
Lecture Notes in Networks and Systems 1017

Kohei Arai Editor

Intelligent
Computing
Proceedings of the 2024 Computing
Conference, Volume 2

Lecture Notes in Networks and Systems 1017

Series Editor
Janusz Kacprzyk , Systems Research Institute, Polish Academy of Sciences, Warsaw,
Poland

Advisory Editors
Fernando Gomide, Department of Computer Engineering and Automation—DCA,
School of Electrical and Computer Engineering—FEEC, University of Campinas—
UNICAMP, São Paulo, Brazil
Okyay Kaynak, Department of Electrical and Electronic Engineering, Bogazici
University, Istanbul, Türkiye
Derong Liu, Department of Electrical and Computer Engineering, University
of Illinois at Chicago, Chicago, USA

Institute of Automation, Chinese Academy of Sciences, Beijing, USA
Witold Pedrycz, Department of Electrical and Computer Engineering, University of
Alberta, Alberta, Canada

Systems Research Institute, Polish Academy of Sciences, Warsaw, Canada
Marios M. Polycarpou, Department of Electrical and Computer Engineering, KIOS
Research Center for Intelligent Systems and Networks, University of Cyprus, Nicosia,
Cyprus
Imre J. Rudas, Óbuda University, Budapest, Hungary
Jun Wang, Department of Computer Science, City University of Hong Kong, Kowloon,
Hong Kong

https://orcid.org/0000-0003-4187-5877

The series “Lecture Notes in Networks and Systems” publishes the latest developments
in Networks and Systems—quickly, informally and with high quality. Original research
reported in proceedings and post-proceedings represents the core of LNNS.

Volumes published in LNNS embrace all aspects and subfields of, as well as new
challenges in, Networks and Systems.

The series contains proceedings and edited volumes in systems and net-
works, spanning the areas of Cyber-Physical Systems, Autonomous Systems, Sen-
sor Networks, Control Systems, Energy Systems, Automotive Systems, Biologi-
cal Systems, Vehicular Networking and Connected Vehicles, Aerospace Systems,
Automation, Manufacturing, Smart Grids, Nonlinear Systems, Power Systems,
Robotics, Social Systems, Economic Systems and other. Of particular value to both
the contributors and the readership are the short publication timeframe and the world-
wide distribution and exposure which enable both a wide and rapid dissemination of
research output.

The series covers the theory, applications, and perspectives on the state of the art
and future developments relevant to systems and networks, decision making, control,
complex processes and related areas, as embedded in the fields of interdisciplinary and
applied sciences, engineering, computer science, physics, economics, social, and life
sciences, as well as the paradigms and methodologies behind them.

Indexed by SCOPUS, INSPEC, WTI Frankfurt eG, zbMATH, SCImago.

All books published in the series are submitted for consideration in Web of Science.

For proposals from Asia please contact Aninda Bose (aninda.bose@springer.com).

mailto:aninda.bose@springer.com

Kohei Arai
Editor

Intelligent Computing
Proceedings of the 2024 Computing
Conference, Volume 2

Editor
Kohei Arai
Faculty of Science and Engineering
Saga University
Saga, Japan

ISSN 2367-3370 ISSN 2367-3389 (electronic)
Lecture Notes in Networks and Systems
ISBN 978-3-031-62276-2 ISBN 978-3-031-62277-9 (eBook)
https://doi.org/10.1007/978-3-031-62277-9

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2024

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproductiononmicrofilmsor in anyother physicalway, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

If disposing of this product, please recycle the paper.

https://doi.org/10.1007/978-3-031-62277-9

Preface

It is with great pleasure that we introduce the proceedings of the Computing Conference
2024, held on July 11 and 12, 2024. This conference served as a platform for researchers
and professionals from around the globe to convene and exchange ideas at the forefront
of computing and its diverse applications. The enthusiasm and dedication displayed by
participants underscored the significance of this event in fostering collaboration and
advancing the field.

We received an overwhelming total of 457 contributions from esteemed scholars and
practitioners. These submissions underwent a rigorous double peer-reviewprocess, facil-
itated by experts in their respective domains. After careful evaluation and deliberation,
a total of 165 papers were selected for publication in these proceedings.

The diverse array of topics covered in these papers reflects the breadth and depth of
contemporary computing research, spanning areas such as artificial intelligence,machine
learning, cybersecurity, data science, and beyond. Each paper represents a valuable
contribution to the collective knowledge base of the computing community, offering
insights, innovations, and solutions to pressing challenges.

We extend our heartfelt gratitude to all authors, reviewers, organizers, and attendees
whose efforts and contributions made this conference a resounding success. It is our
hope that the insights shared and connections forged during this event will continue to
inspire and propel advancements in computing for years to come.

Regards,
Kohei Arai

Contents

Optimised Round Robin with Virtual Runtime for CPU Scheduling 1
Jagriti Bhatia, Sanskriti Mathuria, Vandana M. Ladwani,
and Shobana Padmanabhan

Faster Lock-Free Atomic Shared Pointers . 18
Jörg P. Schäfer

CICO2e: A Compute Carbon Footprint Estimation Tool Based on Time
Series Data . 39

Christian Plewnia and Horst Lichter

Image Classification Method Based on Chaos Neural Network 56
Kohei Arai

Human-Created and AI-Generated Text: What’s Left to Uncover? 74
Steven Salter, Phoey Lee Teh, and Richard Hebblewhite

AraXLM: New XLM-RoBERTa Based Method for Plagiarism Detection
in Arabic Text . 81

Mona Alshehri, Natalia Beloff, and Martin White

Boosting Customer Retention in Pharmaceutical Retail: A Predictive
Approach Based on Machine Learning Models . 97

Angel Espinoza-Vega and Henry N. Roa

Introducing Prediction Concept into Data Envelopment Analysis Using
Classifier in Economic Forecast . 118

Guangzao Huang, Zijiang Yang, Grace Liu, and Guoli Ji

Investigating Machine Learning Techniques Used for the Detection
of Class Noise in Data: A Systematic Literature Review . 128

Cindy van den Berg and Sunet Eybers

The Role of Chatbots in Data Analytics: An Evaluation of Functional
Abilities . 148

Preeti Patel and Sowgol Shooshtarian

An Analytical Investigation into the Impact of Product Color on the Price
of Retail Products and Purchasing Decisions of Consumers 169

Zaid M. Altukhi and Nasser F. Aljohani

viii Contents

A Numerical Approach for the Fractional Laplacian via Deep Neural
Networks . 187

Nicolás Valenzuela

RBF-SC: A Fast Community Detection Technique Using Radial Basis
Functions . 220

Fang Hu, Jia Liu, Lina Wu, Xingang Fang, Mingfang Huang,
and Haotian Liu

Improving Medication Prescription Strategies for Discordant Chronic
Comorbidities Through Medical Data Bench-Marking and Recommender
Systems . 237

Tom Ongwere, Nimbalkar Rutuja, and Tam V. Nguyen

Sentiment Analysis for Predicting the Variation Trend of Stocks: A Case
Study of Vanke Co., Ltd. 251

Qiuyi Jin and Jin Zheng

Suicide Ideation Prediction Through Deep Learning: An Integration
of CNN and Bidirectional LSTM with Word Embeddings 271

Christianah T. Oyewale, Ayodeji O. J. Ibitoye, Joseph D. Akinyemi,
and Olufade F. W. Onifade

A Multi-clustering Unbiased Relative Prediction Recommendation
Scheme for Data with Hidden Multiple Overlaps . 284

Avivit Levy, Michal Chalamish, B. Riva Shalom, Guy Sharir,
Opal Peltzman, and Sivan Salzmann

An Unsupervised Deep Learning Model for Aspect Retrieving Using
Transformer Encoder . 303

Atanu Dey, Mamata Jenamani, and Arijit De

Personalized Student Performance Prediction Modeling for Student
Digital Twins . 318

Sean Mondesire and Emmanuel Nsiye

A Social Profile-Based Recommendation Architecture for E-Learning
Systems . 330

Xola Ntlangula and Wai Sze Leung

A Comparison of Student Engagement Across Three Teaching Modalities
in an Introductory Statistics Course . 344

Sher B. Chhetri, Mario Toussaint, Nonhle C. Mdziniso,
and Rebecca A. Hillman

Contents ix

Impact Factor Game Scoring Model for Positive Emotion Game Design 358
V. Sithira Vadivel

Cyber Safety Awareness Through a Massive Open Online Course
(MOOC): Community Engagement Knowledge Transfer . 365

Elmarie Kritzinger

Immersive Environments at School: “Stop Cyberbullying by Proximity” 377
Cristina Sánchez-Romero and Eva María Muñoz-Jiménez

Simulation and Analysis of Cyber-Attack on Modbus Protocol for Smart
Grids in Virtual Environment . 384

Shampa Banik, Rajesh Manicavasagam, Trapa Banik, and Shudipta Banik

Cybersecurity Governance in the Medical Ecosystem: An Orientation
Guide with Specific Reference to the Merging of IT and OT Devices 402

Sebastiaan Von Solms and Jaco du Toit

The Impact of Utilising the Amazon AWS Hybrid Deployment Model
on Assuring a Secure Migration of a Commercial Web Application
into the Cloud . 418

Khalied Koorowlay and Rafid Al-Khannak

Mitigating Cache Pollution Attack Using Deep Learning in Named Data
Networking (NDN) . 432

Mohd Maizan Fishol Hamdi, Zhiyuan Chen, and Milena Radenkovic

A Community Security Operations Centre (ComSOC) Model for SMMEs
in Developing Countries . 443

Nombeko Ntingi, Jaco du Toit, and Sebastiaan von Solms

Optimizing Energy States in Mobile Embedded Systems: A SIPN-Based
Approach . 457

Robert Stojic, Daniel Peters, and Florian Thiel

Secure Content Protection Schemes for Industrial IoT with SRAM
PUF-Based One-Time Use Cryptographic Keys . 478

Saloni Jain, Ashwija Reddy Korenda, Bertrand Cambou,
and Chris Lucero

Feasibility Study with Actual Space Rockets Towards Information
Theoretically Secure Radio Communication . 499

Sumio Morioka, Satoshi Obana, and Maki Yoshida

x Contents

FlexHi: A Flexible Hierarchical Threshold Signature Scheme 509
Muhammed Ali Bingol, Sermin Kocaman, Ali Dogan,
and Sibel Kurt Toplu

Autoencoder-Based Solution for Intrusion Detection in Industrial Control
System . 530

Silvio Russo, Claudio Zanasi, Isabella Marasco, and Michele Colajanni

Determining the Segmentation Type Impact on an ID Card Fraud
Detection System . 544

Daniel Benalcazar, Pamela Zurita, Diego Pasmiño, and Rodrigo Lara

Transforming Medical Waste Management Through IoT and Machine
Learning: A Path Towards Sustainability . 556

Nahin Nasir, Mohammed Shahriar Hossain, Md. Saiful Islam,
Md. Arifiul Islam, and Md Manirul Islam

IntentRec: An Advanced Recommender System Leveraging User-Item
Intent . 576

Abhishrut Vaidya and Niladri Chatterjee

Process for the Identification of Vehicle Functions for Cloud Offloading 596
Martin Sommer, Daniel Baumann, Tobias Rösch, Falk Dettinger,
Eric Sax, and Michael Weyrich

Smart Workplace Past Covid-19: Perceived Challenges and Potential
Smart Solutions for University Work Environment . 609

Rabail Tahir and John Krogstie

Need for Cultural Sensitivity in the Design and Development
of Technology to Aid in Dementia Care: A Review of Literature 625

Arshia Khan, Sakina Rao, and Alfia Parvez

Sentiment Analysis of Post-COVID-19 Work-From-Home Culture:
A Literature Review . 637

Joseph Kwame Adjei and Hannah Alhassan Suhuyini

Security Gaps in the Mobile Money System in Rwanda: Challenges, Risks
and Mitigation . 653

Catherine Njogu, Furaha Benedict, Susan Muthoni,
Marie Noelle Kanyamuneza, Evalyne Lwoba, Everlyn Musembi,
Yussuf Papy, and Edwin Kairu

Contents xi

Comparative Analysis of Flow and Cardano Blockchains: Navigating
Adoption Challenges, Computing Techniques and Implications
for the Blockchain Landscape . 665

Ayda Bransia, Bálint Molnár, and Simon Thompson

Author Index . 671

Optimised Round Robin with Virtual
Runtime for CPU Scheduling

Jagriti Bhatia1(B), Sanskriti Mathuria1, Vandana M. Ladwani1,
and Shobana Padmanabhan2

1 Department of Computer Science and Engineering, PES University, Bengaluru,
Karnataka, India

{pesug20cs145,pes1ug20cs386}@pesu.pes.edu, vandanamd@pes.edu
2 School of Computer Science and Engineering, RV University, Bengaluru,

Karnataka, India
shobanap@rvu.edu.in

Abstract. The Central Processing Unit (CPU) consists of the main
circuitry to perform all the operations in a computer. One of the most
important operations an Operating System performs is CPU Scheduling,
which is responsible for managing all tasks and allocating CPU time to
each task in an optimal order. This extends to applications in distributed
systems since scheduling is required to maximise server utilisation in
load-sharing mechanisms. One of the more commonly used scheduling
algorithms for the mentioned application is Round Robin (RR), which
is considered to be one of the most efficient. However, the efficiency of
RR entirely depends on the chosen Static Time Quantum. In this
paper, we have proposed an optimisation to the pre-existing RR algo-
rithm, namely ‘Riti’, where Round Robin is implemented using Virtual
Runtime and by calculating Dynamic Time Quantum. ‘Riti’ has
achieved a 27.6% reduction in average Turnaround Time and 37.4%
reduction in average Waiting Time as compared to Traditional Round
Robin.

Keywords: CPU scheduling · Round Robin · Dynamic time
quantum · Virtual runtime · Turnaround time · Waiting time · Convoy
effect

1 Introduction

A process goes through multiple states from the time it is created. Figure 1
shows the primary states in the life cycle of a process and how a process may
pass through all of these states.

At any given time, it is possible only for one process to run on a single-core
CPU. Process scheduling is required for discarding a running/completed process
to which the CPU is allocated and choosing another process from the waiting

J. Bhatia, S. Mathuria, V. M. Ladwani, and S. Padmanabhan—Contributed equally.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
K. Arai (Ed.): SAI 2024, LNNS 1017, pp. 1–17, 2024.
https://doi.org/10.1007/978-3-031-62277-9_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-62277-9_1&domain=pdf
https://doi.org/10.1007/978-3-031-62277-9_1

2 J. Bhatia et al.

Fig. 1. Process States

queue based on a particular strategy. This allows the OS to allocate CPU time
for each process, and hence keep the CPU busy at all times, enabling full use
of the CPU and trying to avoid the possibility of deadlock. There are a variety
of scheduling algorithms - Shortest Job First, First Come First Serve, Priority
Scheduling, Round Robin, etc.

The efficiency of a scheduling algorithm is measured through various criteria.

1. CPU Utilization - The aim is to keep the CPU as busy as possible so that no
CPU cycle goes to waste. Normal CPU utilization ranges from 50% to 100%.

2. Turnaround Time - The time a certain process takes, from being added to
the ready queue to completion, is called Turnaround time (or TAT) for that
process.

TAT = Completion T ime − Arrival T ime (1)

3. Waiting time - The time spent by a process in the ready queue before it is
completed is known as waiting time.

Waiting T ime = TAT − Burst T ime (2)

This paper focuses on Round Robin. Round Robin is a very frequently used
scheduling algorithm, however it has one major drawback - Convoy effect, due
to which the waiting time for the processes is very high. To tackle this issue, we
have proposed to optimise the Round Robin algorithm using ‘virtual runtime’.

The paper is structured in the following manner - Sect. 2 talks about the
relevant research that has been conducted on Round Robin variations for CPU
scheduling in the past. Section 3 provides a brief explanation of the basic concepts
of the ‘Riti’ algorithm, that is built on. Section 4 gives an in depth explanation
as to how the proposed algorithm works. Section 5 shows how ‘Riti’ performs
as compared to other Round Robin algorithms present currently. To conclude,
Sect. 6 highlights the benefits and limitations of the ‘Riti’ algorithm.

Optimised Round Robin 3

2 Related Work

The efficiency of a CPU depends on its ability to schedule processes and effi-
ciently provide resources. Many different scheduling algorithms have been stud-
ied and worked upon to enhance the performance of CPU.

Alsulami et al. in their work talk about the necessity of a good scheduling
algorithm for a good operating system performance. The authors have studied
Round Robin with a dynamic time quantum. They state that the performan-
display shortest job first schedulingce of the dynamic time quantum depends on
the method used to calculate it. The authors calculated dynamic time quantum
using four different methods and have done a comparative study among them [4].
Various research papers use dynamic time quantums, such as Butangen et al. [6]
which make use of the dynamic mean of the burst times of the running processes.
Mishra and Mitawa too present an approach which sets the time quantum to
the average burst time [12].

Pathak et al. display shortest job first scheduling modification in traditional
Round Robin [16]. Even Srujana et al. [19] incorporate SJF in Round Robin.
‘Riti’ differs from these as it splits the processes into two queues and follows
different scheduling strategies for both queues, still giving preference to shorter
jobs by running the queue with shorter processes first.

Traditional Round Robin in the Cloud environment is not optimal as the
cloud environment is constantly subject to changes and this can cause the waiting
time of the processes to increase. Sanaj and Prathap propose that time slices
should be assigned on the basis of the mean burst time of all the tasks in the
waiting queue [18].

The idea of Recomputed Time Quantum [14] greatly influenced the calcula-
tion of dynamic time quantum. Aijaz et al. calculated dynamic time quantum
for each cycle by adding the total burst time to the previous time quantum and
dividing it by the number of processes [2]. We adopted this method in our pro-
posed algorithm as well. However, Riti focuses on reducing the convoy effect and
hence gives importance to executing the shorter processes first. Riti also imple-
ments a fair-scheduling method for the shorter processes, hence differentiating
it from this paper.

Farooq et al. proposed that a suitable way of finding dynamic time quantum is
to use 0.8 ∗ max(burst times). The aim is to achieve the best results in efficiency
without having to sort the processing according to burst times in ascending order.
The author states that the goal is to lower the duration of an algorithm along
with efficiency constraints [7].

Dynamic time quantum is also implemented by Alaa et al., however, this
paper proposes to split the ready queue into two queues on the basis of the
medium burst time. After arranging the processes based on their burst time in
increasing order, they are split into two queues - light task queue and heavy task
queue, depending on the medium burst time. The light task queue is executed
before the heavy task queue and the time quantum for each queue is considered
to be the burst time of the medium processes respectively [3]. ‘Riti’ also places
processes into a light task queue or a heavy task queue. However, sorting based

4 J. Bhatia et al.

on burst time is not performed since the value based on which the processes
are split is not dependent on the burst times of the processes. Hence, avoiding
sorting reduces the time complexity.

H. B. Parekh and S. Chaudhari’s work [15] comes closest to ‘Riti’ in theory,
as they make use of SJF and priority scheduling. ‘Riti’ differs from this work as
it splits the ready queue into two based on the burst times, as compared to [15]
which uses a single queue.

3 Background

3.1 Round Robin Scheduler

Round Robin, the preemptive process scheduling algorithm, is cyclic in nature.
It is a widely used algorithm, mainly because it has a good average response
time. Despite being considered a very fair algorithm, Round Robin does have its
disadvantages. Varied burst times cause convoy effect and greatly degrade the
performance of the algorithm. Priorities of the processes are also not considered.

The convoy effect is a phenomenon that slows down the entire Operating
System due to the presence of a few large processes (CPU-intensive processes).
Essentially, when large processes arrive in the queue before the smaller processes,
they take a much larger time to execute and hence starve the smaller processes
of their fair share of resources.

The time quantum used for the execution of Round Robin is vital. It controls
the performance of the algorithm. If it is too small, there is a spike in the number
of context switches and the overhead will increase. On the other hand, if the time
quantum is too large, Round Robin will act as FCFS.

3.2 Completely Fair Scheduling (CFS)

The CFS scheduler attempts to implement fair-share scheduling but in an effi-
cient manner. As seen in [8], CFS replaced O(1) scheduler in Linux as the O(1)
had low throughput for background jobs and poor interactive performance. If
the CPU following CFS switches too often, it means that the CPU is being
more fair but at the same time results in an increase of context switches. At the
same time, switching less frequently leads to less fairness. CFS uses two control
parameters to take care of this problem:

– Sched latency- This value is used for determining after how much time a
switch should be considered by the CPU. The time to be allocated to a single
process is sched latency

number of processes ; hence the time allocated changes dynamically,
based on the workload on the CPU.

– Min granularity: This is the minimum amount of time a time slice can be; to
avoid many context switches it should not go lower than this value.

Optimised Round Robin 5

3.3 Virtual Runtime

This term comes up in the Completely Fair Scheduler (CFS). In this method, the
CPU uses a counting-based technique known as virtual runtime to fairly divide
itself among all competing processes. As each process runs, it accumulates this
virtual runtime. When the CPU has to execute a process, it chooses the one
with the least virtual runtime, thus ensuring equal distribution of CPU resources
among all the processes.

3.4 Niceness

CFS allows the users/admins to assign priority to processes in the form of a
‘nice’ value. This value ranges from −20 to 19. A positive value indicates that
the process is ‘nice’ and hence means the process does not need the CPU as
urgently. On the other hand, a negative value indicates that the process needs
the CPU more urgently and thus the process has higher priority. This nice value
can be used to calculate the weight of a process, which can be used in the
calculation of time slice. The formula and conversion from nice value to weight
are taken from [5].

The conversion from nice to static priority is defined by the NICE TO PRIO
macro in the Linux Kernel. It is defined in include/linux/sched/prio.h. The rela-
tion is prio = nice + 120. The conversion of nice value to priority to weight is
roughly equivalent to 1024

1.23nice . This is defined in prio to weight in kernel/sched.c

time slicei =
weighti

∑n−1
i=0 weighti

∗ sched latency (3)

vruntimei = vruntimei +
weight0
weighti

∗ runtime (4)

4 Proposed Methodology

As mentioned earlier, Round Robin does not take into account the priority of the
processes. In our proposed algorithm, ‘Riti’, we consider three things along with
the process ID - burst time, arrival time, and the nice value associated with the
process. Initially, the processes arrive and are placed into the queue. The ready
queue is then split into two smaller queues as shown in Fig. 2. If the burst time is
less than min granularity ∗ number of processes, then the process is assigned
to Queue-1. Else, the process is assigned to Queue-2. This results in Queue-1
containing all the processes with smaller burst times, and Queue-2 containing
all the processes with larger burst times. This is not a multi-scheduler algorithm,
the concept of splitting the processes into two queues has been adopted so that
the smaller processes are not starved of CPU time due to the larger processes.

The algorithm begins by running Queue-1 first so that the processes with
a smaller burst time can be executed before the processes with a greater burst
time, and are not starved. Queue-1 follows CFS concepts of scheduling, and uses

6 J. Bhatia et al.

nice value to calculate the virtual runtime in order to schedule the processes
based on their priority.

Once the execution of Queue-1 is completed, only then Queue-2 begins its
execution. Here, a dynamic time quantum formula is applied [2].

TQ =
LTQ + TBT

number of processes
(5)

TQ - Time Quantum LTQ - Last Time Quantum TBT - Total Burst Time
Here, Total Burst Time is the sum of the burst times of all the processes in

the queue. The time quantum will change every loop, based on the value of the
previous time quantum.

Finally, the values of average TAT and WT are calculated. These are com-
pared to the average TAT and WT produced by running the same ready queue
using the traditional Round Robin algorithm. It is noticed that there is a sig-
nificant difference between the two, as the optimized algorithm performed much
better.

Initially, to split the ready queue into Queue-1 and Queue-2, a time complex-
ity of O(no of processes) is required. The time complexity for the execution of
Queue-1 is O(no of processes2), because the processes are looped through once
each cycle and a second loop is required to accumulate the virtual runtime.
The time complexity for the execution of Queue-2 is also O(no of processes2).
The dynamic time quantum must be calculated every cycle, hence resulting in
a O(no of processes2) complexity. As a result, the proposed algorithm’s overall
time complexity becomes O(no of processes2).

Fig. 2. Method to split the ready queue

Optimised Round Robin 7

Algorithm 1. Pseudo code for Riti

N ← number of processes
Q1 ← light load queue
Q2 ← heavy load queue
min gran ← 6
sched latency ← 48

for each process i in ready queue do
if Burst T imei ≤ min gran ∗ N then

Q1.append(process)
else

Q2.append(process)
end

end
// Q1 execution
for each process i in Q1 do

vruntimei ← 0 runtimei ← 0 weighti =
prio to weight[nice valuei + 20]time slicei =

weighti∑n−1
j=0 weightj

∗ sched latency

end
for each cycle in Q1 do

for each process i in Q1 do
runtimei = runtimei + time slicei if runtimei ≥ burst timei
then

Q1.remove(processi)
else

vruntimei = vruntimei + weight0
weighti

∗ runtimei

end
end
sort Q1 according to vruntime in ascending order

end
// Q2 execution

TQ ← TBT
N // TBT - total burst time

for each cycle in Q2 do
for each process i in Q2 do

runtimei ← TQ if runtimei ≥ burst timei then
Q2.remove(processi)

end
end
new TQ ← LTQ+TBT

N
TQ ← new TQ

end

‘Riti’ works best when the ready queue processes have varied burst times. For
example, if there are large CPU-bound processes in the queue but an I/O process

8 J. Bhatia et al.

that has a short CPU burst time enters the queue, it is prioritised and finished
first. Even within multiple I/O processes with short CPU burst times, there is
fairness in the scheduling of the I/O processes. The main focus of ‘Riti’ is to
ensure the smaller processes get completed smoothly without getting disrupted
by the larger processes, making virtual runtime an important aspect.

5 Observation

The proposed methodology has been depicted with the help of two exam-
ples - (1) with common Arrival Time, and (2) with different Arrival Times.
The min granularity is considered to be 6 in the following examples, and the
sched latency is considered to be 48.

5.1 Example of Processes with Same Arrival Time

Here, the Arrival Time of all the processes is considered to be zero. It is assumed
that all the processes have already arrived before the scheduling begins. The
process details are given below in Table 1.

Table 1. Parameters and values used throughout the experiment

p id AT BT Nice Value

P1 0 35 3

P2 0 43 −12

P3 0 16 17

P4 0 41 −16

P5 0 14 0

In this example, the processes arrive at the same time but have randomly gen-
erated Burst Times and Nice Values.

Table 2. Optimized round robin

p id TAT WT

P1 65 30

P2 147 104

P3 30 14

P4 149 108

P5 15 1

Optimised Round Robin 9

When the scheduling of processes is according to the proposed algorithm, the
results observed are shown in Table 2, and the following values are observed as
well:
Avg TAT = 81.2
Avg WT = 51.4

P3 and P5, being process with smaller burst times will join Queue-1. Shown
below is the Gantt chart for Queue-1.

P3 P5 P3

0 1 15 30

The process that will join Queue-2 are P1, P2 and P4, as they have larger burst
times. The following is the Gantt chart for Queue-2.

P1 P2 P4 P2 P4

30 65 104 143 147 149

Calculating TQ for traditional Round Robin: TQ = Sched latency
number of processes

Hence, TQ = floor(485) = 9

Table 3. Traditional Round Robin

p id TAT WT

P1 119 84

P2 144 101

P3 70 54

P4 149 108

P5 84 70

By applying the Traditional algorithm, the values in Table 3 are observed, along
with the following results: Avg TAT = 113.2 Avg WT = 83.4

The Gantt chart for traditional Round Robin is depicted below.

P1 P2 P3 P4 P5 P1 P2 P3 P4 P5 P1 P2 P4 P1 P2 P4 P2 P4

0 9 18 27 36 45 54 63 70 79 84 93 102 111 119 128 137 144 149

Figures 3 and 4 show the comparison of TAT and WT for this example.

10 J. Bhatia et al.

Fig. 3. Comparison of turnaround time (same arrival time)

Fig. 4. Comparison of waiting time (same arrival time)

From Figs. 3 and 4, in the case of P1, P3 and P5, a large change is noticed in
TAT and WT for Proposed and Traditional RR methodologies. This shows a
significant change in average TAT and average WT values.

5.2 Example of Processes with Different Arrival Time

In this example, the Arrival Times of the processes are not the same, they all
arrive at different times (see Table 4). The Burst Times and Nice Values for all
the processes have been randomly generated.

Table 4. Parameters and values used throughout the experiments

p id AT BT Nice Value

P1 0 17 −14

P2 1 39 15

P3 2 31 −5

P4 3 26 −8

P5 4 10 1

Optimised Round Robin 11

Table 5. Optimized round robin

p id TAT WT

P1 17 0

P2 122 83

P3 117 86

P4 41 15

P5 49 39

Using the proposed methodology, the following values are obtained from the
observed values in Table 5: Avg TAT = 69.2 Avg WT = 44.6 As shown in the
Gantt chart the lighter processes - P1, P4 and P5 join Queue-1.

P1 P4 P5 P4 P5 P5

0 17 26 27 44 49 53

P2 and P3, having larger burst times will join Queue-2 as shown below.

P2 P3 P2

53 88 119 123

As seen in the previous example, the TQ for traditional Round Robin will be 9.

Table 6. Traditional round robin

p id TAT WT

P1 53 36

P2 122 83

P3 118 87

P4 104 78

P5 77 67

With the Tradition Round Robin, the result is as follows, compiling the observed
values in Table 6: Avg TAT = 94.8 Avg WT = 70.2

The Gantt chart for traditional Round Robin is as follows.

P1 P2 P3 P4 P5 P1 P2 P3 P4 P5 P2 P3 P4 P2 P3 P2

0 9 18 27 36 45 53 62 71 80 81 90 99 107 116 120 123

Comparison of TAT and WT for example B (processes with different Arrival
Time) is depicted through Figs. 5 and 6.

12 J. Bhatia et al.

Fig. 5. Comparison of Turnaround Time (different Arrival Time)

Fig. 6. Comparison of Waiting Time (different Arrival Time)

A large difference is seen between TAT and WT respectively, for Proposed and
Traditional RR methodologies for processes P1, P4 and P5, as shown in Figs. 5
and 6.

5.3 Comparison with Other Round Robin Variations

To prove the effectiveness of the proposed methodology, ‘Riti’ has been com-
pared with other Round Robin variations, namely Efficient Dynamic Round
Robin (EDRR) [7], New Median-Average Round Robin (NMARR) [17], Mod-
ified Round Robin CPU Scheduling Algorithm With Dynamic Time Quantum
(RRDTQ) [1], Efficient Round Robin Algorithm (ERRA) [2], An Improved
Round Robin CPU Scheduling Algorithm with Varying Time Quantum (IIRVQ)
[11], and Modified Median Round Robin Algorithm (MMRRA) [13]. Some of
these algorithms have also been compared in [9]. Three groups were created
based on the range of burst time of the processes -

– Group - 1: Burst time ranging between 5–100
– Group - 2: Burst time ranging between 5–150
– Group - 3: Burst time ranging between 5–250

Ten processes were randomly generated for each group. All the Round Robin
variations along with Traditional Round Robin, and ‘Riti’ were run against each
other for all the processes. It can be observed from the below graphs (see Figs. 7,

Optimised Round Robin 13

Fig. 7. Group - 1 Results

Table 7. Comparison of Riti in Group - 1

Algorithm TAT Comparison (in %) WT Comparison (in%)

ERRA 6.129 7.26

MMRRA 32.88 38.38

Fig. 8. Group - 2 Results

8 and 9) that ‘Riti’ had the least Waiting Time and Turn Around Time. A
comparison of the same is also depicted in Tables 7, 8 and 9.

From the graphs depicted above, it can be concluded that the proposed algo-
rithm, ‘Riti’, leads to a significant difference in average Turnaround Time and
average Waiting Time as compared to the traditional algorithm.
The following tables show the performance of ‘Riti’ as compared to ERRA, which
was the best performing amongst the Round Robin Optimizations and MMRRA,

14 J. Bhatia et al.

Table 8. Comparison of Riti in Group - 2

Algorithm TAT Comparison (in %) WT Comparison (in%)

ERRA 8.46 10.6

MMRRA 30.17 35.753

Fig. 9. Group - 3 Results

Table 9. Comparison of Riti in Group - 3

Algorithm TAT Comparison (in %) WT Comparison (in%)

ERRA 3.67 4.69

MMRRA 26.8 32.14

which performed the most poorly. It can be observed that ‘Riti’ is significantly
better than both in terms of TAT and WT.

6 Conclusions

6.1 Benefits of ‘Riti’

As compared to the traditional Round Robin algorithm, ‘Riti’ shows a significant
reduction in both, average Turnaround Time as well as the average Waiting
Time, as shown in Figs. 10 and 11. It is also ensured that the smaller processes
are scheduled first by splitting them into a different queue. In this manner,
convoy effect is avoided.

From Table 10, it can be inferred that the average TAT for traditional RR
is 113.2, and for ‘Riti’ is 81.2, leading to a difference of a significant 32 units.
And the difference for WT between the two methodologies is 32 units. This large
difference can be visualised in the graph - Fig. 7.

Optimised Round Robin 15

Fig. 10. Comparison with traditional round robin (different arrival time)

Table 10. Traditional round robin vs optimized round robin (example a - processes
with same arrival time)

Algorithm TAT WT

Traditional RR 113.2 83.4

Proposed RR (Riti) 81.2 51.4

The data in Table 11 indicates the difference between average TAT and WT
for both the proposed and traditional RR methodologies respectively. This result
can be visualised by the graph depicted in Fig. 8. Thus the proposed algorithm
‘Riti’ achieves significant performance improvement over the existing Round
Robin scheduling algorithm.

Fig. 11. Comparison with traditional round robin (same arrival time)

16 J. Bhatia et al.

Table 11. Traditional round robin vs optimized round robin (Example B - Processes
with different arrival time)

Algorithm TAT WT

Traditional RR 94.8 70.2

Proposed RR (Riti) 69.2 44.6

6.2 Limitations of ‘Riti’

While comparing with other Round Robin variations, it was observed that ‘Riti’
tends to make more context switches while scheduling, which can result in the
reduction of the efficiency of the CPU with respect to scheduling processes. Also,
while this paper has used a simulation of processes to test out the proposed algo-
rithm, an extensive study has not been carried out yet using real-time processes.

6.3 Future Scope

1. ‘Riti’ can be tested on more processes in a real-time scenario.
2. This algorithm has the scope to be applied as a load balancing algorithm

in distributed computing schedulers. Currently, Round Robin is being used a
static load balancing algorithm. The modifications made to traditional Round
Robin as shown in ‘Riti’ has the potential to be used as a dynamic load
balancing algorithm. It can predict which server the load can be assigned to
such that there is optimal usage of all servers.

3. Similar applications as the above, such as being used by scalable multipro-
cessors [10], or by network routers to allocate bandwidth to different data
packets. It can even be applied by database systems to distribute queries to
different database servers show that this algorithm has a lot of scope to be
used in real-life situations.

References

1. Sohrawordi: A modified Round Robin CPU scheduling algorithm with dynamic
time quantum. Int. J. Adv. Res. 7, 422–429 (2019)

2. Aijaz, M., Tariq, R., Ghori, M., Rizvi, S.W., Qazi, E.F.: Efficient round robin
algorithm (ERRA) using the average burst time. In: 2019 International Conference
on Information Science and Communication Technology (ICISCT), pp. 1–5 (2019)

3. Fiad, A., Zoulikha, M.M., Hayat, B.: Improved round robin scheduling algorithm
with varying time quantum. In: 2020 Second International Conference on Embed-
ded and Distributed Systems (EDiS), pp. 33–37 (2020)

4. Alsulami, A.A., Al-Haija, Q.A., Thanoon, M.I., Mao, Q.: Performance evaluation
of dynamic round robin algorithms for CPU scheduling. In: 2019 SoutheastCon,
pp. 1–5 (2019)

5. Arpaci-Dusseau, R.H., Arpaci-Dusseau, A.C.: Operating Systems: Three Easy
Pieces, 1.00 edn. Arpaci-Dusseau Books, August 2018

Optimised Round Robin 17

6. Butangen, A.K.G., Velasco, C.E., Codmos, J.C.B., Bayani, E.F., Baquirin, R.B.:
Utilizing dynamic mean quantum time round robin to optimize the shortest job
first scheduling algorithm. In: Proceedings of 2020 6th International Conference
on Computing and Data Engineering, ICCDE 2020, pp. 14–18. Association for
Computing Machinery, New York (2020)

7. Farooq, M.U., Shakoor, A., Siddique, A.B.: An efficient dynamic round robin algo-
rithm for CPU scheduling. In: 2017 International Conference on Communication,
Computing and Digital Systems (C-CODE), pp. 244–248 (2017)

8. Jose, J., Sujisha, O., Gilesh, M., Bindima, T.: On the fairness of Linux O(1) sched-
uler. In: 2014 5th International Conference on Intelligent Systems, Modelling and
Simulation, pp. 668–674 (2014)

9. Joshi, A., Goyal, S.B.: Comparison of various round robin scheduling algorithms.
In: 2019 8th International Conference System Modeling and Advancement in
Research Trends (SMART), pp. 18–21 (2019)

10. Li, T., Baumberger, D., Hahn, S.: Efficient and scalable multiprocessor fair schedul-
ing using distributed weighted round-robin. In: Proceedings of the 14th ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming, PPoPP
2009, pp. 65–74. Association for Computing Machinery, New York (2009)

11. Mishra, M., Rashid, F.: An improved round robin CPU scheduling algorithm with
varying time quantum. Int. J. Comput. Sci. Eng. Appl. 4, 1–8 (2014)

12. Mishra, R., Mitawa, G.: Improved round robin algorithm for effective scheduling
process for CPU. In: 2021 Third International Conference on Intelligent Commu-
nication Technologies and Virtual Mobile Networks (ICICV), pp. 590–593 (2021)

13. Mora, H., Abdullahi, S.E., Junaidu, S.B.: Modified median round robin algorithm
(MMRRA). In: 2017 13th International Conference on Electronics, Computer and
Computation (ICECCO), pp. 1–7 (2017)

14. Oyam, N.A., Pidlaoan, L.J., Baquirin, R.B., Bayani, E.F., Fronda, R.J.: Refining
the round robin algorithm using a recomputed time quantum: a comparison. In:
Proceedings of 2020 6th International Conference on Computing and Data Engi-
neering, ICCDE 2020, pp. 1–4. Association for Computing Machinery, New York
(2020)

15. Parekh, H.B., Chaudhari, S.: Improved round robin CPU scheduling algorithm:
round robin, shortest job first and priority algorithm coupled to increase through-
put and decrease waiting time and turnaround time. In: 2016 International Con-
ference on Global Trends in Signal Processing, Information Computing and Com-
munication (ICGTSPICC), pp. 184–187 (2016)

16. Pathak, P., Kumar, P., Dubey, K., Rajpoot, P., Kumar, S.: Mean threshold shortest
job round robin CPU scheduling algorithm. In: 2019 International Conference on
Intelligent Sustainable Systems (ICISS), pp. 474–478 (2019)

17. Sakshi, C.S., Sharma, S., Kautish, S., Alsallami, S.A.M., Khalil, E.M., Mohamed,
A.W.: A new median-average round robin scheduling algorithm: an optimal app-
roach for reducing turnaround and waiting time. Alexandria Eng. J. 61(12), 10527–
10538 (2022)

18. Sanaj, M.S., Prathap, P.M.J.: An enhanced round robin (ERR) algorithm for
effective and efficient task scheduling in cloud environment. In: 2020 Advanced
Computing and Communication Technologies for High Performance Applications
(ACCTHPA), pp. 107–110 (2020)

19. Srujana, R., Mohana Roopa, Y., Datta Sai Krishna Mohan, M.: Sorted round
robin algorithm. In: 2019 3rd International Conference on Trends in Electronics
and Informatics (ICOEI), pp. 968–971 (2019)

Faster Lock-Free Atomic Shared Pointers

Jörg P. Schäfer(B)

German Aero Space Center, Institute of Transportation Systems, Berlin, Germany

joerg.schaefer@dlr.de

Abstract. CPU’s don’t increase in speed anymore, as Moore’s Law has
claimed for so long. Although, “the free lunch is over” (Herb Sutter),
parallel algorithms can gain more throughput and reduce latency, which
is crucial to complex real-time applications like audio and video process-
ing, robotics, or real-time sensor data processing in embedded hardware.
Parallel algorithms, however, come with the price of concurrency and
synchronization. For example, the priority-inversion is a problem, where
low-priority threads can block high-priority threads due to locking data
structures used by both threads. Lock-free data structures, on the other
hand, use atomic CPU instructions to avoid these problems. They, how-
ever, are hard to implement and even harder to prove correct. Atomic
shared pointers have been proposed as a (part of a) solution to making
lock-free algorithms easier to write and verify. Since they are a fundamen-
tal tool in the toolbox of parallel algorithms, their run-time performance
has a huge trailing impact. So far, there is just a hand full of existing
implementations to atomic shared pointers. This work contributes an
improved implementation to atomic shared pointers, a formal proof of
its correctness, and an extensive performance evaluation in comparison
to other implementations showing that it outperforms others in most
use-cases.

Keywords: Concurrency · Algorithm · Atomic shared pointers ·
Lock-free · Real-time implementation

1 Introduction

Real-time applications such as in robotics or video and audio processing increase
their workload and processing capabilities by using multiple threads. In such
applications, there are often multiple threads running with different priorities,
e.g., at least one low-priority and one high-priority thread. Such threads usu-
ally communicate via common variables and data structures. To avoid race-
conditions, most of these data structures ensure thread-safety using exclusive
locking variables (mutexes).

Using a mutex for synchronization comes with the priority inversion problem,
where low priority threads slow down high priority threads by locking such a com-
mon mutex: When the low priority thread is sent to sleep while holding the lock,

With thanks to the German Federal Ministry of Digital and Transport (BMDV) for
funding this work through project “EDDY” (Förderkennzeichen 19F2208B).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
K. Arai (Ed.): SAI 2024, LNNS 1017, pp. 18–38, 2024.
https://doi.org/10.1007/978-3-031-62277-9_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-62277-9_2&domain=pdf
https://doi.org/10.1007/978-3-031-62277-9_2

Atomic Shared Pointers 19

the high priority thread needs to wait until the low priority thread is finished. A
second disadvantage of using mutexes comes with the CPU’s over subscription.
The problem is effectively the same as before, i.e., threads are more likely prone
to suspension while locking a mutex, which blocks other threads accessing the
same mutex. These situations are exactly, what real-time applications need to
avoid.

On the other hand, modern CPU’s provide atomic operations on single (or
double) words, e.g., exchange and compare-and-swap (CAS) to name the most
important ones. Several simple data structures have already been implemented
lock-free, i.e., without using mutexes and instead relying on these atomic instruc-
tions. However, this area of research is an open field because it is particularly
hard to develop even simple data structures lock-free [7,11,15]. Several new prob-
lems arise, one of which is the ABA problem, where concurring threads might
change an atomic variable forth and back to the value last seen, making other
threads believe that nothing happened during their last visit of this atomic vari-
able. This false assumption might lead to algorithms with undefined behaviour
in this situation.

Herb Sutter proposed to use lock-free atomic shared pointers [13,14], as they
solve several problems including the ABA problem. In his proposal, he could
show that a singly connected list is implementable in a few lines of (C++) code
without any further ado. At that time, however, no implementation for atomic
shared pointers existed.

A shared pointer is a concept in programming languages that usually leave
memory management to the language’s user. Here, shared pointers are smart
pointers that help managing the lifetime of dynamically allocated memory and
the object that resides in there. When a shared pointer is created to manage the
lifetime of a dynamically allocated object, it takes ownership of it, i.e., the last
living copy of the shared pointer is responsible for its proper destruction. From
here on, we focus on C++ (up to C++23) as programming language.

The ubiquitous way to implement shared pointers is by additionally allocat-
ing a control block for a particular object, which contains a reference counter.
Thus, shared pointers referencing the same object also share the same control
block including this shared reference counter. Copying a shared pointer incre-
ments this reference counter. On the other hand, when a shared pointer deref-
erences its object, e.g. by being destroyed or being made referencing another
object, it needs to decrement its reference counter. Upon reaching zero, the
object is destroyed and the memory deallocated by the last accessing thread.

Now, when a shared pointer dereferences an object, it needs to write to
at least two different memory addresses: the pointer to the control block and
the reference counter within the control block, which cannot be done atomi-
cally in most of the current CPU’s.1 One way to achieve atomic operations on
shared pointers is guarding them with an exclusive locking variable. At least
GNU-C++ 12.3.0 and Clang 14.0.0 use this approach for the implementation of
std::atomic<std::shared_ptr>.

1 TSX enables CPU-level transactions, but substantial reasons exist, to avoid it [9].

