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Preface

It is with great pleasure that we introduce the proceedings of the Computing Conference
2024, held on July 11 and 12, 2024. This conference served as a platform for researchers
and professionals from around the globe to convene and exchange ideas at the forefront
of computing and its diverse applications. The enthusiasm and dedication displayed by
participants underscored the significance of this event in fostering collaboration and
advancing the field.

We received an overwhelming total of 457 contributions from esteemed scholars and
practitioners. These submissions underwent a rigorous double peer-reviewprocess, facil-
itated by experts in their respective domains. After careful evaluation and deliberation,
a total of 165 papers were selected for publication in these proceedings.

The diverse array of topics covered in these papers reflects the breadth and depth of
contemporary computing research, spanning areas such as artificial intelligence,machine
learning, cybersecurity, data science, and beyond. Each paper represents a valuable
contribution to the collective knowledge base of the computing community, offering
insights, innovations, and solutions to pressing challenges.

We extend our heartfelt gratitude to all authors, reviewers, organizers, and attendees
whose efforts and contributions made this conference a resounding success. It is our
hope that the insights shared and connections forged during this event will continue to
inspire and propel advancements in computing for years to come.

Regards,
Kohei Arai
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Abstract. The Central Processing Unit (CPU) consists of the main
circuitry to perform all the operations in a computer. One of the most
important operations an Operating System performs is CPU Scheduling,
which is responsible for managing all tasks and allocating CPU time to
each task in an optimal order. This extends to applications in distributed
systems since scheduling is required to maximise server utilisation in
load-sharing mechanisms. One of the more commonly used scheduling
algorithms for the mentioned application is Round Robin (RR), which
is considered to be one of the most efficient. However, the efficiency of
RR entirely depends on the chosen Static Time Quantum. In this
paper, we have proposed an optimisation to the pre-existing RR algo-
rithm, namely ‘Riti’, where Round Robin is implemented using Virtual
Runtime and by calculating Dynamic Time Quantum. ‘Riti’ has
achieved a 27.6% reduction in average Turnaround Time and 37.4%
reduction in average Waiting Time as compared to Traditional Round
Robin.

Keywords: CPU scheduling · Round Robin · Dynamic time
quantum · Virtual runtime · Turnaround time · Waiting time · Convoy
effect

1 Introduction

A process goes through multiple states from the time it is created. Figure 1
shows the primary states in the life cycle of a process and how a process may
pass through all of these states.

At any given time, it is possible only for one process to run on a single-core
CPU. Process scheduling is required for discarding a running/completed process
to which the CPU is allocated and choosing another process from the waiting
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Fig. 1. Process States

queue based on a particular strategy. This allows the OS to allocate CPU time
for each process, and hence keep the CPU busy at all times, enabling full use
of the CPU and trying to avoid the possibility of deadlock. There are a variety
of scheduling algorithms - Shortest Job First, First Come First Serve, Priority
Scheduling, Round Robin, etc.

The efficiency of a scheduling algorithm is measured through various criteria.

1. CPU Utilization - The aim is to keep the CPU as busy as possible so that no
CPU cycle goes to waste. Normal CPU utilization ranges from 50% to 100%.

2. Turnaround Time - The time a certain process takes, from being added to
the ready queue to completion, is called Turnaround time (or TAT) for that
process.

TAT = Completion T ime − Arrival T ime (1)

3. Waiting time - The time spent by a process in the ready queue before it is
completed is known as waiting time.

Waiting T ime = TAT − Burst T ime (2)

This paper focuses on Round Robin. Round Robin is a very frequently used
scheduling algorithm, however it has one major drawback - Convoy effect, due
to which the waiting time for the processes is very high. To tackle this issue, we
have proposed to optimise the Round Robin algorithm using ‘virtual runtime’.

The paper is structured in the following manner - Sect. 2 talks about the
relevant research that has been conducted on Round Robin variations for CPU
scheduling in the past. Section 3 provides a brief explanation of the basic concepts
of the ‘Riti’ algorithm, that is built on. Section 4 gives an in depth explanation
as to how the proposed algorithm works. Section 5 shows how ‘Riti’ performs
as compared to other Round Robin algorithms present currently. To conclude,
Sect. 6 highlights the benefits and limitations of the ‘Riti’ algorithm.
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2 Related Work

The efficiency of a CPU depends on its ability to schedule processes and effi-
ciently provide resources. Many different scheduling algorithms have been stud-
ied and worked upon to enhance the performance of CPU.

Alsulami et al. in their work talk about the necessity of a good scheduling
algorithm for a good operating system performance. The authors have studied
Round Robin with a dynamic time quantum. They state that the performan-
display shortest job first schedulingce of the dynamic time quantum depends on
the method used to calculate it. The authors calculated dynamic time quantum
using four different methods and have done a comparative study among them [4].
Various research papers use dynamic time quantums, such as Butangen et al. [6]
which make use of the dynamic mean of the burst times of the running processes.
Mishra and Mitawa too present an approach which sets the time quantum to
the average burst time [12].

Pathak et al. display shortest job first scheduling modification in traditional
Round Robin [16]. Even Srujana et al. [19] incorporate SJF in Round Robin.
‘Riti’ differs from these as it splits the processes into two queues and follows
different scheduling strategies for both queues, still giving preference to shorter
jobs by running the queue with shorter processes first.

Traditional Round Robin in the Cloud environment is not optimal as the
cloud environment is constantly subject to changes and this can cause the waiting
time of the processes to increase. Sanaj and Prathap propose that time slices
should be assigned on the basis of the mean burst time of all the tasks in the
waiting queue [18].

The idea of Recomputed Time Quantum [14] greatly influenced the calcula-
tion of dynamic time quantum. Aijaz et al. calculated dynamic time quantum
for each cycle by adding the total burst time to the previous time quantum and
dividing it by the number of processes [2]. We adopted this method in our pro-
posed algorithm as well. However, Riti focuses on reducing the convoy effect and
hence gives importance to executing the shorter processes first. Riti also imple-
ments a fair-scheduling method for the shorter processes, hence differentiating
it from this paper.

Farooq et al. proposed that a suitable way of finding dynamic time quantum is
to use 0.8 ∗ max(burst times). The aim is to achieve the best results in efficiency
without having to sort the processing according to burst times in ascending order.
The author states that the goal is to lower the duration of an algorithm along
with efficiency constraints [7].

Dynamic time quantum is also implemented by Alaa et al., however, this
paper proposes to split the ready queue into two queues on the basis of the
medium burst time. After arranging the processes based on their burst time in
increasing order, they are split into two queues - light task queue and heavy task
queue, depending on the medium burst time. The light task queue is executed
before the heavy task queue and the time quantum for each queue is considered
to be the burst time of the medium processes respectively [3]. ‘Riti’ also places
processes into a light task queue or a heavy task queue. However, sorting based
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on burst time is not performed since the value based on which the processes
are split is not dependent on the burst times of the processes. Hence, avoiding
sorting reduces the time complexity.

H. B. Parekh and S. Chaudhari’s work [15] comes closest to ‘Riti’ in theory,
as they make use of SJF and priority scheduling. ‘Riti’ differs from this work as
it splits the ready queue into two based on the burst times, as compared to [15]
which uses a single queue.

3 Background

3.1 Round Robin Scheduler

Round Robin, the preemptive process scheduling algorithm, is cyclic in nature.
It is a widely used algorithm, mainly because it has a good average response
time. Despite being considered a very fair algorithm, Round Robin does have its
disadvantages. Varied burst times cause convoy effect and greatly degrade the
performance of the algorithm. Priorities of the processes are also not considered.

The convoy effect is a phenomenon that slows down the entire Operating
System due to the presence of a few large processes (CPU-intensive processes).
Essentially, when large processes arrive in the queue before the smaller processes,
they take a much larger time to execute and hence starve the smaller processes
of their fair share of resources.

The time quantum used for the execution of Round Robin is vital. It controls
the performance of the algorithm. If it is too small, there is a spike in the number
of context switches and the overhead will increase. On the other hand, if the time
quantum is too large, Round Robin will act as FCFS.

3.2 Completely Fair Scheduling (CFS)

The CFS scheduler attempts to implement fair-share scheduling but in an effi-
cient manner. As seen in [8], CFS replaced O(1) scheduler in Linux as the O(1)
had low throughput for background jobs and poor interactive performance. If
the CPU following CFS switches too often, it means that the CPU is being
more fair but at the same time results in an increase of context switches. At the
same time, switching less frequently leads to less fairness. CFS uses two control
parameters to take care of this problem:

– Sched latency- This value is used for determining after how much time a
switch should be considered by the CPU. The time to be allocated to a single
process is sched latency

number of processes ; hence the time allocated changes dynamically,
based on the workload on the CPU.

– Min granularity: This is the minimum amount of time a time slice can be; to
avoid many context switches it should not go lower than this value.
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3.3 Virtual Runtime

This term comes up in the Completely Fair Scheduler (CFS). In this method, the
CPU uses a counting-based technique known as virtual runtime to fairly divide
itself among all competing processes. As each process runs, it accumulates this
virtual runtime. When the CPU has to execute a process, it chooses the one
with the least virtual runtime, thus ensuring equal distribution of CPU resources
among all the processes.

3.4 Niceness

CFS allows the users/admins to assign priority to processes in the form of a
‘nice’ value. This value ranges from −20 to 19. A positive value indicates that
the process is ‘nice’ and hence means the process does not need the CPU as
urgently. On the other hand, a negative value indicates that the process needs
the CPU more urgently and thus the process has higher priority. This nice value
can be used to calculate the weight of a process, which can be used in the
calculation of time slice. The formula and conversion from nice value to weight
are taken from [5].

The conversion from nice to static priority is defined by the NICE TO PRIO
macro in the Linux Kernel. It is defined in include/linux/sched/prio.h. The rela-
tion is prio = nice + 120. The conversion of nice value to priority to weight is
roughly equivalent to 1024

1.23nice . This is defined in prio to weight in kernel/sched.c

time slicei =
weighti

∑n−1
i=0 weighti

∗ sched latency (3)

vruntimei = vruntimei +
weight0
weighti

∗ runtime (4)

4 Proposed Methodology

As mentioned earlier, Round Robin does not take into account the priority of the
processes. In our proposed algorithm, ‘Riti’, we consider three things along with
the process ID - burst time, arrival time, and the nice value associated with the
process. Initially, the processes arrive and are placed into the queue. The ready
queue is then split into two smaller queues as shown in Fig. 2. If the burst time is
less than min granularity ∗ number of processes, then the process is assigned
to Queue-1. Else, the process is assigned to Queue-2. This results in Queue-1
containing all the processes with smaller burst times, and Queue-2 containing
all the processes with larger burst times. This is not a multi-scheduler algorithm,
the concept of splitting the processes into two queues has been adopted so that
the smaller processes are not starved of CPU time due to the larger processes.

The algorithm begins by running Queue-1 first so that the processes with
a smaller burst time can be executed before the processes with a greater burst
time, and are not starved. Queue-1 follows CFS concepts of scheduling, and uses
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nice value to calculate the virtual runtime in order to schedule the processes
based on their priority.

Once the execution of Queue-1 is completed, only then Queue-2 begins its
execution. Here, a dynamic time quantum formula is applied [2].

TQ =
LTQ + TBT

number of processes
(5)

TQ - Time Quantum LTQ - Last Time Quantum TBT - Total Burst Time
Here, Total Burst Time is the sum of the burst times of all the processes in

the queue. The time quantum will change every loop, based on the value of the
previous time quantum.

Finally, the values of average TAT and WT are calculated. These are com-
pared to the average TAT and WT produced by running the same ready queue
using the traditional Round Robin algorithm. It is noticed that there is a sig-
nificant difference between the two, as the optimized algorithm performed much
better.

Initially, to split the ready queue into Queue-1 and Queue-2, a time complex-
ity of O(no of processes) is required. The time complexity for the execution of
Queue-1 is O(no of processes2), because the processes are looped through once
each cycle and a second loop is required to accumulate the virtual runtime.
The time complexity for the execution of Queue-2 is also O(no of processes2).
The dynamic time quantum must be calculated every cycle, hence resulting in
a O(no of processes2) complexity. As a result, the proposed algorithm’s overall
time complexity becomes O(no of processes2).

Fig. 2. Method to split the ready queue
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Algorithm 1. Pseudo code for Riti

N ← number of processes
Q1 ← light load queue
Q2 ← heavy load queue
min gran ← 6
sched latency ← 48

for each process i in ready queue do
if Burst T imei ≤ min gran ∗ N then

Q1.append(process)
else

Q2.append(process)
end

end
// Q1 execution
for each process i in Q1 do

vruntimei ← 0 runtimei ← 0 weighti =
prio to weight[nice valuei + 20]time slicei =

weighti∑n−1
j=0 weightj

∗ sched latency

end
for each cycle in Q1 do

for each process i in Q1 do
runtimei = runtimei + time slicei if runtimei ≥ burst timei
then

Q1.remove(processi)
else

vruntimei = vruntimei + weight0
weighti

∗ runtimei

end
end
sort Q1 according to vruntime in ascending order

end
// Q2 execution

TQ ← TBT
N // TBT - total burst time

for each cycle in Q2 do
for each process i in Q2 do

runtimei ← TQ if runtimei ≥ burst timei then
Q2.remove(processi)

end
end
new TQ ← LTQ+TBT

N
TQ ← new TQ

end

‘Riti’ works best when the ready queue processes have varied burst times. For
example, if there are large CPU-bound processes in the queue but an I/O process
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that has a short CPU burst time enters the queue, it is prioritised and finished
first. Even within multiple I/O processes with short CPU burst times, there is
fairness in the scheduling of the I/O processes. The main focus of ‘Riti’ is to
ensure the smaller processes get completed smoothly without getting disrupted
by the larger processes, making virtual runtime an important aspect.

5 Observation

The proposed methodology has been depicted with the help of two exam-
ples - (1) with common Arrival Time, and (2) with different Arrival Times.
The min granularity is considered to be 6 in the following examples, and the
sched latency is considered to be 48.

5.1 Example of Processes with Same Arrival Time

Here, the Arrival Time of all the processes is considered to be zero. It is assumed
that all the processes have already arrived before the scheduling begins. The
process details are given below in Table 1.

Table 1. Parameters and values used throughout the experiment

p id AT BT Nice Value

P1 0 35 3

P2 0 43 −12

P3 0 16 17

P4 0 41 −16

P5 0 14 0

In this example, the processes arrive at the same time but have randomly gen-
erated Burst Times and Nice Values.

Table 2. Optimized round robin

p id TAT WT

P1 65 30

P2 147 104

P3 30 14

P4 149 108

P5 15 1
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When the scheduling of processes is according to the proposed algorithm, the
results observed are shown in Table 2, and the following values are observed as
well:
Avg TAT = 81.2
Avg WT = 51.4

P3 and P5, being process with smaller burst times will join Queue-1. Shown
below is the Gantt chart for Queue-1.

P3 P5 P3

0 1 15 30

The process that will join Queue-2 are P1, P2 and P4, as they have larger burst
times. The following is the Gantt chart for Queue-2.

P1 P2 P4 P2 P4

30 65 104 143 147 149

Calculating TQ for traditional Round Robin: TQ = Sched latency
number of processes

Hence, TQ = floor(485 ) = 9

Table 3. Traditional Round Robin

p id TAT WT

P1 119 84

P2 144 101

P3 70 54

P4 149 108

P5 84 70

By applying the Traditional algorithm, the values in Table 3 are observed, along
with the following results: Avg TAT = 113.2 Avg WT = 83.4

The Gantt chart for traditional Round Robin is depicted below.

P1 P2 P3 P4 P5 P1 P2 P3 P4 P5 P1 P2 P4 P1 P2 P4 P2 P4

0 9 18 27 36 45 54 63 70 79 84 93 102 111 119 128 137 144 149

Figures 3 and 4 show the comparison of TAT and WT for this example.
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Fig. 3. Comparison of turnaround time (same arrival time)

Fig. 4. Comparison of waiting time (same arrival time)

From Figs. 3 and 4, in the case of P1, P3 and P5, a large change is noticed in
TAT and WT for Proposed and Traditional RR methodologies. This shows a
significant change in average TAT and average WT values.

5.2 Example of Processes with Different Arrival Time

In this example, the Arrival Times of the processes are not the same, they all
arrive at different times (see Table 4). The Burst Times and Nice Values for all
the processes have been randomly generated.

Table 4. Parameters and values used throughout the experiments

p id AT BT Nice Value

P1 0 17 −14

P2 1 39 15

P3 2 31 −5

P4 3 26 −8

P5 4 10 1
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Table 5. Optimized round robin

p id TAT WT

P1 17 0

P2 122 83

P3 117 86

P4 41 15

P5 49 39

Using the proposed methodology, the following values are obtained from the
observed values in Table 5: Avg TAT = 69.2 Avg WT = 44.6 As shown in the
Gantt chart the lighter processes - P1, P4 and P5 join Queue-1.

P1 P4 P5 P4 P5 P5

0 17 26 27 44 49 53

P2 and P3, having larger burst times will join Queue-2 as shown below.

P2 P3 P2

53 88 119 123

As seen in the previous example, the TQ for traditional Round Robin will be 9.

Table 6. Traditional round robin

p id TAT WT

P1 53 36

P2 122 83

P3 118 87

P4 104 78

P5 77 67

With the Tradition Round Robin, the result is as follows, compiling the observed
values in Table 6: Avg TAT = 94.8 Avg WT = 70.2

The Gantt chart for traditional Round Robin is as follows.

P1 P2 P3 P4 P5 P1 P2 P3 P4 P5 P2 P3 P4 P2 P3 P2

0 9 18 27 36 45 53 62 71 80 81 90 99 107 116 120 123

Comparison of TAT and WT for example B (processes with different Arrival
Time) is depicted through Figs. 5 and 6.
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Fig. 5. Comparison of Turnaround Time (different Arrival Time)

Fig. 6. Comparison of Waiting Time (different Arrival Time)

A large difference is seen between TAT and WT respectively, for Proposed and
Traditional RR methodologies for processes P1, P4 and P5, as shown in Figs. 5
and 6.

5.3 Comparison with Other Round Robin Variations

To prove the effectiveness of the proposed methodology, ‘Riti’ has been com-
pared with other Round Robin variations, namely Efficient Dynamic Round
Robin (EDRR) [7], New Median-Average Round Robin (NMARR) [17], Mod-
ified Round Robin CPU Scheduling Algorithm With Dynamic Time Quantum
(RRDTQ) [1], Efficient Round Robin Algorithm (ERRA) [2], An Improved
Round Robin CPU Scheduling Algorithm with Varying Time Quantum (IIRVQ)
[11], and Modified Median Round Robin Algorithm (MMRRA) [13]. Some of
these algorithms have also been compared in [9]. Three groups were created
based on the range of burst time of the processes -

– Group - 1: Burst time ranging between 5–100
– Group - 2: Burst time ranging between 5–150
– Group - 3: Burst time ranging between 5–250

Ten processes were randomly generated for each group. All the Round Robin
variations along with Traditional Round Robin, and ‘Riti’ were run against each
other for all the processes. It can be observed from the below graphs (see Figs. 7,
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Fig. 7. Group - 1 Results

Table 7. Comparison of Riti in Group - 1

Algorithm TAT Comparison (in %) WT Comparison (in%)

ERRA 6.129 7.26

MMRRA 32.88 38.38

Fig. 8. Group - 2 Results

8 and 9) that ‘Riti’ had the least Waiting Time and Turn Around Time. A
comparison of the same is also depicted in Tables 7, 8 and 9.

From the graphs depicted above, it can be concluded that the proposed algo-
rithm, ‘Riti’, leads to a significant difference in average Turnaround Time and
average Waiting Time as compared to the traditional algorithm.
The following tables show the performance of ‘Riti’ as compared to ERRA, which
was the best performing amongst the Round Robin Optimizations and MMRRA,
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Table 8. Comparison of Riti in Group - 2

Algorithm TAT Comparison (in %) WT Comparison (in%)

ERRA 8.46 10.6

MMRRA 30.17 35.753

Fig. 9. Group - 3 Results

Table 9. Comparison of Riti in Group - 3

Algorithm TAT Comparison (in %) WT Comparison (in%)

ERRA 3.67 4.69

MMRRA 26.8 32.14

which performed the most poorly. It can be observed that ‘Riti’ is significantly
better than both in terms of TAT and WT.

6 Conclusions

6.1 Benefits of ‘Riti’

As compared to the traditional Round Robin algorithm, ‘Riti’ shows a significant
reduction in both, average Turnaround Time as well as the average Waiting
Time, as shown in Figs. 10 and 11. It is also ensured that the smaller processes
are scheduled first by splitting them into a different queue. In this manner,
convoy effect is avoided.

From Table 10, it can be inferred that the average TAT for traditional RR
is 113.2, and for ‘Riti’ is 81.2, leading to a difference of a significant 32 units.
And the difference for WT between the two methodologies is 32 units. This large
difference can be visualised in the graph - Fig. 7.
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Fig. 10. Comparison with traditional round robin (different arrival time)

Table 10. Traditional round robin vs optimized round robin (example a - processes
with same arrival time)

Algorithm TAT WT

Traditional RR 113.2 83.4

Proposed RR (Riti) 81.2 51.4

The data in Table 11 indicates the difference between average TAT and WT
for both the proposed and traditional RR methodologies respectively. This result
can be visualised by the graph depicted in Fig. 8. Thus the proposed algorithm
‘Riti’ achieves significant performance improvement over the existing Round
Robin scheduling algorithm.

Fig. 11. Comparison with traditional round robin (same arrival time)
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Table 11. Traditional round robin vs optimized round robin (Example B - Processes
with different arrival time)

Algorithm TAT WT

Traditional RR 94.8 70.2

Proposed RR (Riti) 69.2 44.6

6.2 Limitations of ‘Riti’

While comparing with other Round Robin variations, it was observed that ‘Riti’
tends to make more context switches while scheduling, which can result in the
reduction of the efficiency of the CPU with respect to scheduling processes. Also,
while this paper has used a simulation of processes to test out the proposed algo-
rithm, an extensive study has not been carried out yet using real-time processes.

6.3 Future Scope

1. ‘Riti’ can be tested on more processes in a real-time scenario.
2. This algorithm has the scope to be applied as a load balancing algorithm

in distributed computing schedulers. Currently, Round Robin is being used a
static load balancing algorithm. The modifications made to traditional Round
Robin as shown in ‘Riti’ has the potential to be used as a dynamic load
balancing algorithm. It can predict which server the load can be assigned to
such that there is optimal usage of all servers.

3. Similar applications as the above, such as being used by scalable multipro-
cessors [10], or by network routers to allocate bandwidth to different data
packets. It can even be applied by database systems to distribute queries to
different database servers show that this algorithm has a lot of scope to be
used in real-life situations.
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Abstract. CPU’s don’t increase in speed anymore, as Moore’s Law has
claimed for so long. Although, “the free lunch is over” (Herb Sutter),
parallel algorithms can gain more throughput and reduce latency, which
is crucial to complex real-time applications like audio and video process-
ing, robotics, or real-time sensor data processing in embedded hardware.
Parallel algorithms, however, come with the price of concurrency and
synchronization. For example, the priority-inversion is a problem, where
low-priority threads can block high-priority threads due to locking data
structures used by both threads. Lock-free data structures, on the other
hand, use atomic CPU instructions to avoid these problems. They, how-
ever, are hard to implement and even harder to prove correct. Atomic
shared pointers have been proposed as a (part of a) solution to making
lock-free algorithms easier to write and verify. Since they are a fundamen-
tal tool in the toolbox of parallel algorithms, their run-time performance
has a huge trailing impact. So far, there is just a hand full of existing
implementations to atomic shared pointers. This work contributes an
improved implementation to atomic shared pointers, a formal proof of
its correctness, and an extensive performance evaluation in comparison
to other implementations showing that it outperforms others in most
use-cases.

Keywords: Concurrency · Algorithm · Atomic shared pointers ·
Lock-free · Real-time implementation

1 Introduction

Real-time applications such as in robotics or video and audio processing increase
their workload and processing capabilities by using multiple threads. In such
applications, there are often multiple threads running with different priorities,
e.g., at least one low-priority and one high-priority thread. Such threads usu-
ally communicate via common variables and data structures. To avoid race-
conditions, most of these data structures ensure thread-safety using exclusive
locking variables (mutexes).

Using a mutex for synchronization comes with the priority inversion problem,
where low priority threads slow down high priority threads by locking such a com-
mon mutex: When the low priority thread is sent to sleep while holding the lock,
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the high priority thread needs to wait until the low priority thread is finished. A
second disadvantage of using mutexes comes with the CPU’s over subscription.
The problem is effectively the same as before, i.e., threads are more likely prone
to suspension while locking a mutex, which blocks other threads accessing the
same mutex. These situations are exactly, what real-time applications need to
avoid.

On the other hand, modern CPU’s provide atomic operations on single (or
double) words, e.g., exchange and compare-and-swap (CAS ) to name the most
important ones. Several simple data structures have already been implemented
lock-free, i.e., without using mutexes and instead relying on these atomic instruc-
tions. However, this area of research is an open field because it is particularly
hard to develop even simple data structures lock-free [7,11,15]. Several new prob-
lems arise, one of which is the ABA problem, where concurring threads might
change an atomic variable forth and back to the value last seen, making other
threads believe that nothing happened during their last visit of this atomic vari-
able. This false assumption might lead to algorithms with undefined behaviour
in this situation.

Herb Sutter proposed to use lock-free atomic shared pointers [13,14], as they
solve several problems including the ABA problem. In his proposal, he could
show that a singly connected list is implementable in a few lines of (C++) code
without any further ado. At that time, however, no implementation for atomic
shared pointers existed.

A shared pointer is a concept in programming languages that usually leave
memory management to the language’s user. Here, shared pointers are smart
pointers that help managing the lifetime of dynamically allocated memory and
the object that resides in there. When a shared pointer is created to manage the
lifetime of a dynamically allocated object, it takes ownership of it, i.e., the last
living copy of the shared pointer is responsible for its proper destruction. From
here on, we focus on C++ (up to C++23) as programming language.

The ubiquitous way to implement shared pointers is by additionally allocat-
ing a control block for a particular object, which contains a reference counter.
Thus, shared pointers referencing the same object also share the same control
block including this shared reference counter. Copying a shared pointer incre-
ments this reference counter. On the other hand, when a shared pointer deref-
erences its object, e.g. by being destroyed or being made referencing another
object, it needs to decrement its reference counter. Upon reaching zero, the
object is destroyed and the memory deallocated by the last accessing thread.

Now, when a shared pointer dereferences an object, it needs to write to
at least two different memory addresses: the pointer to the control block and
the reference counter within the control block, which cannot be done atomi-
cally in most of the current CPU’s.1 One way to achieve atomic operations on
shared pointers is guarding them with an exclusive locking variable. At least
GNU-C++ 12.3.0 and Clang 14.0.0 use this approach for the implementation of
std::atomic<std::shared_ptr>.

1 TSX enables CPU-level transactions, but substantial reasons exist, to avoid it [9].


