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The Yang Problem for Complete Bounded
Complex Submanifolds: a Survey

Antonio Alarcón(B)

Departamento de Geometŕıa y Topoloǵıa e Instituto de Matemáticas (IMAG),
Universidad de Granada, Granada, Spain

alarcon@ugr.es

Abstract. We survey the history as well as recent progress in the Yang
problem concerning the existence of complete bounded complex subman-
ifolds of the complex Euclidean spaces. We also point out some open
questions on the topic.

1 The Problem and the First Solution

In 1977, P. Yang asked the following (see [66, p. 135, Question II]):

Problem 1. Do there exist complete immersed complex submanifolds ϕ : Mk →
C

n (1 ≤ k < n) with bounded image?

Completeness is a very natural condition to impose on a Riemannian man-
ifold when one is interested in its global properties. Recall that an immersed
submanifold ϕ : M → C

n is said to be complete if the Riemannian metric ϕ∗dσ2

induced on M by pulling back the Euclidean metric dσ2 on C
n by the immersion

ϕ is a complete metric on M : geodesics go on indefinitely. By the Hopf-Rinow
theorem, ϕ is complete if and only if ϕ ◦ γ : [0, 1) → C

n has infinite Euclidean
length for every divergent path γ : [0, 1) → M . Every compact Riemannian man-
ifold is complete, but compact complex manifolds cannot be found in C

n by the
maximum principle for holomorphic functions, so the question in Problem 1 is
in order.

The main original motivation for P. Yang to pose the aforementioned ques-
tion is that a positive answer would prove the existence of complete immersed
complex submanifolds Mk → C

2n with strongly negative holomorphic sectional
curvature [67]. On the other hand, since complex submanifolds of C

n are mini-
mal (i.e., critical points for the volume functional; see e.g. [25,55], among many
others, for an introduction to the subject), the Yang problem is also related to
the so-called Calabi-Yau problem, which dates back to E. Calabi’s conjectures
from 1965 [54, p. 170] and asked whether there are complete bounded minimal
hypersurfaces in R

n (n ≥ 3); we refer to [12, Ch. 7] for a recent survey on this
fascinating topic. Nevertheless, the Yang problem for complex submanifolds has
become an active focus of interest in its own right, having received many impor-
tant contributions in the last decade; see [38, §4.3] for a brief introduction to the
topic.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
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2 A. Alarcón

We shall denote by D = {ζ ∈ C : |ζ| < 1} the open unit disc in C and by
Bn = {z = (z1, . . . , zn) ∈ C

n : |z| < 1} the open unit ball in C
n for n ≥ 2. The

first affirmative answer to the question in Problem 1 was given only two years
later, in 1979, by P.W. Jones. Recall that a map f : X → Y between topological
spaces is said to be proper if f−1(K) ⊂ X is compact for every compact set
K ⊂ Y .

Theorem 1 (Jones [51]). There exist a complete bounded immersed complex
disc D → C

2, a complete bounded embedded complex disc D ↪→ C
3, and a com-

plete properly embedded complex disc D ↪→ B4.

P.W. Jones’ construction method is strongly complex analytic. It relies on
using the BMO duality theorem in order to find a pair of bounded holomorphic
functions f1 and f2 on D satisfying the property that

∫
γ

(|f ′
1(ζ)| + |f ′

2(ζ)|) dσ(ζ) = +∞

for all paths γ ⊂ D terminating on S
1 = bD, where σ denotes Euclidean arc

length. It follows that D 	 ζ 
→ (ζ, f1(ζ), f2(ζ)) is a complete bounded embedded
complex disc in C

3; the other two assertions in the theorem are obtained by slight
modifications of this procedure.

2 Curves

Despite having to wait more than three decades for it, Theorem 1 has been
generalized in several directions. The first extension of P.W. Jones’ existence
result was given by A. Alarcón and F.J. López in 2013 and concerns the topology
of the examples.

Theorem 2 (Alarcón-López [15]). Let n ≥ 2. Every open orientable surface
S admits a complex structure J such that the open Riemann surface M = (S, J)
carries a complete proper holomorphic immersion M → Bn which is an embed-
ding if n ≥ 3. The same holds true if we replace the ball by any convex domain
in C

n.

The embeddedness condition for n ≥ 3 in this statement was not explicitly
stated in [15]; nevertheless, it trivially follows from a standard transversality
argument, as was later pointed out by A. Alarcón and F. Forstnerič in [6]. We
emphasize that the examples in Theorem 2 may have any topological type, even
infinite.

The proof in [15] is completely different from that in [51]. In particular, it is
much more geometric, and is reminiscent of the method developed by N. Nadi-
rashvili in his seminal paper [60] for constructing a complete bounded minimal
disc in R

3; see also [12, §7.1]. The construction goes by induction, the rough
idea being the following. In the step j ∈ N we begin with a smoothly bounded
compact complex curve, say Xj−1, whose boundary bXj−1 lies inside the ball
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Rj−1Bn of some radius Rj−1 > 0 but close to its boundary sphere. Then, we
apply to Xj−1 a deformation that is arbitrarily small outside a neighborhood of
bXj−1 and pushes each boundary point x ∈ bXj−1 a distance approximately 1/j
in a direction perpendicular to the position vector of x in C

n. In this way we
increase the boundary distance from a fixed interior point of the curve an amount
of approximately 1/j, while the extrinsic diameter is increased, by Pythagoras’
theorem, an amount of the order of 1/j2. Moreover, we ensure that the boundary
of the new complex curve, Xj , lies inside the ball of radius

Rj =
√

R2
j−1 + 1/j2 > Rj−1

but close to its boundary sphere. See Fig. 1. Since
∑
j≥1

1/j = ∞ and
∑
j≥1

1/j2 < ∞,

Fig. 1. Schematic representation of the geometry of the deformations used in the induc-
tive construction in [15]. The key idea is to deform the submanifold near its boundary
by pushing each boundary point in a direction orthogonal to its position vector.

if we arrange this process in the right way then we obtain in the limit a complete
complex curve that is contained in the ball of radius R = limj→∞ Rj < ∞ and is
proper in it. In order to prescribe the topology of the curve, we begin with a disc
and at each step of the inductive construction apply a surgery which enables us to
add either a handle or a boundary component to a given compact bordered com-
plex curve in C

n. Finally, if n ≥ 3, then a general position argument allows to guar-
antee that all complex curves in the sequence are embedded, and hence the limit
one can be granted to be embedded as well. The main tool in order to make the
described deformations is the theory of uniform approximation for holomorphic
functions on open Riemann surfaces; in particular, the Runge-Mergelyan theorem
(see E. Bishop [21] or e.g. Theorem 5 in the survey on holomorphic approximation
by J.E. Fornæss, F. Forstnerič, and E.F. Wold [33]).
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A different construction of complete bounded complex curves in C
2 can be

found in [59], where F. Mart́ın, M. Umehara, and K. Yamada gave examples
with arbitrary finite genus and finitely many ends. Their technique relies on the
existence of a simply connected complete bounded holomorphic null curve in
C

3 (such a curve was first constructed in [15], an alternative construction was
given later by L. Ferrer, F. Mart́ın, M. Umehara, and K. Yamada in [31]; see
the mentioned sources or e.g. [12, §2.3] for definitions) and modifies a method
developed by F.J. López in [56] for constructing complete minimal surfaces in
R

3 of hyperbolic conformal type.
Despite the flexibility of the methods in [15,59], none of them allows to con-

trol the complex structure on the curve, except of course in the simply connected
case: every bounded immersed complex curve in C

n must have hyperbolic con-
formal type, and hence if it is simply connected it is biholomorphic to the disc
D. Indeed, since the construction in [15] relies on Runge’s theorem, at a certain
stage one does not have enough information on the placement in C

n of some
parts of the curve, and hence one is forced to cut away some small pieces of
the curve to ensure its boundedness. This makes one to lose the control of the
complex structure of the curve. This difficulty was overcome by A. Alarcón and
F. Forstnerič in [5], also published in 2013, where two additional complex ana-
lytic tools were introduced into the game, namely, the method of F. Forstnerič
and E.F. Wold [43] for exposing boundary points of a complex curve in C

n and
the use of approximate solutions to Riemann-Hilbert boundary value problems.
(The former is a modern technique that has led to important progress in the clas-
sical Forster-Bell-Narasimhan Conjecture asking whether every open Riemann
surface admits a proper holomorphic embedding into C

2 [20,34]; we refer to F.
Forstnerič [37, §9.10–9.11] for a survey on this long-standing open problem. On
the other hand, the use of the Riemann-Hilbert problem for constructing proper
holomorphic maps has a long history; we refer to F. Forstnerič and J. Globevnik
[41], B. Drinovec Drnovšek and F. Forstnerič [28], and the references therein.)
The implementation of these new tools enabled to substantially simplify the con-
struction in [15] and, moreover, to control the complex structure on the curve.
Recall that a bordered Riemann surface is an open connected Riemann surface
M that is the interior, M = M \ bM , of a compact one dimensional complex
manifold M with smooth boundary bM consisting of finitely many closed Jordan
curves; such an M is called a compact bordered Riemann surface.

Theorem 3 (Alarcón-Forstnerič [5]). Let n ≥ 2 be an integer. Every bordered
Riemann surface M admits a complete proper holomorphic immersion M → Bn

that is an embedding if n ≥ 3. The same holds true if we replace the ball by any
pseudoconvex domain in C

n.

More generally, it is shown in [5] that if X is a Stein manifold of dimension
n ≥ 2 endowed with a hermitian metric, then every bordered Riemann surface M
admits a complete proper holomorphic immersion M → X that can be chosen
an embedding if n ≥ 3. Recall that a Stein manifold is the same thing as a
closed complex submanifold of a complex Euclidean space; we refer to [37] for a
comprehensive monograph on the theory of Stein manifolds. A domain D in C

n
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(n ≥ 2) is a Stein manifold if and only if it is pseudoconvex, meaning that there
is a strictly plurisubharmonic exhaustion function D → R. This happens if and
only if D is a domain of holomorphy and if and only if D is holomorphically
convex. For instance, every convex domain in C

n is pseudoconvex. We refer to
the monographs by R.M. Range [61] (see also the introductory note [62]) and L.
Hörmander [49,50] for background on the subject.

More recently, the construction technique in [5] has been refined to produce
complete bounded complex curves with control on the complex structure and
with some further control on the asymptotic behavior. In particular, there are
such curves bounded by Jordan curves. The following is a compilation of results
by A. Alarcón, I. Castro Infantes, B. Drinovec Drnovšek, F. Forstnerič, and F.J.
López [3,4,9,17,40].

Theorem 4. Let R be a compact Riemann surface and assume that M = R \⋃
i∈I Di is a domain in R whose complement is a finite or countable union of

pairwise disjoint, smoothly bounded closed discs (i.e., diffeomorphic images of
D). The following assertions hold true:

1. M is the complex structure of a complete bounded complex curve in C
2. In

fact, for any n ≥ 2 there is a continuous map ϕ : M → C
n such that the

restricted map ϕ|M : M → C
n is a complete holomorphic immersion (embed-

ding if n ≥ 3) and ϕ|bM : bM =
⋃

i∈I bDi → C
n is injective. (Alarcón-

Drinovec Drnovšek-Forstnerič-López [4], Alarcón-Forstnerič [9]. )
2. If I is finite, then there is a continuous map ϕ : M → Bn (n ≥ 3) such

that ϕ(bM) ⊂ bBn and ϕ|M : M → Bn is a complete proper holomorphic
immersion (embedding if n ≥ 3). The same holds true with Bn replaced by any
convex domain in C

n. (Alarcón-Drinovec Drnovšek-Forstnerič-López
[4]. )

3. If I is finite, then for any domain D in C
n there is a complete holomorphic

immersion ϕ : M → D whose image is a dense subset of D. If n ≥ 3 then ϕ
can be chosen injective. (Alarcón-Castro Infantes [3]. )

4. There is a Cantor set C in R whose complement admits a complete holomor-
phic immersion R \ C → C

2 with bounded image. There also exist a Cantor
set C in R and a complete holomorphic embedding R \ C ↪→ C

3 with bounded
image. (Forstnerič [40]. )

5. There is a Cantor set C in M and a continuous map ϕ : M \C → C
n (n ≥ 2)

such that ϕ|M\C : M \ C → C
n is a complete holomorphic immersion and

ϕ|bM : bM =
⋃

i∈I bDi → C
n is injective. If n ≥ 3 then C can be chosen so

that ϕ : M \ C → C
n is an injective map. (Forstnerič [40]. )

Summarizing, by the year 2015 there were available in the literature several
constructions of complete bounded complex curves immersed in C

2 and embed-
ded in C

3, allowing a high control on the asymptotic behavior (proper in the
ball or in a given pseudoconvex domain, bounded by Jordan curves, etc.), on
the topology, and on the complex structure of the examples. However, the con-
struction of complete bounded embedded complex curves in C

2 turns out to be a
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much more challenging undertaking, and the question whether such curves exist
remained open (see [5, Question 1]). Recall that complex curves are generically
embedded in C

n for n ≥ 3, meaning that self-intersections can be removed by
applying small deformations, while self-intersections of complex curves in C

2,
which are generically double points, are stable under such deformations. That is
the main reason why the task is a more difficult one.

The Yang problem for embedded complex curves in the affine plane C
2 was

finally settled by A. Alarcón and F.J. López in a paper published in 2016.

Theorem 5 (Alarcón-López [18]). Every convex domain in C
2 admits com-

plete properly embedded complex curves.

The proof goes by induction and involves an approximation process by
embedded complex curves in C

2. The main step in the construction is to prove
that every compact embedded complex curve X in C

2 with the boundary bX
lying in the boundary bD of a regular strictly convex domain D ⊂ C

2 may be
approximated by another compact embedded complex curve X̃ with bX̃ ⊂ bD̃,
for any given convex domain D̃ ⊂ C

2 with D ⊂ D̃. The new curve X̃ is ensured
to contain a biholomorphic copy of X, which we denote by X as well, and the
main point is to guarantee that X̃ \ X ⊂ D̃ \ D and the intrinsic Euclidean dis-
tance in X̃ from X to bX̃ is suitably larger (in a Pythagorical way similar to that
explained in Fig. 1) than the distance from D to bD̃. These conditions are the
key for obtaining embeddedness, completeness, and properness of the limit com-
plex curve in the limit convex domain. In order to guarantee the embeddedness
of X̃ a standard self-intersection removal method consisting of replacing every
normal crossing in an immersed complex curve in C

2 by an embedded annulus is
applied. This surgery may generate shortcuts in the arising desingularized curve
X̃, thereby giving rise to divergent paths of shorter length. This is an important
difficulty for ensuring completeness; for instance, if one applies this surgery at
each step in the inductive construction in the proof of Theorem 2 or Theorem 3,
then one still obtains in the limit a properly embedded complex curve in B2 (or,
more generally, in any given pseudoconvex domain of C

2), but it need not be
complete. A main novelty in the construction in [18] is provided a good enough
(say, in a Pythagorical sense) estimate of the growth of the intrinsic Euclidean
diameter of the desingularized, embedded complex curve X̃; this is achieved by
keeping a stronger control on the placement of X̃ \X in D̃ \D. The main tool in
this construction continues to be the classical Runge-Mergelyan approximation
theorem for holomorphic functions on open Riemann surfaces.

The aforementioned surgery may increase the topological genus of the curve,
and so there is no control on the topology of the examples in Theorem 5. They
actually seem to have infinite genus, and can be ensured to have infinite topology.
It therefore remained an open question whether there are complete bounded
embedded complex curves in C

2 of finite topology (see [18, Question 1.5]).
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3 Submanifolds of Arbitrary Dimension

All examples of complete bounded complex submanifolds we have discussed so
far are of complex dimension one; i.e., complex curves in C

n. The first known
such submanifolds of higher dimension were also given in [5].

Corollary 1 (Alarcón-Forstnerič [5]). If D is a relatively compact, strongly
pseudoconvex domain in a Stein manifold of dimension k ≥ 1, then there are
a complete proper holomorphic immersion D → (B2)2k ⊂ C

4k and a complete
proper holomorphic embedding D ↪→ (B3)2k+1 ⊂ C

6k+3.

The corollary is obtained by the following simple trick which was pointed out
by J.E. Fornæss. In [29], B. Drinovec Drnovšek and F. Forstnerič proved that
every domain D as in the statement admits a proper holomorphic immersion
g : D → D

2k into the polydisc D
2k = D× 2k. . . ×D ⊂ C

2k. Choose a complete
proper holomorphic immersion ϕ : D → B2 provided by Theorem 3, and consider
the proper holomorphic map ϕ2k : D

2k → (B2)2k given by

ϕ2k(ζ1, . . . , ζ2k) = (ϕ(ζ1), . . . , ϕ(ζ2k)), (ζ1, . . . , ζ2k) ∈ D
2k.

It is then easily checked that ϕ2k ◦g : D → (B2)2k is a complete proper holomor-
phic immersion. A slight modification of this argument using a proper holomor-
phic embedding D ↪→ D

2k+1 (existence of such is also proved in [29]) provides
a proper holomorphic embedding D ↪→ (B3)2k+1. This same trick together with
Theorem 5 allows to prove the following.

Corollary 2 (Alarcón-López [18]). For any k ∈ N there is a complete bounded
embedded k-dimensional complex submanifold Mk ↪→ C

2k.

The ad hoc construction of the high dimensional examples in Corollaries 1
and 2 seemed to give very particular solutions to the Yang problem for complex
submanifolds of dimension ≥ 2. This led to some new questions, as whether the
dimension 2k in Corollary 2 is optimal, and exposed the need of looking for
new construction methods other than those based on the existence of complete
bounded complex curves. For instance, the natural question whether the ball
Bk (k ≥ 2) admits a complete proper holomorphic embedding into the ball Bn

for some n > k, and, in particular, for n = k + 1 appeared; see [5, Question 3]
and [44, Question 13.2]. An affirmative answer to this question in the case of
sufficiently high codimension was given in 2015 by B. Drinovec Drnovšek.

Theorem 6 (Drinovec Drnovšek [27]). Every bounded strictly pseudoconvex
domain D ⊂ C

k (k ∈ N) with C2 boundary admits a complete proper holomorphic
embedding D ↪→ Bn for any large enough n ∈ N.

The proof in [27] continues to use the geometric idea of deforming a compact
submanifold near the boundary in orthogonal directions to the position vector
(see Fig. 1), but it exploits different tools. The main new ingredients are holo-
morphic peak functions, going back to ideas of M. Hakim and N. Sibony [48] and
E. Løw [57], and the construction of inner functions on the ball, as well as J.E.
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Fornæss embedding theorem [32]. The construction relies on suitably modifying
earlier methods by F. Forstnerič [35] and E. Løw [58] for constructing proper
holomorphic maps from a strictly convex domain with C2 boundary in C

k into
a unit ball of some Euclidean space of higher dimension, in order to make them
complete. The construction method in [27] requires a sufficiently high codimen-
sion, and hence the following question remains open; see [5, Question 3] and [44,
Question 13.2].

Problem 2. Does there exist a complete proper holomorphic embedding Bk ↪→
Bk+1 for k ≥ 2?

4 Hypersurfaces

Recall that complex submanifolds of dimension k ∈ N in C
n are generically

embedded for n ≥ 2k+1 (meaning that one can get rid of their self-intersections
by applying small deformations on compact pieces), while for n ≤ 2k self-
intersections of k-dimensional complex submanifolds in C

n are stable under small
deformations. This is the main reason why the Yang problem for embedded sub-
manifolds is much more difficult in low codimension; in particular, for hypersur-
faces. In the lowest dimensional case of n = 2 (i.e., for complex curves in C

2),
this question was first solved by A. Alarcón and F.J. López in [18] (see Theo-
rem 5 above), but the question whether there are complete bounded embedded
complex hypersurfaces in C

n, or even whether there are such complex subman-
ifolds of dimension k with 2k ≥ n, remained open for every n ≥ 3. Indeed, note
that the codimension in all examples of complete bounded embedded complex
submanifold of dimension ≥ 2 which have been mentioned so far is high.

It was J. Globevnik who, in a pair of landmark papers in 2015–2016, posi-
tively settled Yang’s question in Problem 1 for embeddings in arbitrary dimen-
sion and codimension; in particular, for hypersurfaces.

Theorem 7 (Globevnik [44,46]). For any pair of integers 1 ≤ k < n there
is a complete closed embedded k-dimensional complex submanifold of Bn. In
particular, Bn admits a complete properly embedded complex hypersurface.

The same holds true if we replace the ball by any pseudoconvex domain in
C

n.

Globevnik’s approach is completely different from any previous method used
in the study of the Yang problem, and it was a major breakthrough in this
topic. In particular, his construction of a complete closed complex hypersurface
in a given pseudoconvex domain D ⊂ C

n is implicit: the examples are obtained
as level sets of highly oscillating holomorphic functions on D. (The existence
of complete closed complex submanifolds of any higher codimension is then an
obvious consequence.) To be more precise, Globevnik proved the following.

Theorem 8 (Globevnik [44,46]). For any pseudoconvex domain D ⊂ C
n (n ≥

2) there is a holomorphic function on D whose real part is unbounded above on
every divergent path γ : [0, 1) → D of finite length.
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If a function f : D → C on a domain D ⊂ C
n is holomorphic and nonconstant,

then all its nonempty level sets f−1(c) = {z ∈ D : f(z) = c} (c ∈ C) are closed
complex hypersurfaces of D, possibly with singularities. Nevertheless, by Sard’s
theorem most of them are smooth, and hence properly embedded. So, if c ∈ C

is such that f−1(c) �= ∅, then every divergent path γ : [0, 1) → f−1(c) diverges
on D as well. If D is pseudoconvex and the function f is as in Theorem 8 then,
since �(f) is constant (and hence bounded) on γ, we have that γ has infinite
length, and f−1(c) is thus complete. Therefore, the level sets f−1(c) (c ∈ C)
of f form a (possibly singular) holomorphic foliation of D by complete closed
complex hypersurfaces. Theorem 8 thus implies the following corollary which, in
turn, implies Theorem 7.

Corollary 3 (Globevnik [44,46]). Every pseudoconvex domain D ⊂ C
n (n ≥

2) admits a (possibly singular) holomorphic foliation by complete closed complex
hypersurfaces (most of which are smooth).

Let us outline the proof of Theorem 8 in the case of D = Bn given in [44].
Recall that a convex polytope P in R

d, d ≥ 2, is a compact convex set which
is the intersection of finitely many closed half-spaces. A face of P is a closed
convex subset F ⊂ P such that every closed segment in P whose relative interior
intersects F is contained in F . The boundary bP of P is the union of its faces
of dimension d − 1, while the skeleton skel(P ) of P is the union of all (d − 2)-
dimensional faces of P . Most of the work in the proof consists of constructing a
sequence of convex polytopes Pj in C

n = R
2n and positive numbers θj (j ∈ N)

satisfying the following conditions:

(i) P1 ⊂ Int(P2) ⊂ P2 ⊂ Int(P3) ⊂ · · · ⊂ ⋃
j∈N

Pj = Bn.
(ii) Denote by Uj the θj-neighborhood of skel(Pj) in bPj , and set Vj = (bPj)\Uj ,

j ∈ N. If γ : [0, 1) → Bn is a divergent path such that γ([0, 1)) ∩ Vj = ∅ for
all j ≥ j0 for some j0 ∈ N, then γ has infinite length.

Each set Vj (j ∈ N) is compact and its connected components are closed convex
sets in hyperplanes of R

2n. The union

L =
⋃
j∈N

Vj (1)

of all of them is a sort of labyrinth of compact connected (2n − 1)-dimensional
convex sets in Bn ⊂ R

2n with the property that every divergent path γ : [0, 1) →
Bn meeting at most finitely many components of L has infinite length. See Fig. 2.

The construction of the labyrinth in [44] is very involved and belongs to
convex geometry. With the labyrinth in hand, to complete the proof of Theorem
8 an idea of J. Globevnik and E.L. Stout from [47] is used in order to construct,
via Runge’s theorem, a sequence of holomorphic polynomials fj : C

n → C, j ∈ N,
such that the following conditions hold for each j ∈ N:

(iii) �(fj(z)) ≥ j + 1 for all z ∈ Vj .
(iv) |fj+1(z) − fj(z)| ≤ 1/2j+1 for all z ∈ Pj .


