
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Scope of the Book

The present book gives a complete description about the different types of smart materi-
als. In this book, a literature survey discusses the different types of smart materials such 
as based ceramics, polymers, organic compounds, etc., and their need, advantages, disad-
vantages, and applications will be comprehensively discussed. In this book, the discussion 
about the well investigated smart materials including piezoelectric, Magnetostrictive, shape 
memory alloys, electro-rheological fluid, and magnetorheological fluid will be discussed 
with their present prospects and current literature survey.

This book covers the various aspects of the smart materials. Chapter 1 describes the 
detailed introduction of the smart materials, historical overview and future prospec-
tive. Fabrication and characterization of the smart materials are discussed in Chapter-2. 
Chapter-3 and Chapter-4 provides the details about medical application in dental science 
and tissue engineering. The various application and preparation strategies of the smart 
materials are discussed in the Chapter-5 to Chapter-8. The energy storage applications of 
the smart materials are discussed in Chapter-9 to Chapter-12. The fuel cells and biofuel 
cell applications are discussed in Chapter-13 and Chapter-14. The CO2 reduction, capture 
and semiconductor application from the smart materials are discussed in Chapter-15 and 
Chapter-16, respectively. Further, the futuristic microelectronics from the smart materi-
als are discussed in Chapter-17. Hence, this book is quite beneficial for undergraduate, 
post-graduate, Ph.D. scholar, Post-Doc fellow, faculty and scientist working in interdisci-
plinary areas to understand fundamentals of smart materials, their advantages, disadvan-
tages, and applications in various societal and smart city problems.
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Introduction: Historical Overview, 
Current and Future Perspective

Unni kisan*, R.R. Awashthi and Sanjeev Kumar Trivedi

Faculty of Engineering and Technology, KMC Language University, Lucknow, India

Abstract
Human civilization was dependent on the use of materials in the ancient era as it is today. Humans 
started using stone before progressing to functional nanomaterials; today, humans benefit from 
using new advanced materials named smart materials. In the present scenario, humans develop dif-
ferent types of smart materials like piezoelectric materials, magnetostrictive materials, dielectrics, 
thermoelectric materials, nano-medicines, shape-memory alloys, and rheological fluids. These types 
of smart materials are applicable for sensing devices, data storage, fast commutation, cloud comput-
ing, and different engineering as well as medical tools and equipment. Biodegradable and low-cost 
smart materials will develop due to the synthesis of different amalgamation of materials in the future. 
The newly developed smart materials may be rapidly used in the engineering, medical, and the infor-
mation technology sectors.

This book chapter aims to promote awareness on smart materials for the extensive research and 
knowledge enhancement for new applications in the future. Historical views and modern and future 
perspectives of smart materials are discussed in this chapter.

Keywords:  Historical overview, smart materials, current prospective, future prospective, 
application of smart materials

1.1	 Introduction

In ancient times, humans used different materials for various purposes, due to which there 
was an enhancement in their living standards. Civilizations were categorized on the basis 
of their invention of material; the primary age was the Stone Age. Bronze Age was the most 
radical and was more sustainable. The development of bronze signified the start of a new 
metallurgical age, which saw the synthesis of numerous materials. Engineering and tech-
nology have made significant advancements in the manufacture of novel materials during 
the last two decades. They could be subdivided primarily into four groups: polymers, 
ceramics, metals, and smart materials. Because they have more applications than traditional 
materials, smart materials are among them and are growing in popularity. Smart materials 

*Corresponding author: krishnanswami1996@gmail.com
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are unique materials with the capability of changing their properties, such as substances 
that may instantly change their phase when placed near a magnet or their shape by sim-
ply reheating. These unexpected abilities of advanced material will have an effect on every 
aspect of civilization [1].

The terms “smart,” “intelligent,” and “adaptive” were first used to describe the newly 
developing field of research that involved incorporating electro-active efficient materials in 
massive structures as in actuators and in situ sensors in the beginning of the 1980s. Tiny and 
microstructure transducers and precise mechatronics (mechanical + electrical) controllers 
constituted the only applications for electro active materials in the past [2].

Mecha, which signifies mechanical, and tronics are terms from the fields of electrical 
and electronic engineering, etc. Also included is digital engineering. In the other mean-
ing, as produced items and technologies are advanced, it will become gradually difficult to 
distinguish the electronics between how deeply and naturally they are incorporated into 
processes. When seen in the context of systems design, the field of mechatronics could be 
characterized as the intersection of these three main domains rather than just the total of 
the three. Figure 1.1 [3] depicts mechatronics’ multidisciplinary approach. “The effective 
integration of electronic control, systems thinking, and precision mechanical engineering 
in the design of goods and industrial processes” [4].

During the 19th century, mechanical engineering as a popular discipline saw a burst in 
growth as it established the groundwork of successful and quick advancement for the revo-
lution of the industry. Mechanical, electrical, civil, and chemical engineering were the four 
main engineering disciplines of the 20th century. These disciplines still have their own bod-
ies of knowledge, textbooks, and professional journals since they are thought to have sepa-
rate intellectual and professional domains. Entrants might evaluate their unique intellectual 
abilities and select one of the fields as a career. The information revolution is a current 
scientific and social change that we are currently witnessing, and oddly, engineering exper-
tise appears to be both concentrating and diversifying. The advancement of engineering 
electronics that has sparked communication and information that revolutionized people is 
what gave rise to this modern revolution. One of the newest and most fascinating areas of 
engineering is mechatronics, which incorporates elements of more established disciplines 

Mechatronics

Mechanical

Electronics Electrical
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Figure 1.1  Mechatronics: a multi-disciplinary approach [4].
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and necessitates a more comprehensive approach to the design of what we can properly 
refer to as mechatronic systems. So, exactly what is mechatronics? The word “mechatronics” 
refers to a multidisciplinary subject of engineering that is currently in rapid development. 
The term “mechatronics” was first used in Japan in the late 1960s; it later gained popularity 
in Europe and is now widely used in the US. Mechatronic system design primarily draws on 
the fields of mechanics, semiconductors, controls, and computer engineering.

An engineer of mechatronic systems must be capable of construction and choose dig-
ital and analogical circuitry systems, micro-processor-based elements, mechanical com-
ponents, actuators, and sensors so that the finished result meets the necessary objectives. 
Smart devices are another name for mechatronic systems. Although a specific definition of 
the word “smart” is elusive, in the context of engineering, we refer to the incorporation of 
aspects like computing, logic, and feedback system that are combined in a complex design, 
which may appear to emulate human thought procedures. The engineering of mechatronic 
systems requires knowledge from numerous domains, making it difficult to encapsulate 
within a traditional field of engineering. The designer of mechatronic systems needs to be 
a generalist who is eager to learn from a variety of sources and apply it to their work. The 
learner may initially feel intimidated by this, yet it has many advantages for originality and 
lifelong learning. Nowadays, almost all mechanical machines come equipped with electrical 
parts and some kind of computer monitoring or control. As a result, a widespread array of 
system and components fall under the mechatronic systems. Microcontrollers are being 
included into electromechanical devices increasingly frequently, giving system designers 
far greater flexibility and control. All the components of an engineering mechatronic sys-
tem are shown in Figure 1.2. The interface circuit between the input/output and control 
circuits are controlled by the digital devices [3].

The engineering disciplines that deal with the design of controlled electromechanical 
systems are currently in a process of evolutionary transformation. A mechanical system 
that is computer controlled is referred to as mechatronic. Control decisions are frequently 
made by an embedded computer rather than a general-purpose computer. Yaskawa Electric 
Company engineers originally used the term “mechatronics” Nowadays, an embedded 
computer controller is almost built into every electromechanical system. As a result, con-
cerns with computer hardware and software are included in the discipline of mechatronics 
when applied to the control of electromechanical systems. The field of mechatronics as we 
know it today would not exist if cheap microcontrollers were not widely available for the 
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Figure 1.2  Mechanical components in mechatronics system.
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mainstream market. The application of computer control in countless consumer products 
is made possible by the accessibility of embedded microprocessors for the mass market at 
continually decreasing cost and rising performance. The preceding model [3] is the out-
dated model for an electromechanical product design team.

(i)	 Engineers who design a manufacturer’s mechanical parts;
(ii)	 Engineers who create a product’s electrical parts, including actuators, 

sensors, amplifiers, and other devices, as well as the control logic and 
algorithms;

(iii)	 Computer hardware and software developers who design the real-time 
controls for the product.

Adaptive materials or structures, and smart and intelligent materials are generally 
thought to have the capacity to be sophisticated, trendy, and active. In Figure 1.3, the struc-
tronic system is depicted. As a consequence, the objective of this study is to discuss the 
fundamental properties, design concepts, and real-world uses of the major smart materials 
listed in Table 1.1, the smart materials that have been studied. Also covered are the spec-
ifications for multifield optothermoelectro mechanical systems, which are used to solve 
various challenging field control problems coupling thermal, magnetic, electric, magnetic, 
and optical interactions [2].

1.2	 Historical Overview of Smart Material

In 1880, quartz crystals were subjected to mechanical forces and the Curie brothers 
(Jacques and Pierre) detected the creation of electric fields on the crystals (the Greek 
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Figure 1.3  Structronics—A multidiscipline integration.
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word piezo means “push”). When the crystal was exposed to electric fields and they also 
saw strain formation. In general, the piezo-electricity is an electro-mechanical phenom-
enon that couples the electric (static coupling) and elastic (dynamic coupling) fields. 
The direct piezoelectric effect is a piezo-electric material that responds to stresses or 
pressures of mechanical property by producing voltages. The inverse piezoelectric effect 
is the ability of electric charges or fields to cause mechanical stresses or strains in a 
material.

Chang and Read discovered shape-memory-like behavior in a gold cadmium (AuCd) 
sample for the first time in 1932. Later on, in 1938, brass underwent this shape change, and 
in 1951, an AuCd bend bar did as well. Buehler, Gilfrich, and Wiley did not discover the 
whole shape-memory effect in various nickel–titanium alloys until 1962. The most popu-
lar shape-memory alloy (SMA) is commercially manufactured as nitinol (NiTi). Military 
high-performance hydraulic systems used the Cryofit hydraulic pipe coupling, which 
Raychem successfully manufactured in 1969. In Japan, demand for SMA goods signifi-
cantly rose during the 1970s.

The ER feature was first noted by Winkler in 1784. The Winslow effect is occasionally 
used to refer to the ER phenomenon because Winslow continued to rigorously study ER 
property variations in 1947. Colloidal suspensions known as ER fluids undergo significant 
property changes in response to an appropriate electrical field.

Polymeric solutions known as ionic polymeric gels have the capacity to change their 
physical characteristics in response to external environmental factors like pH, electrical 
charge and field, and so on. A paper on the ionization-induced swelling and contraction 
of polymeric acids is published in 1949 by Katchalsky and Kuhn. Although many novel 
polymers were found between 1988 and 1991, little work was started until the early 1990s 
theoretically. To ascertain characteristics of several of the older polymers, tests had to be 
conducted. Some gel qualities still need to be determined experimentally because not all 
gels are now covered by theories that can predict polymer bf.

Table.1.1  Different eras smart materials [2].

Smart materials Time periods

Pyroelectrics 315 B.C.

Piezoelctric 1880

Electro and Magneto-rheological Fluids 1784/1947

Superconductors 1911

Electro and Magneto-strictive Materials 1954/1840

Shape-memory Material 1932

Polyelectrolyte Gels (pH muscles) 1949

Photostrictive Material 1974
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Michael Faraday demonstrated in 1845 that polarized light’s polarization angles may be 
altered by passing through a thick glass sheet fastened to the poles of a strong magnet. The 
magnetooptical effect is sometimes known as the Faraday effect.

The disappearance of mercury wire’s resistance as the temperature approaches zero 
degrees Fahrenheit was originally noticed by Kamerlingh Onnes in 1911. A new era of 
superconductivity began as a result of this observation. At room temperature, ion oscilla-
tions within the lattice structure of metallic conductors and material impurities, flaws, and 
imperfections cause electrical resistance. The resistance brought on by the vibrating ions, 
however, reduces as the temperature of some materials rises. When the temperature falls 
below a specific level, known as the critical temperature. Various nonmagnetic elements, 
alloys, and compounds transform into a superconductive state [2].

1.3	 About Smart Materials

Any new material that can be controlled and experiences a macroscopic change in one of 
its physical and mechanical properties as a result of a non- mechanical external stimuli is 
described as a smart material [5]. Advanced or intelligent materials are other names for 
smart materials. They can be described as sophisticated materials that react intelligently to 
environmental changes or as materials that can return to their basic shape in response to 
certain stimuli. Intelligent materials are categorized into two parts: active and passive smart 
materials. Active smart materials can transport electromagnetic waves; examples of passive 
smart materials are fiber optics. Additionally, there are two categories for active materials. 
For example, photochromatic spectacles only change colour when placed in sunlight; they 
cannot modify their attributes when subjected to external stimuli. The capability of intelli-
gent material to change their shape in response to external stimuli is self-diagnostic; they 
are capable of automatically detecting cracks on their surfaces, and are self-healing when 
damaged [1].

Table 1.2  Type of smart materials [5].

Stimulus Active materials Semi-active materials

Thermal Field Shape Memory Alloys (SMAs)
Shape Memory Plymers 

(SMPs);

•	 Magnetorheological Fluid (MRF)
•	 Electrorheological Fluid (ERF)
•	 Magnetorheological Elastomers (MRE)

Magnetic Field Magnetic Shape Memory 
Alloys (MSMAs);

Magnetostrictive Materials;

Electric Field Electrostrictive Materials;
Piezoelectric Materials;
Dielectric Materials;
Photomechanical Materials;


