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Preface

The XXIV Bioengineering Congress and XIII Clinical Engineering Conference (SABI
2023) was held in the Ciudad Autónoma de Buenos Aires (Argentine) and in the city of
Florencio Varela from October 3–6, 2023. The event represents the scientific meeting of
the Argentine Society of Bioengineering, and on this occasion, it was organized by the
Arturo Jauretche University.

The congress covered topics such as bioinstrumentation, digital signal processing
and biomedical images, rehabilitation engineering, biomaterials and tissue engineering,
clinical engineering, bioinformatics, modeling and simulation of biological systems,
medical informatics, education, among others.

The IFMBE organized a special session on Biomedical Engineering Education
for professionals and students as well as a special session on Women in Biomedical
Engineering.

As a satellite event of the congress, the so-called Student SABI was held, an event
aimed especially at students in which presentations by specialists, 37 works showcased,
workshops, and visits to companies were held. The objective of this event is to strengthen
the bond between students from different universities and promote the exchange of
experiences between them.

It is both our pleasure and honor to extend a cordial welcome to all participants
actively engaging in the exploration of the proceedings of SABI 2023. The confer-
ence showcased an impressive array of over 145 research papers and ten conferences
by international experts, all converging to deliberate on the challenges intrinsic to the
advancement of future technologies in medicine and biology.

Conferences of this nature inherently serve the purpose of facilitating social inter-
actions among individuals who share common interests and expertise. These gatherings
provide attendees with the opportunity to extract novel insights, exchange prevailing
ideas, and delve into critical aspects of healthcare. This conference, therefore, stands as
an invaluable platform not only to stay updated within one’s specific area of expertise
but also to explore the forefront of advancements in other domains. While an attendee’s
specialization may extend beyond the realm of Medical and Biological Engineering, the
compilation of works presented herein holds the potential to provide noteworthy insights
capable of revolutionizing approaches to broader challenges.

We are confident that each of you found considerable satisfaction in the extensive
opportunities offered during SABI 2023. The event proved to be a remarkable confluence
of experiences and expertise spanning a wide spectrum of fields, all encapsulated under
a unified roof. This collaborative endeavor has undoubtedly sparked a tangible wave of
motivation and diversity, resonating not only across the Americas but also reverberating
throughout the global landscape.
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Improved ERD Detection of EEG Sensorimotor
Rhythms Through Wavelet Transform

Alejandro Quiroga1(B) , Diana Vértiz del Valle1 , Katherine Tschopp1 ,
Leonardo Rufiner2,3 , and Rubén Acevedo1

1 Center of Rehabilitation Engineering and Neuromuscular Research, Faculty of Engineering,
National University of Entre Ríos, Oro Verde, Entre Ríos, Argentina

alejandro.quiroga@uner.edu.ar
2 Institute for Signals, Systems and Computational Intelligence, sinc(i), UNL-CONICET,

Ciudad Universitaria UNL, 4th Floor, FICH, Santa Fe, Argentina
3 Cybernetics Laboratory, Faculty of Engineering, National University of Entre Ríos,

Concepción del Uruguay, Entre Ríos, Argentina

Abstract. Brain-computer interfaces are a novel tool to implement neurorehabil-
itation therapies in people with motor disabilities. One of the most used paradigms
in neurorehabilitation is the one based on the electroencephalogram. During the
execution or attempted execution of a movement, a decrease in sensorimotor
rhythms occurs in the contralateral hemisphere known as event-related desynchro-
nization (ERD). Power spectral density is widely used in the literature to detect
ERD, under the assumption that SMRs are rhythmically sustained oscillations. A
recent theory suggests that neural oscillations can be represented as rhythmically
sustained oscillationswith dynamic amplitude or also as bursts without underlying
rhythmicity. This allows the use of the wavelet transform, in particular the discrete
dyadic wavelet transform (DDWT), which has a representation through compact
support functions that allows highlighting localized frequency characteristics of
a signal. In this work, the performance of different DDWT-based feature extrac-
tion strategies and denoising techniques were compared in order to improve the
performance of ERD detection of SMR. The DDWT with the bior2.8 wavelet and
a polynomial SVM classifier yielded the best performance, achieving a high true
positive rate. However, the overall accuracy did not match the favorable results.
To address this limitation, future research incorporating data augmentation tech-
niques and feature selection algorithms are proposed to reduce the dimensionality
of the data.

Keywords: Wavelet transform · DDWT · BCI · ERD

1 Introduction

Brain Computer Interfaces (BCI) are a novel tool to implement neurorehabilitation ther-
apies in people with motor disabilities. By decoding brain activity, BCIs can interpret
user intentions and generate corresponding outputs [1]. One of the most used paradigms
in neurorehabilitation is the one based on electroencephalogram (EEG),whose recording
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is done in the central area located on the sensorimotor cerebral cortex. During the execu-
tion or attempted execution of a movement, there is a decrease in sensorimotor rhythms
(SMR) in the contralateral hemisphere known as event related desynchronization (ERD).

Power Spectral Density (PSD) is widely used in the literature for detecting ERD of
SMRs [2], this assumes that the SMRs are rhythmically sustained oscillations. However,
a recent theory has emerged suggesting that neural oscillations,which include SMRs, can
also be represented as rhythmically sustained oscillation with amplitude dynamics and
as burst-events with no underlying rhythmicity, see Fig. 1. The “bursting” interpretation
comeswith far-reaching implications, but its importance depends on its being an accurate
reflection of physiology measures [3].

Fig. 1. Types of neural oscillations: (1) Rhythmically sustained oscillation without amplitude
dynamics, (2) Rhythmically sustained oscillation with amplitude dynamics, (3) Burst-events with
no underlying rhythmicity. (a) without noise and (b) with noise. Adapted from [3].

This makes us suppose that a representation of the signal using elements of short
duration, and with a defined temporal location, would allow a better representation
of the signal. Wavelet representation has a compact support that allows highlighting
localized characteristics of a signal, such as those shown in Fig. 1 (2.a) and (3.a) in the
time-frequency plane. This uses windows of different sizes, so that high frequencies are
evaluated in the shorter window and low frequencies in the longer window. Therefore, it
provides a flexible framework, fromwhich it is possible to compactly represent different
characteristics of the signal. [4]. In particular, the discrete dyadic wavelet transform
(DDWT) is one of the most commonly used methods to generate orthogonal bases from
the wavelet transform, due to its simple and inexpensive computational implementation.

The aim of this work was to analyze and compare extracting features strategies based
on DDWT, using different wavelet mother functions and denoising techniques, in order
to improve the performance of ERD detection of SMRs.

2 Methods

2.1 EEG Dataset

The dataset used in this work was obtained from the Center for Neuromuscular and
Sensory Rehabilitation and Research Engineering (CIRINS) at the Faculty of Engineer-
ing of the National University of Entre Ríos. The dataset comprised EEG signals from



Improved ERD Detection of EEG Sensorimotor Rhythms 5

six volunteers without neurological or cognitive sequelae. The signals were recorded
using the IM-tention software with a sampling frequency of 250 Hz and five recording
channels in a monopolar configuration [5]. The electrodes were located at C3, Pz, C4,
Fz and Cz; the ground and reference electrodes were placed at A1 and A2 respectively.
For EEG signals preprocessing, a 2nd order bandpass Butterworth filter (1–40 Hz) and
a notch filter to reject power line frequency of 50 Hz were used. To emphasize localized
activity on the Cz electrode, a Laplacian spatial filter was used [1] (Fig. 2).

Fig. 2. Electrodes used in the EEG dataset.

Considering the stages needed in order to use a BCI, records were obtained in the
calibration stage (calibration recordings) and in the closed-loop stage (online recordings).
In the calibration recordings, visual cues (arrows presented on a monitor) were used to
indicate which foot the volunteer should move (right or left) as well as when it should be
at rest (pause sign). These visual instructions were randomly repeated 10 times for each
foot during each series of recordings. Three series of EEG recordings were conducted
for each volunteer. Then, temporal patterns were formed by segmenting the EEG signals
using temporal marks that identified the appearance time of the visual cue. This process
defined intervals corresponding to movement and rest, as illustrated in Fig. 3. The 500
ms following the visual cue were discarded, and the subsequent 2 s were considered as
the interval during which the subject performed the movement. Similarly, the 500 ms
preceding the cue were discarded and the 2 s prior were considered as the rest interval.

Fig. 3. EEG signal segmentation.
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In the case of online recordings, three series were conducted, each consisting of
10 movements of the dominant foot and 10 rest periods. It is important to note that
only actual foot movements were performed, with no attempted movements, in order
to ensure the manifestation of the ERD, as the objective of this work is to evaluate the
ERD detection.

2.2 Features Extraction Strategies

This section describes the feature extraction strategies evaluated in this work.

2.2.1 Power Spectral Density

Since ERD is a power decrease of SMR, the power spectral density (PSD) of tempo-
ral patterns was computed. There are different approaches to estimate the PSD and in
this work, Welch’s method for PSD estimation was employed. This approach divides
the signal into overlapping windows, estimates the periodogram for each window, and
averages them to obtain the PSD [6].

In the calibration stage, the PSD of the temporal patterns was calculated using the
Welch method with 1Hz resolution and 3 Hamming windows of 1 s (50% overlapping).
This process resulted in two sets of 23 features (referred to as feature vectors), including
only the frequencies in the 8–30Hz range which correspond to SMR. During the Closed-
loop stage, a single feature vector is extracted only from the movement interval.

2.2.2 Dyadic Discrete Wavelet Transform

The wavelet transform is an important tool for signal processing, as it allows the repre-
sentation of signals in the time-frequency plane and provides detailed analysis at both
high and low frequencies (multiresolution analysis) as well as good response when deal-
ing with nonstationary signals [7]. The wavelet transform is achieved by calculating
the inner product between the signal of interest and the wavelet function (φ) at a scale
and translation, determined by the scale function (ψ). This process yields coefficients
corresponding to an orthogonal base which represents the original signal into different
resolution levels.

In this work, the dyadic discrete wavelet transform (DDWT) was used, with a scal-
ing factor of 2, resulting in a more efficient transform compared to the continuous-time
wavelet transform. This is because the DDWT produces fewer coefficients and reduces
redundant information. The state of the art analysis brings a number of wavelet func-
tions used in common EEG feature extraction problems [8]. Considering the similarity
between the morphology of the wavelet functions and the bursts mentioned earlier, the
following families of wavelet functions were chosen: Daubechies (db4, db6, db10, db13,
db14 and db15), Biorthogonal (bior2.4, bior2.8, bior3.1, bior5.5 and bior6.8), Coiflet
(coif5) and Symlet (sym5). Figure 4 shows an example for each of the selected families.

The DDWT algorithm implementation involves a tree decomposition (see Fig. 5)
using a filter bank approach. At each decomposition level, a low-pass filter and a high-
pass filter are applied to extract a set of coefficients known as approximation (A) and
detail (D), respectively. Dyadic scaling allows to reduce the number of the coefficients
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Fig. 4. Examples of Daubechies, Biorthogonal, Coiflet and Symlet wavelet families.

of the previous level by half and enables the representation of specific frequencies using
any selected coefficients.

Fig. 5. DDWT tree decomposition.

As previously mentioned, the sample frequency was fs = 250 Hz, resulting in a
maximum signal frequency of 125 Hz. Based on this, at level 1, the decomposition
consists of A and D, representing frequencies from 0 Hz to 62.5 Hz and 62.5 Hz to
125 Hz respectively. The level 2 consists of AA and AD, representing frequencies from
0 Hz to 31.25 Hz and AD 31.25 Hz to 62.5 Hz respectively. Continuing this pattern,
AAA andAAD represent frequencies from 0Hz to 15.625Hz and 15.625Hz to 31.25Hz
respectively at level 3. Finally, on level 4 AAAA represents frequencies from 0 Hz to
7.81 Hz and AAAD represents frequencies from 7.81 Hz to 15.625 Hz.

To focus on the frequency range of interest for SMRs (8–30 Hz), a denoising scheme
was applied. Only the coefficients corresponding to AAAD and AAD (7.81 Hz to
31.2Hz)were used. These coefficients are then concatenated to form the feature patterns,
as shown in blue in Fig. 5.
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2.3 Classifiers

According to [9], Fisher’s linear discriminant analysis (LDA) and support vectormachine
(SVM) are suitable classifiers for studying the ERD phenomenon. Therefore, in this
work, both LDA and SVM classifiers were implemented and compared.

2.3.1 Linear Discriminant Analysis

Fisher’s linear discriminant is a linear classifier with easy implementation and low
computational cost. It assumes that the classes are normally distributed with identi-
cal covariance (homoscedasticity assumption). Though the LDA classifier imposes very
strong assumptions on the distribution of the data, the computation of the discriminative
function is very efficient, that’s why it has been popular in the BCI field [10].

The LDA, like any binary linear classifier, can be characterized by the Eq. (1):

g(z) = wT · z + b (1)

where w = [w1 . . .wk ] is the projection vector, z ∈ Rk represents the input vector and b
is the bias term. The classification function assigns the class label Ci to each pattern z
depending on the sign of the function g(z). It is assumed that the probability distributions
of each class follow a Gaussian distribution.

2.3.2 Support Vector Machine

One of the widely used classifiers in BCI for various applications is the Support Vector
Machine (SVM), a kernel-based classifier [11]. For the specific problem addressed in this
work, which involves 2 classes, SVM finds a hyperplane that separates the classes. This
process involves projecting the data into a high-dimensional space, where the classes
could be linearly separable. In cases where linear separability cannot be achieved, the use
of appropriate kernel functions becomes necessary. Although different kernel functions
were evaluated, this work presents the results obtained using the linear and polynomial
kernels (Eq. 2), as they demonstrated the highest performance.

(<x, y> + c)d , c ∈ R, d ∈ ℵ (2)

In the SVM training process, grid-search and cross-validation techniques were
employed to optimize the classifier’s performance. Grid-search involved varying the
values of key parameters, such as C, gamma (γ), and the polynomial degree. For the
linear kernel, the parameter C determines the trade-off between misclassification and
maximizing the margin. In the case of the polynomial kernel, γ controls the influence of
individual training samples and the polynomial degree sets the degree of the polynomial
kernel function.
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Cross-validation was used to evaluate the performance of the SVM with a linear
kernel across different C values and the SVM with a polynomial kernel using different
parameter combinations. The selection of the optimal parameter set was based on the
accuracy metric. In this work, the chosen parameters ranges were as follows: C val-
ues ranged from 10–2 to 1010, γ values ranged from 10–9 to 103 and the polynomial
degree values were set to 2 and 3. These ranges were selected based on prior knowl-
edge [12] and experimentation. Using grid-search and evaluating performance through
cross-validation, the SVMclassifierwasfine-tuned to achieve the highest accuracy result.

2.4 Performance Metrics

In the calibration stage, the performance of the classifier was evaluated using the Accu-
racy (AccCal) metric, the feature vectors obtained in this stage were used. The objective
of this metric is to estimate the effectiveness of the calibration process. In the closed-
loop stage, the Accuracy (Acc) and True Positives Rate (TPR) were employed. These
metrics can be calculated using the Eqs. (3) and (4), where TP represents true positives,
TN represents true negatives, FP represents false positives, and FN represents false
negatives.

Acc [%] = TP + TN

TP + TN + FP + FN
.100 (3)

TPR [%] = TP

TP + FN
.100 (4)

In the context of neurorehabilitation, reporting the TPR is crucial because the BCI is
active only during the execution or attempted execution of a movement. The rest of the
time, the BCI remains inactive, which means that only the class related to the movement
is available.

3 Results

To select the best wavelet functions within each family, the TPR at the close-loop was
used instead of Acc due to the minimal variability between wavelet functions. Therefore,
the TPRwas analyzed using the three classifiers: LDA, SVMwith linear kernel and SVM
with polynomial kernel. In the case of the Daubechies family, the db6 wavelet function
achieved the highest rate, as can be seen in Table 1; for the Biorthogonal family, the
bior2.8 function demonstrated the highest rate, as shown in Table 2. This selection was
not necessary for Coiflet and Symlet families, since only one function per family was
considered.
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Table 1. Daubechies family TRP results

Wavelet function Median TPR

LDA kernel = Linear kernel = Poly

db4 50.00 50.50 61.11

db6 63.33 55.00 85.00

db10 55.00 51.11 57.77

db13 60.55 54.17 50.00

db14 55.55 49.16 66.11

db15 55.55 50.00 65.55

Table 2. Biorthogonal family TRP results

Wavelet function Median TPR

LDA kernel = Linear kernel = Poly

bior2.4 61.66 50.55 91.11

bior2.8 66.70 58.30 96.70

bior3.1 53.00 57.78 92.22

bior5.5 57.22 53.33 75.55

bior6.8 56.66 56.67 79.45

The Fig. 6, 7 and 8 shows the results comparison between the best wavelets functions
and the PSD, using the latter as a reference.

Fig. 6. Performance metrics using LDA.
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Fig. 7. Performance metrics using linear SVM.

Fig. 8. Performance metrics using SVM with polynomial kernel.

By analyzing the previous figures, it was found that higher TPR is obtained by using
bior2.8 wavelet function, the best case being the use in combination with the SVM with
polynomial kernel. Figure 9 shows a comparison with the reference (PSD).

Fig. 9. Statistical analysis for PSD and bior2.8
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A repeated measures ANOVA test (Anova-RM) was used to assess differences in
TPR between bior2.8-SVM polynomial and the PSD-LDA combinations, the results are
shown in Table 3.

Table 3. Anova-RM analysis for PSD and bior2.8

F Value Num DF Den DF Pr > F

Features extraction strategies 6.8088 1.0000 5.0000 0.0477

4 Conclusions

This paper presented a comparison of feature extraction strategies based of DDWT to
detect ERD of sensorimotor rhythms for potential use in a BCI for neurorehabilitation.

According to the results obtained, the combination of bior2.8 wavelet function and
SVM polynomial outperformed the other alternatives in terms of the TPR (96,7%). Sta-
tistical analysis revealed a significant difference between bior2.8-SVM polynomial and
the PSD-LDA combination, as indicated by a p-value below 0.05. However, it is impor-
tant to keep in mind that TPR cannot be the only metric to draw a definitive conclusion,
as high TPR may bias the results. This is clear, since the Acc for this combination is
62.2%, this implies that in this case the classifier has high sensitivity and low specificity.
Future work should aim to improve the performance of the classifier trying to increase
the Acc and consequently the specificity.

On the other hand, using wavelet functions as a feature extraction strategy can
improve classification metrics due to the relationship between the burst events theory
and the morphology of wavelet functions. This is evidenced through their inner product,
as demonstrated by the similarity between the signal in Fig. 1 (2.a) and (3.a) and the
wavelets functions in Fig. 4.

Another aspect to consider when analyzing the results is the limited amount of data
available to train the classifiers (30 samples per class). This may have contributed to the
challenges in achieving a good generalization by the strategies presented in this paper.
To address this limitation in future works, it is proposed to employ data augmentation
techniques as well as feature selection algorithms to reduce the dimensionality of the
data.
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machine learning to biomedical problems in the context of sparse data” and CAID-
UNL 50620190100151LI “Algoritmos inteligentes profundos para análisis y clasificación de
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Abstract. Transcranial electrical stimulation (TES) is a field that inves-
tigates the effects of applying low-intensity electrical currents to the
human brain using electrodes placed on the scalp. Tumor Treating Fields
(TTFields) is one application of TES, that consists of applying alternat-
ing electric fields (∼300 KHz) to a tumoral region to arrest its growth.
The physiological principle is that tumoral cells are killed during the
mitosis if the fields are aligned with the cell subdivision direction. The
conventional protocol involves switching between two ad-hoc and intu-
itive anterior-posterior and left-right stimulation patterns. This paper
focuses on optimizing the current injection patterns to stimulate the
tumoral region, maximizing the average electric field intensity inside the
tumor along predefined electric field orientations. The reciprocity theo-
rem is used to optimize the current injection using two electrode arrays:
the conventional 36-electrode TTFields array and the 64-electrode 10–
20 electroencephalography array. A realistic head model, including brain
tissues and a tumor, is used to solve the forward problem of TES using
the finite element method. The performance is evaluated based on the
directionality and intensity metrics of the electric field within the tumor.
The results show improved performance in terms of directionality and
intensity for the optimized patterns compared to the conventional pro-
tocol. The proposed optimization approach has the potential to enhance
the efficacy of TTFields.

Keywords: TTFields · Transcranial Electrical Stimulation (TES) ·
Optimal Electrical Stimulation · Reciprocity Theorem

1 Introduction

Transcranial electrical stimulation (TES) is a rapidly evolving field in bioengi-
neering and neuroscience that explores the effects of applying minimally-invasive
‘low’ intensity electrical currents to the human brain. TES relies on applying an
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electrical current through two or more electrodes (array of electrodes) placed on
the scalp to modify or modulate cortical excitability and brain function. Alter-
nate and direct current TES are known as tACS and tDCS respectively. Research
has demonstrated that TES can be a valuable therapeutic tool for the treatment
of epilepsy, Parkinson’s disease, anxiety, and stroke rehabilitation [1]. They also
proposed to enhance cognitive skills such as memory or learning [1]. In this work
we focus on the application of TES for treating tumors.

In TES, the current injected by each electrode of the array, known as current
injection pattern, produces an electric field (or current density) map on the
brain [2,3]. The computation of this map is known as the forward problem (FP),
typically solved numerically using the finite element method (FEM) in a realistic
human head model [4]. The electrical conductivity and the shape of the different
head tissues determine the spatial distribution of the electric fields [3]. The
inverse problem (IP) is to determine the current injection pattern that stimulates
a certain region of interest (ROI) in a desired way. Depending on the criteria,
several optimization schemes have been proposed leading to different solutions.

Tumor treating fields (TTFields) therapy is a case of tACS applied to
the treatment of glioblastoma multiforme (GBM). It consists in delivering
intermediate-frequency electric fields to the tumoral region, arresting the growth
of cancerous cells due the interference with mitosis and cytokinesis [2]. If an elec-
tric field of ∼100–300KHz of frequency and 0.5–3V/cm of intensity is applied to
a GBM, the cellular growth can be disrupted [5,6]. The electric field aligned to
the cell-division preferred orientation is believed to affect metaphase by disrupt-
ing mitotic spindle formation, and anaphase, by dielectrophoretic dislocation of
intracellular constituents, resulting in apoptosis [2]. Because the healthy cells of
the brain do not divide frequently in comparison to the GBM cells, TTFields
leaves the healthy cells relatively unaffected [6]. It was experimentally found in
vitro that the technique is more efficient if more directions are covered [7].

The conventional protocol for TTFields use 4 arrays of 9 capacitive electrodes
each, positioned on the right, left, anterior and posterior regions of the scalp
(called here TTFields array) [5]. The injected current for this method is 100mA
per electrode with a total current of 900mA. The injection pattern switches,
between left to right (LR) and anterior to posterior (AP), expecting to generate
electric fields inside the tumor along two orthogonal directions of the 3D space.

However, the conventional protocol relies on pure intuition and hence, is not
optimal. LR or AP stimulation on the scalp does not guarantee the largest, most
orthogonal or most directional electric fields within the tumor. To improve the
orthogonality and intensity of the fields, the current injection patterns require
optimization.

This work uses the reciprocity theorem optimization methodology to maxi-
mize the electric field intensity inside the tumor along the three canonical orien-
tations (LR, AP and bottom-up or BU), with the TTFields array (36 electrodes)
and with the standard 10–20 electroencephalography (EEG) 64-electrode system
(considering 18 active electrodes in all cases).
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2 Methods

2.1 Head Model

We used a realistic head model based on the ICBM-152 atlas with five tissues:
brain (BR), cerebrospinal fluid (CSF), skull (SK), scalp (SC), and the tumor.
We extracted, meshed and generated the 3D surfaces, to produce a tetrahe-
dral volumetric mesh from these surfaces, with the Iso2mesh library. The final
tetrahedral mesh has around of 950.000 elements and 160.000 nodes (N). The
proposed tumor was modeled as a sphere of 0.5 cm radius, placed at 1.8cm under
the central sulcus, biased 1.2 cm towards the right hemisphere. Each tissue was
assumed to be homogeneous and isotropic conductivity with values 0.25, 1.79,
0.01, 0.25 and 0.24 S/m assigned to BR, CSF, SK, SC and tumor respectively
[2]. The model considers two pointwise electrode arrays, the TTFields 4 × 9
electrode array [5], and the standard 10–20 EEG 64 electrode array, shown in
Fig. 1. We manually determined the TTFields array electrode locations based
on anatomical landmarks and visual inspection. The 10–20 standard array was
projected to the scalp surface from the standard spherical coordinates.

Fig. 1. Plot of the scalp surface and the tumor (in blue). TTFields electrodes and
10–20 EEG 64 electrodes are plotted as green triangles and red circles respectively.

2.2 TES Forward Problem

The solution of the FP requires solving the electromagnetic physical (Maxwell’s)
equations. Given the frequency range of the problem, the quasi-static approxima-
tion is applicable [8,9]. Assuming a pointwise electrode model, the mathematical
formulation is established as:{

�∇ · (σ(�x)�∇Φ(�x)) = 0, in Ω

σ(�x)(�∇Φ(�x)) · n̂ = j(�x), in δΩ
(1)

where Ω is the head solid, δΩ is its boundary, �x is an arbitrary location in
space, Φ is the electric potential, σ is the tensor conductivity, j is the normal
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component of the current density on the external surface, and n̂ is the normal
to the boundary vector.

This equation system is solved using the first order FEM with the Galerkin
approach, that converts the FP (1) into a linear system of equations Kv =
f , where K is the N × N stiffness matrix computed using the geometry and
conductivity map of each tissue, v is the N × 1 unknown vector of electric
potential and f is the N × 1 vector of injected current [3,10]. An arbitrary
electrode is used as a reference for the electric potential and thus, the range of
K is N − 1 implying that K is not an invertible matrix. The algorithm used to
solve this linear system is the preconditioned conjugated gradient algorithm with
the LU factorization as preconditioner [11]. After v is determined, the numerical
gradient operator is calculated in order to get the electric field at the ROI.

Due to the linear nature of the electric fields, any current injection pattern can
be obtained as a linear combination of a complete set of independent elementary
patterns. Then, if there are L electrodes, L − 1 independent injection patterns
are needed to form a complete set. Each independent pattern was modeled as
an L-dimensional vector pi, with Imax at the i-th electrode and −Imax at the
reference electrode, where Imax is the maximum current allowed per electrode.

Then, the electric field was computed for all ROI tetrahedrons and for each
elementary current injection pattern leading to a 3T × (L−1) dimension matrix
TM known as transfer matrix (T is the number of ROI tetrahedrons). The
resulting electric field for an arbitrary current injection pattern c is obtained as
E = TM c.

2.3 Inverse Problem

We solved the IP applying the reciprocity theorem for TES and EEG, that
maximizes the average electric field intensity at the ROI along a predefined
direction [3].

Reciprocity Theorem as an Optimization Method. The reciprocity the-
orem coupling between TES and EEG is formulated as:

Φ(a) − Φ(b) =
�d · �∇ψab(�x)

Iab
(2)

where Φ(p) is the electric potential at an arbitrary point of the boundary p

produced by a dipolar electrical source �d in �x, and �∇ψab(�x) is the gradient
of the impressed potential (or minus the electric field) at �x when a current is
injected between locations a and b. Assuming that �d is the desired direction for
the impressed electric field, to maximize the dot product of �d and the electric
field at �x, Φ(a) − Φ(b) should be maximized, therefore, a = A and b = B


