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Preface 

Materials under high pressures change their stabilities, shapes, and properties, and 
the chemical reactions in mixtures differ from those in the ambient state. Pres-
sure and temperature are thermodynamic parameters, and historically human beings 
have utilized them to make novel materials to improve the quality of life. Natural 
phenomena provide a very wide range of pressure from our living environment to the 
interiors of planets and the collisions of planetary bodies. In our life, we have many 
benefits from high-pressure science and technology. When we apply high pressure to 
the gas at room temperature, it changes to liquid and solid depending on the pressure, 
and it becomes significantly denser. Pressure produces new chemical bonds in the 
dense state. Diamond is a high-pressure form of carbon. High pressure allows us 
to explore new materials and new science in physics, chemistry, materials science, 
planetary science, etc. Therefore, high pressure and high temperature are important 
variables in basic science and technology. 

Recent experimental advances to generate high-pressures as well as high temper-
atures provide many chances to utilize high-pressure methods. The melting point of 
most materials generally increases with increasing pressure, and we have extended 
our ability to investigate solids at high temperatures above their melting points at 
ambient pressure. Gases under ambient conditions can solidify at high pressure to 
participate in reactions. Melting behaviors also change with pressure to melt congru-
ently or incongruently. The same change can occur conversely in solidification. In 
solids, many phase transitions are known, and the structures and properties have been 
investigated experimentally and theoretically. 

Pressure generation methods are classified into static and dynamic compressions. 
In static compressions, the sample is kept under pressure for long times, and the 
sample volume is squeezed using multiple anvils to increase the density. The anvil 
must be hard enough to keep high pressures. Tungsten carbide and diamond are 
normally used as materials for anvils. The hardest known material is diamond which 
is widely used to generate pressures in the range of 100s GPa in a small volume. 
When high temperature is required in static compressions, laser heating or a small 
surrounding heater is employed to heat up the sample under high pressure. However, 
it is necessary to calibrate the sample pressure using a standard of pressure when we
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want to determine the pressure. On the other hand, dynamic compressions utilizing 
inertia to generate and keep high pressures are characterized by pressure profiles that 
continue for a relatively short time (nanoseconds to microseconds in experiments) 
depending on the generation method. 

Shock chemistry focuses on material synthesis by shock waves that increase pres-
sure and temperature simultaneously and quench the products adiabatically. The 
process involves rapid compression by shock waves and release of pressure by 
rarefaction waves. Shock chemistry is associated with wave propagation and depends 
upon the initial state and the reaction kinetics. However, despite its ubiquitous nature 
and importance, it is surprising to find that introductory, systematic and comprehen-
sive textbooks of shock-induced chemistry are not currently available to the author’s 
best knowledge. 

This book contains 9 chapters. Chapters 1 and 2 give readers the basics of shock 
chemistry. Chapters 3 and 4 describe the shock chemistry results on hard mate-
rials, oxides, nitrides, and other ceramics and minerals, which illustrate syntheses of 
typical materials by shock compression methods. Chapter 5 is focused on reactions of 
shock-induced melting and decomposition, mechanochemistry, and sonochemistry. 
Chapter 6 describes shock reactions of biomolecules in Earth and planetary science 
systems including shock syntheses of biomolecules related to the origin of life on 
the Earth. Chapter 7 summarizes shock experiment simulations for shock metamor-
phism observed in meteorites and impactites that experienced high-pressure and high 
temperature by hypervelocity meteorites and planetary bodies. Chapter 8 gives recent 
results on typical Earth and planetary materials under extreme conditions in which 
the electrons in compounds are partially delocalized by thermal activation. Chapter 9 
describes future perspectives on shock chemistry. 

I attempted to summarize the current status of shock-induced chemistry based on 
my interests and updated results. There are many classical references and I apologize 
to those who have no directly cited references. Although this book will not cover all 
the issues in shock chemistry, I hope this book provides a basic idea of shock-induced 
chemistry in condensed matters and some guidance for future shock chemistry. There 
are many interesting problems to be solved. It is my great pleasure if this book 
provided some assistance to new participants and researchers who are interested in 
learning shock chemistry and pushing its boundaries beyond the current state. 

Tsukuba, Japan/Shanghai, China 
January 2023 
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Chapter 1 
History and Background: Shock Wave, 
Historical Background, and Compression 
Process 

Shock waves deform and compress solid materials at high strain rates. This compres-
sion process increases density, temperature, and entropy in the system, and the whole 
process, including the release process from the compressed state to the original condi-
tion, is irreversible thermodynamically. The internal energy increase associated with 
this compression process increases the temperature, which is expected to enhance 
chemical reactions. The application of shock waves in solids alters chemical bonds 
to create novel materials with new bonds and new shapes. The influence of shock 
waves has been known to be important in various fields including materials science, 
Earth and planetary science, condensed matter physics, and chemistry under extreme 
conditions. 

As illustrated in Fig. 1.1, there are various applications of shock compression 
science depending on the strength. Historically, solid samples sealed in a metal 
container or mixtures of solid samples with an explosive were subjected to shock 
treatments using hypervelocity impacts or high explosives, and the recovered samples 
were investigated by various analytical and characterization methods to check the 
products. The sample amounts were scaled to be on the order of mg to tons of mass 
depending upon the shock wave generators and recovery systems. This has been the 
classical method for shock synthesis. Recently, many technical advances have been 
made to observe in situ deformations and reactions by modern time-resolved methods 
using electronic equipment (e.g., oscilloscopes), optical methods (fast cameras), and 
bright, ultrashort-pulse X-ray beams, called X-ray-free electron lasers (XFELs).

Detonation is a complex interplay of chemical reactions and energy transfer that 
results in a steady shock wave at the front and a release wave at the rear. The rigidity 
and violence of detonations have not enabled direct observations for a long time, 
but recent technical developments in hypervelocity impact and laser-driven shocks 
have provided the capability to observe phenomena directly and can help our further 
understanding of shock chemistry.
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