SSARTERIALS FOR SCIENCE AND

REDUCTION

CAPTURE

CONVERSION

UPENDRA KUMAR and PIYUSH K. SONKAR

Scrivener Publishing

WILEY

•

Smart Materials for Science and Engineering

Scrivener Publishing

100 Cummings Center, Suite 541J Beverly, MA 01915-6106

Publishers at Scrivener Martin Scrivener (martin@scrivenerpublishing.com) Phillip Carmical (pcarmical@scrivenerpublishing.com)

Smart Materials for Science and Engineering

Edited by Upendra Kumar and Piyush Kumar Sonkar

This edition first published 2024 by John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA and Scrivener Publishing LLC, 100 Cummings Center, Suite 541J, Beverly, MA 01915, USA © 2024 Scrivener Publishing LLC

For more information about Scrivener publications please visit www.scrivenerpublishing.com.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, except as permitted by law. Advice on how to obtain permission to reuse material from this title is available at http://www.wiley.com/go/permissions.

Wiley Global Headquarters

111 River Street, Hoboken, NJ 07030, USA

For details of our global editorial offices, customer services, and more information about Wiley products visit us at www. wiley.com.

Limit of Liability/Disclaimer of Warranty

While the publisher and authors have used their best efforts in preparing this work, they make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of merchant-ability or fitness for a particular purpose. No warranty may be created or extended by sales representatives, written sales materials, or promotional statements for this work. The fact that an organization, website, or product is referred to in this work as a citation and/or potential source of further information does not mean that the publisher and authors endorse the information or services the organization, website, or product may provide or recommendations it may make. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for your situation. You should consult with a specialist where appropriate. Neither the publisher nor authors shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages. Further, readers should be aware that websites listed in this work may have changed or disappeared between when this work was written and when it is read.

Library of Congress Cataloging-in-Publication Data

ISBN 978-1-394-18581-8

Cover images: Solar Panel: Wave Break Media Ltd | Dreamstime.com, Black & White Abstract: Kateryna Linnik | Dreamstime. com, Fuel Cell: Luchschen | Dreamstime.com, Dental Implants: Bymandesigns Dreamstime.com Cover design and drawings: Kris Hackerott

Set in size of 11pt and Minion Pro by Manila Typesetting Company, Makati, Philippines

Printed in the USA

10 9 8 7 6 5 4 3 2 1

Dedicated to ours Authors, Collaborators & Beloved Parents

Contents

Preface					
Ac	knov	vledgei	nents		xix
Scope of the Book					
1	Intr	oducti	on: Histo	rical Overview, Current and Future Perspective	1
	Unr	ii kisan	, R.R. Aw	vashthi and Sanjeev Kumar Trivedi	
			duction		1
				rview of Smart Material	4
	1.3		t Smart M		6
		1.3.1	•	s of Some Active and Semi-Active Material	7
			1.3.1.1	1 1 1 1	7
				Piezo-Electric Material Analysis	8
				Magneto-Rheological Fluids Analysis	8
				Magneto-Strictive Materials Analysis	9
				Electro-Rheological Fluids Analysis	9
				Optical Fiber Analysis	9
				Dielectric Elastomers	10
				Photo-Mechanical Materials	10
				Magnetorheological Fluids (MRF)	10
	1 /	Cum		Magneto-Rheological Elastomers (MRE)	10
	1.4	1.4.1		iture Perspectives of Smart Materials	11 11
			Smart C Smart St	Composite	11
		1.4.2			11
				Data Acquisition (Tactile Sensing) Data Transmission (Sensory Nerves)	11
				Command and Control Unit (Brain)	11
				Data Instructions (Motor Nerves)	12
				Action Devices (Muscles)	12
		143		ptic Sensing	12
			-	ng Component	12
				and Actuators	14
				nd and Control Unit	14
				The Processing Function	14
				The Analysis Function	14

		1.4.7	Automobile Sector	14
			1.4.7.1 Noise Reduction in Vehicles	14
		1.4.8	Military Areas	14
			1.4.8.1 Smart Skin	15
			1.4.8.2 Autonomous Smart Systems	15
			1.4.8.3 Stealth Applications	15
		Refer	ences	15
2	Fab	ricatio	n and Characterization Tools for Organic Semiconductors as Smart	
	Mat	erials i	in Optoelectronic Device Applications	17
	Min	akshi S	Sharma, Chandra Mohan Singh Negi, Parvez Ahmed Alvi	
	and	Saral	Kumar Gupta	
	2.1	Intro	duction	18
	2.2	Over	view of Organic Semiconductors	18
	2.3	Opto	electronic Properties of Conjugated Polymers	19
	2.4	Opto	electronic Devices	19
		2.4.1	Organic Light-Emitting Diodes (OLEDs)	20
			Organic Photodetectors (OPDs)	20
			Organic Solar Cells (OSCs)	21
	2.5		view of Smart Materials	22
			Specification of Smart Materials	22
			Carbon Nanotubes (CNTs)	22
			Reduced Graphene Oxide (rGO)	23
			Poly(3-Hexylthiophene) (P3HT)	24
			Fullerenes and Its Derivative	24
			Polyaniline (PANI)	24
	2.6		ods and Techniques	25
			Sonication Process	25
			Centrifugation	26
			Spin Coating Unit	26
			Glove Box	27
			Thermal Evaporation Unit	28
		2.6.6	1 1	29
	2.7		odology	29
		2.7.1	Substrate Preparation and Device Fabrication	29
	2.8		acterization Techniques	30
		2.8.1	UV/Vis/NIR Spectrophotometer	30
		2.8.2	Raman Spectroscopy	31
		2.8.3	Field Emission Scanning Electron Microscopy (FESEM)	32
			Current–Voltage (I–V) Measurements	33
	2.0		Electrochemical Impedance Spectroscopy (EIS)	34
	2.9		lusion and Future Work	34
		Refer	ences	35

3	Prin	rt Scaffold Constructs for Regenerative Medicine and Tissue Engineering cy Choudhary, Ayushi Gupta, Saurabh Kumar Gupta, Shrey Dwivedi Sangeeta Singh	39
	3.1	Introduction	39
	3.2	Applications of Smart Scaffolds in Different Areas	43
		3.2.1 Bone Tissue Engineering	43
		6 6	46
		1	47
			48
			52
		6 6	54
	3.3	6 6	60
			60
			62
	3.4	Conclusion	63
		References	63
4	Арр	ication of Smart Materials in Dental Sciences	75
	Ruq	iiya Saleem, Amaresh Kumar Sahoo and Shalini Gupta	
	4.1	Introduction	76
	4.2	Clinical Applications of Smart Materials in Various Branches of Dentistry	77
		4.2.1 Smart Files	77
			78
		4.2.1.2 Surface-Treated NiTi Files	79
			79
		4.2.3 Glass Ionomer Cement (GIC)	79
		4.2.4 Smart Composites	80
		4.2.5 Self-Healing Composites	81
		4.2.6 Smart Denture Base Polymers	81
		1	83
			84
			85
		1 /	85
	4.3		85
		1	86
		References	86
5		hene-Related Smart Material (GRSM): Synthesis, Characterization,	
			89
		ha Yadav, Rahul Bhatnagar and Saral Kumar Gupta	
	5.1		89
	5.2		94
		/ 1	94
		1	94
		5.2.2.1 Synthesis of TiO_2 Paste	94

		5.2.2.2 Doctor Blade Method	94
		5.2.2.3 Annealing	95
		5.2.3 Fabrication of Graphene Oxide-Based DSSCs	95
		5.2.4 Characterization Techniques	96
	5.3	Results and Discussion	96
		5.3.1 X-Ray Diffraction Analysis	96
		5.3.2 Raman Spectroscopy Analysis	97
		5.3.3 Fourier Transform Infrared Spectroscopy (FTIR)	97
		5.3.4 Field Emission Scanning Electron Microscopy (FESEM)	
		and EDS Analysis	98
		5.3.5 Photovoltaic Performances Analysis	99
	5.4	Conclusions	100
		References	100
6	Svn	thesis and Characterization of Mechanical and Microstructural	
v		perties of Fly-Ash-Reinforced Aluminum-Based Metal Matrix Composite	105
		ul Bhatnagar and Varsha Yadav	100
		Introduction	105
		Materials and Methods	109
		6.2.1 Raw Materials	109
		6.2.2 Synthesis Process	109
		6.2.2.1 Stir Casting Technique	109
		6.2.2.2 Synthesis of Composite	111
		6.2.3 Testing of Composites	111
		6.2.3.1 Tensile Strength	111
		6.2.3.2 Hardness	112
		6.2.3.3 Microstructure	112
	6.3	Results and Discussion	112
		6.3.1 Tensile Strength Measurement	112
		6.3.2 Hardness	113
		6.3.3 Microstructure	114
	6.4	Conclusion	115
		References	116
7	Oro	anic Smart Materials: Synthesis, Characterization, and Application	121
,		valeela B. and S. M. Hanagodimath	121
	7.1	Introduction	121
	7.2	Organic Smart Materials	122
	7.3	Materials and Experimental Methods	124
	110	7.3.1 Procedure to Record Spectra	124
		7.3.2 Computational Methods	121
	7.4	Synthesis of Organic Smart Materials	125
	, . 1	7.4.1 Synthesis of Benzofuran Derivative 5NFMOT	125
		7.4.2 Synthesis of Coumarin Derivative	125
		7.4.3 Synthesis of Indole Derivative	120
	7.5	Results and Discussion	127

		7.5.1	UV-Visible and Fluorescence Spectra	127
			Measurement of Fluorescence Lifetime	128
		7.5.3	Quantum Chemical Calculations	130
	7.6	Appli	cations	131
		7.6.1	Chemo- and Biosensors	132
		7.6.2	Bioimaging	132
		7.6.3	Optoelectronic Applications	132
			Fluorescent Indicators	132
		7.6.5	Cosmetic Science	132
		7.6.6	Laser Dyes	132
	7.7	Conc	lusions	133
		Refer	ences	133
8			rictive Material-Based Smart Materials, Synthesis, Properties,	
		Applic		135
			h and Sonam Perween	
			luction	136
			view of Smart Materials Based on Magnetostrictive Materials	137
	8.3	0	n of Magnetostriction	138
	8.4		esis of Magnetostrictive Materials	140
			Directional Solidification Methods	140
			Rapid Quenching Method	140
			Rolling Method	141
			Magnetron Sputtering Method	141
	0.5		Bonding Method	141
	8.5	-	erties of Magnetostrictive Materials	141
			Magnetic Anisotropy	142
			Domain Processes and Magnetic Hysteresis	142
	06		Multi-Valued Material Properties	144
	8.6	8.6.1	ods of Magnetostrictive Property Measurement Direct Methods	144
			Indirect Methods	144
	07		cation of the Magnetostrictive Smart Materials	145 145
	8.7 8.8		lusion	145
	0.0	Refer		148
9	Mat	erials I	Development of Supercapacitors—Promising Device for Future	
			prage Applications	151
		01	vi Sharma	
	9.1	Intro	duction	151
	9.2		iple of Operation of Conventional Capacitors and Supercapacitor	154
	9.3		of Supercapacitors	155
		9.3.1	Electrochemical Double-Layer Capacitors (EDLCs)	156
		9.3.2	Pseudocapacitors	157
			Hybrid Capacitors	158
	9.4		opment of Advanced Materials for Supercapacitors	160

xii Contents

	9.5	Applicat	ions of Supe	ercapacitors	164
	9.6	Conclus	ion		166
		Reference	ces		166
10			•	Materials in Energy Storage Devices: Batteries <i>ni and Sanjay Kumar</i>	173
	10.1	Introdu		······································	173
	10.2	Fundar	nental Aspe	ects, Different Types of Electrolytes, and the Role	
		of the H	Electrolyte in	n Battery Technology	175
	10.3	Condu	ctivity Enha	ncement Approach in Solid Electrolyte Materials	182
	10.4	•		hes for Solid Electrolytes	184
	10.5			iture Perspective	186
		Referer	ices		186
11	Sma	rt Materi	als in Ener	gy Storage Devices: Solar Cells	191
	Indu	Sharma,	Neha Bisht	t, Parag R. Patil, Pravin S. Pawar, Rahul Kumar Yadav,	
	Yong	Tae Kim	and Jaeyeo	ng Heo	
	11.1	Introdu			191
	11.2	/1	of Solar Cell		194
		11.2.1		eration Solar Cells	195
				Crystalline Silicon Solar Cells	195
				Gallium Arsenide Solar Cells	196
		11.2.2		eneration Solar Cells	197
				Amorphous Silicon (a-Si) Solar Cells	198
				Cadmium Telluride (CdTe) Solar Cells	200
				Copper Indium Gallium Selenide (CIGS) Solar Cells	200
		11.0.0		Copper Zinc Tin Sulfide (CZTS) Solar Cells	201
		11.2.3		neration Solar Cells	201
				Dye-Sensitized Solar Cells (DSSCs)	202
				Perovskite-Based Solar Cells	205
	11.3	Euturo		Organic Solar Cells (OPV) Possibilities for Tackling the Challenges in the	208
	11.5			nart Materials	209
		-	Silicon Sol		209
				Solar Cells	210
				rging Solar Cells	212
	11.4	Summa			212
		Referer			213
12	Mixe	ed-Dime	nsional 2D-	-3D Perovskite Solar Cells: Origin, Development,	
		Applicat		5D Terovskite Solar Cens, Origin, Development,	221
				arma and Sushobhan Avasthi	
	12.1	Introdu		······································	222
	12.2	Perovsl	cite Solar Co	ells (PSCs)	223
	12.3			(2D or 2D-3D Mixed) Perovskites	229
				er (RP) Perovskites	231

Contents	xiii	

		Dion-Jacobson (DJ) Perovskites	239
		Alternating Cation Interlayers	244
		Additive Engineering	249
		Compositional Engineering	252
	12.9	Functional Perovskite Photovoltaics	254
	12.10	Conclusion and Future Outlook	259
		References	260
13		nced Materials in Energy Conversion Devices: Fuel Cells	
		iofuel Cells	269
		Kumar Verma, Prerna Tripathi, Akhoury Sudhir Kumar Sinha	
		hikha Singh	
	13.1	Introduction	269
		13.1.1 Electrochemical and Thermodynamic Principles of Fuel Cells	270
		13.1.2 Fuel Cell Efficiency	273
	13.2	Fuel Cell Types and Advancement in Electrode Materials	273
		13.2.1 Advanced Materials for PEM, AFC, PAFC, SOFC, and MCFC	• • •
		Fuel Cells	274
		13.2.1.1 Platinum Group Metals (PGM)	274
		13.2.1.2 Platinum Group Metal Free Materials	275
		13.2.1.3 Carbonaceous Materials	276
		13.2.1.4 Perovskite Materials	277
		13.2.2 Advanced Materials for Biofuel Cells	278
		Current Application Status	279
		Challenges	279
	13.5	Conclusion	280
		References	280
14		t Materials in Energy Storage Devices: Fuel Cells and Biofuel Cells	287
		ım Gurunath Rathod and Venkata Giridhar Poosarla	
		Introduction	287
		Relation of Smart Materials and MFCs	288
		MFCs and Their Mechanism	289
		Classification of MFCs	291
	14.5	Microorganisms Involved in MFCs	291
		MFC Systems	293
		Design of MFCs	294
		Functions/Operations of MFCs	296
		Components of MFCs	297
		Energy from MFCs	298
	14.11	Recent Developments and Challenges in Smart Materials for Energy	
		Storage Devices	299
		Future Perspectives	299
	14.13	Conclusion	300
		References	301

15	Role of Smart Materials in Environmental Remediation: CO ₂ Capture and CO ₂ Reduction				
		2	305		
	Yogendra K. Gautam, Durvesh Gautam, Manohar Singh, Himani,				
		ta Sharma, Beer Pal Singh and Anuj Kumar	205		
	15.1	Introduction	305		
	15.2	CO_2 Reduction Techniques	307		
		15.2.1 Electrochemical CO_2 Reduction Reaction	307		
		15.2.2 The Various Rudiments of an e- CO_2RR Experiment	311		
		15.2.3 Recent Advances in CO_2 Reduction Using Metal Complex	212		
		Molecular Catalysts	313		
		15.2.3.1 Iron-Based Molecular Catalyst	313		
		15.2.3.2 Zn-Based Metal Complex Molecular Catalyst	314		
		15.2.3.3 Mn-Based Metal Complex Molecular Catalyst	314		
		15.2.3.4 Ni-Based Molecular Catalyst Nickel	315		
		15.2.4 Photocatalytic Reduction of CO_2	316		
	15.0	15.2.5 Photoelectrocatalytic CO_2 Reduction	316		
	15.3	Conclusion	318		
		References	319		
16		Perovskite Semiconductors for Future Optical Electronics	325		
	Rash	mi Yadav and Bhoopendra Yadav			
	16.1		325		
	16.2	Perovskite Structure and Characteristics	326		
		Composition Engineering Effects	327		
		Interface Engineering Effects	328		
	16.5	Bandgap Engineering Effects	328		
	16.6	Stability and Degradation Mechanism in Perovskite Solar Cells (PSCs)	330		
		16.6.1 Moisture	330		
		16.6.2 Oxygen	331		
		16.6.3 Temperature	331		
		16.6.4 UV Light or Light Stability	331		
	16.7	Novel Applications	332		
	16.8	Conclusion	332		
		References	333		
17	Band	Gap Engineering and Nanopatterning of Muscovite Mica			
	by Lo	w-Energy Ion Beams Applicable for Futuristic Microelectronics	337		
	Dipa	k Bhowmik, Joy Mukherjee and Prasanta Karmakar			
	17.1	Introduction	337		
	17.2	Experimental Details	338		
		17.2.1 Simulation Methodology	340		
	17.3	Nanopattern Formation on Mica Surface and Its Wettability Property			
		by Low-Energy Ion	340		

	17.3.1	Ripple Pattern Formation and Its Growth Mechanism by 12 keV	
		Ar ⁺ Ion Sputtering on Mica Surface	341
	17.3.2	Surface Wettability Property of Ion-Bombarded Mica Surface	347
	17.3.3	Projectile Ion Mass-Dependent Nano Ripple Patterning	
		on Mica Surface	348
17.4	Band C	Gap Engineering of Muscovite Mica by Low-Energy Ion Beam	
	svia Fe	w-Layer and Monolayer Modification	350
17.5	Conclu	ision	356
	Acknow	wledgments	357
	Referen	nces	357
About th	e Editor	rs	361
Index			363

Preface

Advanced and creative materials are other names for smart materials. They can be described as advanced materials that react intuitively to environmental changes or as materials that can return to their original shape in response to certain stimuli. Based on their characteristics, such as active or passive response, smart materials are classified. There are two types of active materials; the first kind cannot change its characteristics when subjected to outside stimuli, such as photochromatic spectacles, which only alter their colour when exposed to sunlight. The other kinds, like piezoelectric materials, can change one sort of energy (thermal, electrical, chemical, mechanical, and optical) into another. When subjected to external pressure, it can generate an electric charge. As an example, optical fibers can transmit electromagnetic waves. In contrast, passive smart materials can transmit a specific sort of energy. They have some amazing qualities that set them apart from other materials, such as transiency—they can react to different kinds of external stimuli, immediacy—the response time is much shorter, self-actuation—the capacity to change their appearance and shape, selectivity—the response is divided and expected, directness—the response is limited to the activating event, shape-changing—the material can change its shape to external stimuli, self-diagnostic-their ability to determine their own health, and self-healing - their ability to recover and fixed issue by themselves.

The ability to synthesize novel materials has substantially progressed thanks to science and technology over the past 20 years. They fall mostly into the following four categories: polymers, ceramics, metals, and smart materials. Among these, smart materials are gaining in popularity since they have more uses than conventional materials. Smart materials are unusual substances that have the ability to alter their properties, such as those that can immediately change their phase when placed near a magnet or their shape simply by applying heat. The human race will be significantly impacted by this new era of smart materials. For instance, some of them can adapt their properties to the environment, some have sensory capabilities, some can repair themselves automatically, and some can degrade themselves. These extraordinary properties of smart materials will have an effect on all facets of civilization. There are many different types of intelligent materials, including magnetorheological materials, electro-rheostat materials, shape memory alloys, piezoelectric materials, and more. This book describes many forms of smart materials and their possible uses in various fields. Thus, this book titled "*Smart Materials for Science and Engineering*" cover most of the significant areas of smart materials and useful for the readers.

Acknowledgements

- First of all, we are thankful to our contributing authors for their valuable contribution to this book.
- We are thankful to Prof. B. N. Dwivedi (Department of Physics, IIT BHU) Prof. Devendra Kumar (Department of Ceramic Engineering, IIT BHU) for their continuous help, support and motivation.
- We are thankful to Dr. Shail Upadhyay (Department of Physics, IIT BHU) and Prof. V. Ganesan (Department of Chemistry, Institute of Science, BHU) for their sincere effort and dedication to contribute in this book.
- We are thankful to our research group members Dr. Satyam Kumar, Dr. Varsha Yadav, Mr. Narvadeshwar, Amit Kumar Verma, Ms. Vedika, Harshpreet, Manisha, Mr. Ramsundar, and Raj Kumar for their help and support.
- We are thankful to Mr. Angesh Kumar Maurya and Ms. Kavita Sonkar for helping in development of book cover page and index, respectively.
- The authors, Dr. Upendra Kumar acknowledges funding support from SERB, Govt. of India for EEQ project and Indian Institute of Information Technology Allahabad for SEED Grant; Dr. Piyush Kumar Sonkar acknowledges funding support from Institute of Eminence (IoE), Banaras Hindu University (BHU), Varanasi, India for Seed Grant and Trans-disciplinary Research Project.
- We are thankful to our colleagues, collaborators, friends and well-wishers to provide the moral support for this book.
- We are thankful to our family members and friends for providing continuous moral support in this book.

Scope of the Book

The present book gives a complete description about the different types of smart materials. In this book, a literature survey discusses the different types of smart materials such as based ceramics, polymers, organic compounds, etc., and their need, advantages, disadvantages, and applications will be comprehensively discussed. In this book, the discussion about the well investigated smart materials including piezoelectric, Magnetostrictive, shape memory alloys, electro-rheological fluid, and magnetorheological fluid will be discussed with their present prospects and current literature survey.

This book covers the various aspects of the smart materials. Chapter 1 describes the detailed introduction of the smart materials, historical overview and future prospective. Fabrication and characterization of the smart materials are discussed in Chapter-2. Chapter-3 and Chapter-4 provides the details about medical application in dental science and tissue engineering. The various application and preparation strategies of the smart materials are discussed in the Chapter-5 to Chapter-8. The energy storage applications of the smart materials are discussed in Chapter-9 to Chapter-12. The fuel cells and biofuel cell applications are discussed in Chapter-13 and Chapter-14. The CO₂ reduction, capture and semiconductor application from the smart materials are discussed in Chapter-15 and Chapter-16, respectively. Further, the futuristic microelectronics from the smart materials are discussed in Chapter-17. Hence, this book is quite beneficial for undergraduate, post-graduate, Ph.D. scholar, Post-Doc fellow, faculty and scientist working in interdisciplinary areas to understand fundamentals of smart materials, their advantages, disadvantages, and applications in various societal and smart city problems.

Introduction: Historical Overview, Current and Future Perspective

Unni kisan*, R.R. Awashthi and Sanjeev Kumar Trivedi

Faculty of Engineering and Technology, KMC Language University, Lucknow, India

Abstract

Human civilization was dependent on the use of materials in the ancient era as it is today. Humans started using stone before progressing to functional nanomaterials; today, humans benefit from using new advanced materials named smart materials. In the present scenario, humans develop different types of smart materials like piezoelectric materials, magnetostrictive materials, dielectrics, thermoelectric materials, nano-medicines, shape-memory alloys, and rheological fluids. These types of smart materials are applicable for sensing devices, data storage, fast commutation, cloud computing, and different engineering as well as medical tools and equipment. Biodegradable and low-cost smart materials will develop due to the synthesis of different amalgamation of materials in the future. The newly developed smart materials may be rapidly used in the engineering, medical, and the information technology sectors.

This book chapter aims to promote awareness on smart materials for the extensive research and knowledge enhancement for new applications in the future. Historical views and modern and future perspectives of smart materials are discussed in this chapter.

Keywords: Historical overview, smart materials, current prospective, future prospective, application of smart materials

1.1 Introduction

In ancient times, humans used different materials for various purposes, due to which there was an enhancement in their living standards. Civilizations were categorized on the basis of their invention of material; the primary age was the Stone Age. Bronze Age was the most radical and was more sustainable. The development of bronze signified the start of a new metallurgical age, which saw the synthesis of numerous materials. Engineering and technology have made significant advancements in the manufacture of novel materials during the last two decades. They could be subdivided primarily into four groups: polymers, ceramics, metals, and smart materials. Because they have more applications than traditional materials, smart materials are among them and are growing in popularity. Smart materials

^{*}Corresponding author: krishnanswami1996@gmail.com

Upendra Kumar and Piyush Kumar Sonkar (eds.) Smart Materials for Science and Engineering, (1–16) © 2024 Scrivener Publishing LLC

are unique materials with the capability of changing their properties, such as substances that may instantly change their phase when placed near a magnet or their shape by simply reheating. These unexpected abilities of advanced material will have an effect on every aspect of civilization [1].

The terms "smart," "intelligent," and "adaptive" were first used to describe the newly developing field of research that involved incorporating electro-active efficient materials in massive structures as in actuators and *in situ* sensors in the beginning of the 1980s. Tiny and microstructure transducers and precise mechatronics (mechanical + electrical) controllers constituted the only applications for electro active materials in the past [2].

Mecha, which signifies mechanical, and tronics are terms from the fields of electrical and electronic engineering, etc. Also included is digital engineering. In the other meaning, as produced items and technologies are advanced, it will become gradually difficult to distinguish the electronics between how deeply and naturally they are incorporated into processes. When seen in the context of systems design, the field of mechatronics could be characterized as the intersection of these three main domains rather than just the total of the three. Figure 1.1 [3] depicts mechatronics' multidisciplinary approach. "The effective integration of electronic control, systems thinking, and precision mechanical engineering in the design of goods and industrial processes" [4].

During the 19th century, mechanical engineering as a popular discipline saw a burst in growth as it established the groundwork of successful and quick advancement for the revolution of the industry. Mechanical, electrical, civil, and chemical engineering were the four main engineering disciplines of the 20th century. These disciplines still have their own bodies of knowledge, textbooks, and professional journals since they are thought to have separate intellectual and professional domains. Entrants might evaluate their unique intellectual abilities and select one of the fields as a career. The information revolution is a current scientific and social change that we are currently witnessing, and oddly, engineering expertise appears to be both concentrating and diversifying. The advancement of engineering electronics that has sparked communication and information that revolutionized people is what gave rise to this modern revolution. One of the newest and most fascinating areas of engineering is mechatronics, which incorporates elements of more established disciplines

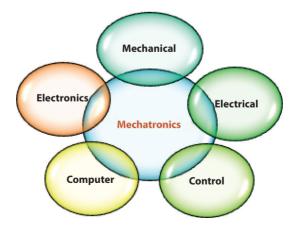


Figure 1.1 Mechatronics: a multi-disciplinary approach [4].

and necessitates a more comprehensive approach to the design of what we can properly refer to as mechatronic systems. So, exactly what is mechatronics? The word "mechatronics" refers to a multidisciplinary subject of engineering that is currently in rapid development. The term "mechatronics" was first used in Japan in the late 1960s; it later gained popularity in Europe and is now widely used in the US. Mechatronic system design primarily draws on the fields of mechanics, semiconductors, controls, and computer engineering.

An engineer of mechatronic systems must be capable of construction and choose digital and analogical circuitry systems, micro-processor-based elements, mechanical components, actuators, and sensors so that the finished result meets the necessary objectives. Smart devices are another name for mechatronic systems. Although a specific definition of the word "smart" is elusive, in the context of engineering, we refer to the incorporation of aspects like computing, logic, and feedback system that are combined in a complex design, which may appear to emulate human thought procedures. The engineering of mechatronic systems requires knowledge from numerous domains, making it difficult to encapsulate within a traditional field of engineering. The designer of mechatronic systems needs to be a generalist who is eager to learn from a variety of sources and apply it to their work. The learner may initially feel intimidated by this, yet it has many advantages for originality and lifelong learning. Nowadays, almost all mechanical machines come equipped with electrical parts and some kind of computer monitoring or control. As a result, a widespread array of system and components fall under the mechatronic systems. Microcontrollers are being included into electromechanical devices increasingly frequently, giving system designers far greater flexibility and control. All the components of an engineering mechatronic system are shown in Figure 1.2. The interface circuit between the input/output and control circuits are controlled by the digital devices [3].

The engineering disciplines that deal with the design of controlled electromechanical systems are currently in a process of evolutionary transformation. A mechanical system that is computer controlled is referred to as mechatronic. Control decisions are frequently made by an embedded computer rather than a general-purpose computer. Yaskawa Electric Company engineers originally used the term "mechatronics" Nowadays, an embedded computer controller is almost built into every electromechanical system. As a result, concerns with computer hardware and software are included in the discipline of mechatronics when applied to the control of electromechanical systems. The field of mechatronics as we know it today would not exist if cheap microcontrollers were not widely available for the

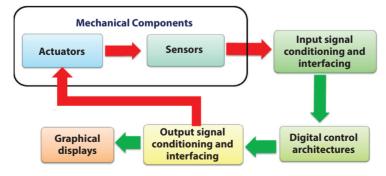


Figure 1.2 Mechanical components in mechatronics system.

4 SMART MATERIALS FOR SCIENCE AND ENGINEERING

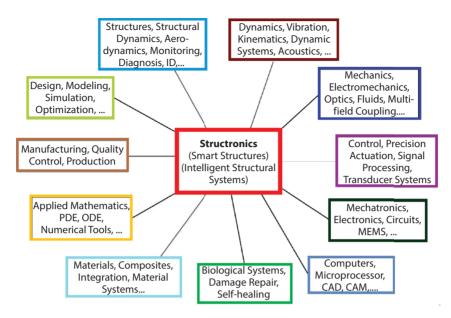


Figure 1.3 Structronics—A multidiscipline integration.

mainstream market. The application of computer control in countless consumer products is made possible by the accessibility of embedded microprocessors for the mass market at continually decreasing cost and rising performance. The preceding model [3] is the outdated model for an electromechanical product design team.

- (i) Engineers who design a manufacturer's mechanical parts;
- (ii) Engineers who create a product's electrical parts, including actuators, sensors, amplifiers, and other devices, as well as the control logic and algorithms;
- (iii) Computer hardware and software developers who design the real-time controls for the product.

Adaptive materials or structures, and smart and intelligent materials are generally thought to have the capacity to be sophisticated, trendy, and active. In Figure 1.3, the structronic system is depicted. As a consequence, the objective of this study is to discuss the fundamental properties, design concepts, and real-world uses of the major smart materials listed in Table 1.1, the smart materials that have been studied. Also covered are the specifications for multifield optothermoelectro mechanical systems, which are used to solve various challenging field control problems coupling thermal, magnetic, electric, magnetic, and optical interactions [2].

1.2 Historical Overview of Smart Material

In 1880, quartz crystals were subjected to mechanical forces and the Curie brothers (Jacques and Pierre) detected the creation of electric fields on the crystals (the Greek

Smart materials	Time periods
Pyroelectrics	315 B.C.
Piezoelctric	1880
Electro and Magneto-rheological Fluids	1784/1947
Superconductors	1911
Electro and Magneto-strictive Materials	1954/1840
Shape-memory Material	1932
Polyelectrolyte Gels (pH muscles)	1949
Photostrictive Material	1974

Table.1.1 Different eras smart materials [2].

word piezo means "push"). When the crystal was exposed to electric fields and they also saw strain formation. In general, the piezo-electricity is an electro-mechanical phenomenon that couples the electric (static coupling) and elastic (dynamic coupling) fields. The direct piezoelectric effect is a piezo-electric material that responds to stresses or pressures of mechanical property by producing voltages. The inverse piezoelectric effect is the ability of electric charges or fields to cause mechanical stresses or strains in a material.

Chang and Read discovered shape-memory-like behavior in a gold cadmium (AuCd) sample for the first time in 1932. Later on, in 1938, brass underwent this shape change, and in 1951, an AuCd bend bar did as well. Buehler, Gilfrich, and Wiley did not discover the whole shape-memory effect in various nickel-titanium alloys until 1962. The most popular shape-memory alloy (SMA) is commercially manufactured as nitinol (NiTi). Military high-performance hydraulic systems used the Cryofit hydraulic pipe coupling, which Raychem successfully manufactured in 1969. In Japan, demand for SMA goods significantly rose during the 1970s.

The ER feature was first noted by Winkler in 1784. The Winslow effect is occasionally used to refer to the ER phenomenon because Winslow continued to rigorously study ER property variations in 1947. Colloidal suspensions known as ER fluids undergo significant property changes in response to an appropriate electrical field.

Polymeric solutions known as ionic polymeric gels have the capacity to change their physical characteristics in response to external environmental factors like pH, electrical charge and field, and so on. A paper on the ionization-induced swelling and contraction of polymeric acids is published in 1949 by Katchalsky and Kuhn. Although many novel polymers were found between 1988 and 1991, little work was started until the early 1990s theoretically. To ascertain characteristics of several of the older polymers, tests had to be conducted. Some gel qualities still need to be determined experimentally because not all gels are now covered by theories that can predict polymer bf.

Michael Faraday demonstrated in 1845 that polarized light's polarization angles may be altered by passing through a thick glass sheet fastened to the poles of a strong magnet. The magnetooptical effect is sometimes known as the Faraday effect.

The disappearance of mercury wire's resistance as the temperature approaches zero degrees Fahrenheit was originally noticed by Kamerlingh Onnes in 1911. A new era of superconductivity began as a result of this observation. At room temperature, ion oscillations within the lattice structure of metallic conductors and material impurities, flaws, and imperfections cause electrical resistance. The resistance brought on by the vibrating ions, however, reduces as the temperature of some materials rises. When the temperature falls below a specific level, known as the critical temperature. Various nonmagnetic elements, alloys, and compounds transform into a superconductive state [2].

1.3 About Smart Materials

Any new material that can be controlled and experiences a macroscopic change in one of its physical and mechanical properties as a result of a non- mechanical external stimuli is described as a smart material [5]. Advanced or intelligent materials are other names for smart materials. They can be described as sophisticated materials that react intelligently to environmental changes or as materials that can return to their basic shape in response to certain stimuli. Intelligent materials are categorized into two parts: active and passive smart materials. Active smart materials can transport electromagnetic waves; examples of passive smart materials are fiber optics. Additionally, there are two categories for active materials. For example, photochromatic spectacles only change colour when placed in sunlight; they cannot modify their attributes when subjected to external stimuli. The capability of intelligent material to change their shape in response to external stimuli is self-diagnostic; they are capable of automatically detecting cracks on their surfaces, and are self-healing when damaged [1].

Stimulus	Active materials	Semi-active materials
Thermal Field	Shape Memory Alloys (SMAs) Shape Memory Plymers (SMPs);	 Magnetorheological Fluid (MRF) Electrorheological Fluid (ERF) Magnetorheological Elastomers (MRE)
Magnetic Field	Magnetic Shape Memory Alloys (MSMAs); Magnetostrictive Materials;	
Electric Field	Electrostrictive Materials; Piezoelectric Materials; Dielectric Materials; Photomechanical Materials;	

Table 1.2 Type of smart materials [5].