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Preface

It is a great privilege for us to present the proceedings of the 21st “International Confer-
ence on Smart Technologies & Education” (STE2024) to the authors and delegates of
this event and to the wider, interested audience. The 2024 edition of STE was held under
the general theme “Smart Technologies for a Sustainable Future”, which was visible
throughout the conference program.

The STE conference is the successor of the long-standing annual REV Confer-
ences and the annual meeting of the International Association of Online Engineer-
ing (IAOE) together with the Edunet World Association (EWA) and the International
Education Network (EduNet). Initiated in 2004, REV has been held in Villach (Aus-
tria), Brasov (Romania), Maribor (Slovenia), Porto (Portugal), Dusseldorf (Germany),
Bridgeport (USA), Stockholm (Sweden), Brasov (Romania), Bilbao (Spain), Sydney
(Australia), Porto (Portugal), Bangkok (Thailand), Madrid (Spain), New York (USA),
Dusseldorf (Germany), Bengaluru (India), Georgia (USA), Hong Kong, Cairo (Egypt),
and Thessaloniki (Greece).

This year, STE2024 has been organized in Helsinki, Finland as an onsite event
supporting remote presentations, fromMarch 6 untilMarch 8, 2024. The co-organizers of
STE2024 were the Arcada University of Applied Sciences, the International Association
of Online Engineering (IAOE) together with the Global Online Laboratory Consortium
(GOLC), the International Education Network (EduNet), and the EDUNET WORLD
Association (EWA). STE2024 has been attracted 140 scientists and industrial leaders
from more than 40 countries.

STE2024 is an annual event dedicated to the fundamentals, applications, and expe-
riences in the field of Smart Technologies, Online, Remote, and Virtual Engineering,
Virtual Instrumentation, and other related new technologies, including:

• Applications & Experiences
• Artificial Intelligence
• Augmented Reality
• Open Science Big Data
• Biomedical Engineering
• Cyber Physical System
• Cyber Security
• Collaborative Work in Virtual Environments
• Cross-Reality Applications
• Data Science
• Evaluation of Online Labs
• Human–Machine Interaction & Usability
• Internet of Things
• Industry 4.0
• M2M Concepts
• Mixed Reality
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• Networking, Edge & Cloud Technology
• Online Engineering
• Process Visualization
• Remote Control & Measurements
• Remote & Crowd Sensing
• Smart Objects
• Smart World (City, Buildings, Home, etc.)
• Standards & Standardization Proposals
• Teleservice & Telediagnosis
• Telerobotic & Telepresence
• Teleworking Environment
• Virtual Instrumentation
• Virtual Reality
• Virtual & Remote Laboratories

The conference was opened by the Founding President of IAOE, Michael E. Auer,
who underlined the importance to discuss guidelines and new concepts for engineering
education in higher and vocational education institutions including emerging technolo-
gies in learning. In her greeting, the Rector of Arcada, Mona Forsskåhl pointed out
the importance of the digitalization of education and more specifically the engineering
education.

STE2024 offered an exciting technical program as well as networking opportuni-
ties concerning the fundamentals, applications, and experiences in the field of online
engineering and related new technologies.

As part of the conference program, three pre-conference workshops have been
organized:

1. Overcoming Traditional Boundaries of STEM Education and Enabling the Engineer
of the Future

2. Logiccloud: The Next Generation Of Industrial Control
3. High-Performance Extreme Learning Machines

Furthermore, special sessions have been organized at REV2024, namely

1. Online Laboratories in Modern Engineering Education (OLMEE)
2. Human–Robot Interaction for Sustainable Development (HRI4SD)
3. Advances and Challenges in Applied Artificial Intelligence (ACAAI)

Four outstanding scientists and industry leaders accepted the invitation for keynote
speeches:

1. Doris Sáez Hueichapan, University of Chile, Santiago, Chile, talked about “En-
ergy & Water Management Systems for Agro-Development of Indigenous Rural
Communities”

2. Dieter Uckelmann, HFT Stuttgart, Stuttgart, Germany, shared his valuable insights
to “Why providing a comprehensive IoT education is impossible – but we should
nevertheless strive to do so”

3. Roland Bent, Retired CTO Phoenix Contact GmbH & Co.KG, Germany, painted a
vision for the future in his talk “The All Electric Society”
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4. Hans-JürgenKoch,Dipl.-Ing. forCommunicationsEngineering, ExecutiveVice Pres-
ident of the Business Area Industry Management & Automation, Phoenix Contact
GmbH, Germany, gave a fascinating introduction to “Innovative and collaborative
automation platforms – The key for a sustainable world”

The conference was organized by the Faculty of Arcada University of Applied Sci-
ences and Program Director Kim Roos served as the STE2024 chair. The President of
IAOE, Prof. Dominik May has served as STE2024 general chair and Prof. Reinhard
Langmann and Prof. Michael E. Auer served as Steering Committee Co-chairs.

Submissions of Full Papers, Short Papers,Work in Progress, Poster, Special Sessions,
Workshops, Tutorials, Doctoral Consortium papers have been accepted.

All contributions were subject to a double-blind review. The review process was
extremely competitive. We had to review about to 233 submissions. A team of over 100
program committee members and reviewers did this terrific job. Our special thanks goes
to all of them.

Due to the time and conference schedule restrictions, we could finally accept only
the best 76 submissions for presentation or demonstration.

The conference was supported by

• Phoenix Contact as Platinum Sponsor
• Air France and KLM as Diamond Sponsor
• As always Sebastian Schreiter did an excellent job to edit this book.

Kim Roos
Dominik May

Michael E. Auer
Reinhard Langmann
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AMachine Learning Framework for Improving
Resources, Process, and Energy Efficiency

Towards a Sustainable Steel Industry

Andrea Fernández Martínez1(B), Santiago Muiños-Landín1, Angelo Gordini2,
Luca Ferrari2, Matteo Chini3, Loris Bianco3, and Mircea Blaga4

1 AIMEN Technology Centre, Pontevedra, Spain
andrea.fernandez@aimen.es

2 OPTIT Srl, Bologna, Italy
3 Ferriere Nord SpA, Osoppo, Italy

4 Tenaris Silcotub S.A., Calarasi, Romania

Abstract. In response to geopolitical instability, supply chain issues, and environ-
mental concerns, initiatives like the European Green Deal highlight the need for a
green transition in the EU industry. The steel sector, as an Energy-Intensive Indus-
try, is crucial in this shift. This work introduces a Machine Learning framework
for sustainability in the Steel Industry, addressing Resource, Process, and Energy
efficiency with three ML algorithms. The framework, integrated into a Decision
Support System, assists plant operators in the transition to a more sustainable
process.

Keywords: Machine Learning · Sustainability · Steel Industry · Energy
Efficiency · Process Optimization

1 Introduction

The Steel Industry is considered an Energy-Intensive Industry (EII) due to the reliance
of its industrial processes on the use of high amounts of energy to provide essential
materials and products to other industries e.g., construction, automotive, and other energy
industries [3]. Recent geopolitical instability, supply chain issues, and climate change
emphasize the urgency of newpolicies. These are essential for long-term competitiveness
and the transition to a greener economy of the EU Industry as defined in new initiatives
such as the European Green Deal. On this subject, the green transitioning of EIIs plays
a key role as they account for more than half of the total energy consumption of the EU
Industry [4, 12].

Inmodern steel-making processes, there can be distinguished twomain technologies,
namely Basic Oxygen Furnace (BOF) and Electric Arc Furnace (EAF). EAF, using
recycled scrap steel, has been shown as more energy-efficient, aiding the steel industry’s
decarbonization [13]. Nevertheless, there are still several challenges hindering the green
transitioning of this sector as the lack of digitization and data exploitation of the large
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amounts of data that cover the steel value chain due to the sparsity of data sources and
the complexity of its analysis [1]. In this context, Artificial Intelligence and Machine
Learning are increasingly popular for their ability to analyze complex data patterns in
applications like predictive maintenance, process optimization or even process oriented
materials design [5], among others [6].

Fig. 1. Conceptual representation of the ML framework proposed. In the upper layer, schematic
diagram of the phases of steel-making; in the middle layer, the ML algorithms as part of the DSS
digital platform; in the lower layer, the targeted outputs of each algorithm.

This work proposes a Machine Learning (ML) framework for smart sustainability
in the Steel sector, addressing resource use, melting efficiency, and energy needs dur-
ing cooling. Key contributions of the ML framework include: First, a Random Forest
Regressor (RFR) [2] to support the decision-making process of scraps and input materi-
als for the steel mixture considering the final chemical composition of the steel product.
Second, a RFR to forecast the composition of iron oxide in the steel slag during the
melting process, which is essential for the iron content and oxygen present in the steel.
Third, a Long Short-Term Memory (LSTM)-based Recurrent Neural Network (RNN)
[10] to predict temperature rises in the cooling system as an indicator of the energy
required.

2 Methodology

2.1 The Sustainability Challenge in the Steel Industry

The EAF-based steel-making process operates in a batch basis, referred as heats, that
comprises six main operations: i) furnace charging, ii) melting, iii) refining, iv) de-
slagging, v) tapping, and vi) furnace turnaround. The process starts with the selection
and load of scraps in a charge bucket, followed by the introduction of the selected charge
inside the furnace. After charging, the electric arc initiates the melting process, creating
a molten steel pool. Oxygen injection accelerates scrap meltdown and forms steel slag.
Refining operations use carbon and oxygen injection to achieve desired steel chemistry
and enhance process efficiency through slag foaming. De-slagging empties the furnace
of slag, followed by tapping for transferring molten steel to a ladle for molding and
cooling in continuous casting (see Fig. 1).
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Optimization of theUse ofResources for the SteelMixture. EAF-based steel-making
uses recycled scrap steel as its primary feedstock—material from rejected or end-of-life
products. This circular approach reduces environmental impact by avoiding the use of
additional resources and minimizing overall waste [3, 4]. Nevertheless, other secondary
feedstock e.g., HBI, might also be incorporated as sources of clean iron to enhance the
properties of the scrap charge due to the variability and frequent lack of knowledge of the
properties of recycled scrap steel. To optimize melting and reduce alloy additions, our
study proposes an RFR decision support model. It evaluates input material combinations
for the steel composition, covering 16 materials, including diverse scrap steel types, and
focusing on 7 key chemical elements, namely, Cr, Ni, Mo, Cu, Sn, V, and Pb.

Process Efficiency Through the Steel Slag Composition. Slag foaming is an essential
part of the steel-making process in which foam generation is induced to generate total or
partial liquid solutions i.e., slags, comprised of oxides and fluorides at the upper surface
of the metal bath [7]. Foamy slag offers process benefits like increased energy efficiency
by capturing heat from the arc, while also preventing metal oxidation and nitrogen
incorporation. Nevertheless, there are still many limiting factors e.g., FeO content of the
slag, that impede the proper control of slag foaming in industrial scenarios [7, 8]. Our
study proposes an RFR, considering injections and various materials, to estimate iron
oxide percentage in steel slag, crucial for slag iron content and CO gas generation in
foaming.

Energy Efficiency in the Cooling Phase. Cooling systems are crucial for maintaining
optimal conditions in the EAF and other components, preventing structural damage from
prolonged overheating [11], and ensuring proper melting conditions. The conditions in
the cooling system are directly affected by the melting process and the relationships
between materials and the energy-matter within the EAF [9]. When injected materials
don’t properly penetrate the steel slag during melting, they can lead to temperature
increases in the settling chamber and cooling system. This results in higher energy
consumption. The ML framework addresses this using an LSTM Neural Network to
predict temperature trends in the cooling system within 80-s time windows. It considers
injections (carbon and lime), temperatures in the cooled shell and settling chamber, and
the flowrate of fresh inlet water into the Water-Air Cooled (WAC) system.

2.2 Decision Support System Digital Platform

A Decision Support System (DSS) is an information system used to assist teams and
organizations in complex decision-making processes that usually rely on a large num-
ber of parameters and constrains. The ML algorithms in this work are part of a DSS
digital platform, facilitating information exchange via REST API. The platform com-
prises container images for ML models, a DSS, and a “model orchestrator” module.
These container images encapsulate all dependencies, ensuring seamless interoperabil-
ity and scalability. The platform is deployed on a private cloud-based server, withHTTPS
protection and access control policies for secure data exchange.
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3 Experimental Results

3.1 RFR for the Optimization of the Use of Resources

The dataset for the decision-support model to evaluate the combination of materials
ad scraps comprised 207 samples from 11 different steel types e.g., Fe45 and Fe50.
Nevertheless, the contribution of materials to the final steel quality is not considered to
be steel-type-dependant.

After performing a 5-cross-validated grid-search analysis to fine-tune the hyper-
parameters of the RFR, a 500-estimator-based RFR with unlimited depth of Trees and
using the mean-squared-error as criterion to assess the quality of splits was trained over
the 80% of the dataset (165 samples) and tested in the remaining 20% (42 independent
samples) previously re-scaled within a range [0, 1] using the min-max normalization
method.

The RFR predicts the percentage of the 7 targeted chemical components (Cr, Ni,
Mo, Cu, Sn, V, and Pb) taking as input 16 different materials and scraps commonly
used in the steel case of study. Table 1 lists the Mean Absolute Error (MAE), Mean
Squared Error (MSE), and Root MSE (RMSE) obtained in the test dataset for each
chemical component targeted, respectively. The results obtained confirmed that the RFR
algorithm successfully achievedmapping the inputs materials with the targeted chemical
components, with a maximum MAE of 0.021 for Chromium (Cr).

Table 1. Estimated MAE, MSE, and RMSE for the percentage prediction of the seven chemical
components of study, respectively

Cr% Ni% Mo% Cu% Sn% V% Pb%

MAE 0.021 0.014 0.008 0.035 0.005 0.000 0.001

MSE 0.001 0.000 0.000 0.002 0.000 0.000 0.000

RMSE 0.030 0.018 0.012 0.044 0.008 0.000 0.001

Figure 2 depicts the predicted targets (orange) by the RFR against the ground truth
test samples (green) for the elements Mo and Pb to better visualize the error range
independently. These results support our hypothesis that the RFR properly predicts the
targeted chemical componentswith high accuracy, although there canbe seen appreciable
errors for the cited elements in samples close to their range limits (Mo > 0.06%, Pb
< 0.001%). Overall, the RFR model is considered to be reliable for modelling the
final expected quality of the steel based on the input materials and scraps used in the
steel-making process.

3.2 RFR for Estimating the Content of Iron Oxide in the Steel Slag for Process
Efficiency

For the fitting of the RFR to predict the content of iron oxide in the steel slag, an analog
5-crossed-validated hyper-parameter fine-tuning procedure was conducted considering
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Fig. 2. Scatter plot of the predicted values (orange) vs. ground truth (green) for the seven chemical
components of study

a dataset containing 4239 heat processes from November 2020 to September 2021, after
performing a filtering procedure of a complete dataset containing 4714 heats to avoid
introducing noise to the model due to unusual process behaviours e.g., heats during
transition times in the process.

As in the previous case, 80%of the data (3391 samples)was used for training andfine-
tuning, whereas the 20%of the remaining data (848 samples) was used as an independent
test set to assess the model performance. The dataset was initially re-scaled in a range [0,
1] using the min-max normalization method. From the grid-search procedure, an RFR
composed of 500 estimators and with the MSE as criterion for the quality of splits was
found to yield the best results predicting the percentage of iron oxide in the steel slag.

Based on the results expressed in Table 2, it can be confirmed that the RFR suc-
cessfully estimates the percentage of iron oxide in the steel slag with a MAE of 2.979.
To better visualize the prediction error with respect to the dataset, Fig. 3 displays the
predicted targets (orange) against the ground truth samples (green).

Table 2. Estimated MAE, MSE, and RMSE for the percentage of iron oxide in the steel slag

Element MAE MSE RMSE

FeO% 2.979 14.654 3.828

Although the predicted values properly follow the trends of the test set as shown in
Fig. 3, there can be noticed a “conservative” behaviour in the model performance when
predicting extreme cases lying at the upper and lower limits of the dataset, forecasting
those values towards the center of the distribution. Nevertheless, the errors obtained
can be considered acceptable in the range of study [20, 48), confirming that the RFR
algorithm successfully estimates the content of iron oxide in the steel slag following a
complete data-driven approach.

3.3 LSTM-Based RNN for Energy Efficiency in the Cooling System

The dataset used for the development of the LSTM-based RNN comprised 50077 sam-
ples. Following best practices, the set was divided into training (72%, 36055 samples),
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Fig. 3. Scatter plot of the predicted values (orange) vs. ground truth (green) for the percentage of
iron oxide in the steel slag

validation (18%, 9014 samples), and test sets (10%, 5008 samples), respectively. The val-
idation set was used during training to fine-tune the parameters of the network, whereas
the test set was used during the final assessment of the network as an independent set.

After a fine-tuning analysis, the architecture of the final network consisted of 1-
hidden layer with 8 neurons (LSTM cells), using MAE as the loss function and Adam as
optimizer of the network. Due to the temporal nature of the problem, the features used
as input data (see Sect. 2.1.3) were sampled in batches of 4 considering a time window
of 60 s in time i.e., sampling frequency of 20 s between samples considering the last
minute of data.

Figure 4 displays the evolution of 6 random samples over the fixed 80-s time-window
of study from the test set (green) against the corresponding predicted trends by the LSTM
(orange), manifesting the capability of the network to predict the evolution of tempera-
tures in the cooling system in different temperature ranges (specified in the y-axis) and
following different temperature patterns. Indeed, the network seems to appropriately
predict the trends within a + 80-s time-window in 5 out of the 6 cases shown, that is, in
all cases with the exception of the middle figure in the second row, in which the predicted
trend differs from the real temperature evolution over time. Nevertheless, these results
suggest that the network can successfully predict the temperature trends in the cooling
system with high accuracy, especially considering the first +40-s time-window.

In order to delve in the model performance over time, the prediction error was
assessed for the different time steps considered i.e., +20 s, +40 s, +60 s, and + 80 s.
Table 3 expresses the MAE, MSE, and RMSE on the test set considering each time step
separately i.e., errors were computed in a column-wise fashion based on the predictions
of the 5008 test samples. It can be observed that the MAE increases from 0.372 in the
+20 s-related predicted values to 2.174 in the +80 s prediction case, confirming our
previous hypothesis that the predictive accuracy of the network decreases over time.

For visualization purposes, Fig. 5 displays the first 1000 samples of the test set (green)
against their corresponding predicted values (orange) for the time windows of + 20s
and + 80s, separately. The right rectangles in the sub-figures zoom in on a temperature
peak, showcasing the evolving prediction errors over time. Despite the increase, these
results suggest promising implications for using deep learning models in forecasting to
counteract potential process issues before they occur.
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Fig. 4. Scatter plot of temperature trends in+80-s forecast-windows for predicted values (orange)
vs. ground truth (green).

Table 3. Estimated MAE, MSE, and RMSE for the estimation of the temperature (T) for each
time step considered.

T+20 s T+40 s T+60 s T+80 s

MAE 0.372 0.926 1.597 2.174

MSE 0.344 2.299 6.653 11.736

RMSE 0.587 1.516 2.579 3.426

Fig. 5. Scatter plot of the predicted values (orange) by the LSTM network vs. ground truth values
(green) in each specific time step considered.

4 Conclusion

The proposedML framework for steel sustainability includes two RFRs and one LSTM-
based RNN, addressing resource use, process, and energy efficiency. It integrates data
across manufacturing stages, aiding operators in daily decisions and process control. As
part of a DSS digital platform, it facilitates seamless interaction betweenML algorithms
and operators, supporting intelligent sustainability strategies.
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Abstract. The advent of generative artificial intelligence for text generation, epit-
omized by the introduction ofChatGPT inNovember 2022, represents a significant
shift in the academic writing paradigm. This pre-study examines how students
make use of Large Language Models (LLMs) for their academic writing pro-
cesses, transitioning from solitary writing to true human-machine collaboration.
Participants were recruited from a workshop on LLMs and were subsequently
interviewed qualitatively after two weeks of unsupervised usage. These inter-
views were designed using the new Overall Writing Effectiveness (OWE) frame-
work and focused on LLMs’ role in academic writing. The qualitative content of
these interviews was analysed following Mayring’s methodology. Findings indi-
cate that LLMs did not substantially accelerate the writing process but enhanced
the quality of the texts and redefined writing as a collaborative effort. This study
not only explores the limits of automation in academic writing but also high-
lights how generative AI is pushing the boundaries of what is considered genuine
human capabilities. This analysis opens the discussion of how to incorporate such
technologies into future education curriculums.

Keywords: Academic Writing · LLMs · Text Automation · Student
Experiences · AI and Academia

1 Introduction

The convergence of AI and academia has prompted an unprecedented revolution in how
students approach academic writing. Particularly after November 2022, a shift from tra-
ditional methods to automated text generation tools has gained momentum [1, 2]. As we
address these new literacy practices, it is critical to understand the challenges and benefits
of LLMs, such as the well-discussed ChatGPT. Especially user-friendly, commercially
available, or even free-of-charge online services seem to have gained popularity among
students and teachers in higher education. First quantitative studies found that gener-
ative AI-tools are widely used among students, mainly for private purposes [3]. The
main reasons cited are time savings and idea generation [4, 5]. However, there are also
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concerns among respondents about whether they are allowed to use such tools in an
academic context [4, 6]. This pre-study seeks to contribute towards an understanding
of how students use LLMs for their educational writing tasks. One main focal point is
addressed by the self-perceived effects on the availability, performance, and quality of
both the text generated and the process of generating text [7]. We anticipated an increase
in all three indicators when it comes to human-machine collaboration. To measure the
impact of LLMs on the student’s writing process, the concept of Overall Equipment
Effectiveness (OEE) [8] has been adapted and slightly modified. The contribution is
structured as follows: the journey begins with an examination of the academic writ-
ing process, identifying common challenges and the potential for technology to mitigate
these frictional losses. We then introduce a novel concept, Overall Writing Effectiveness
(OWE), adapting the principles of OEE from manufacturing to the context of academic
writing. This approach provides a fresh perspective on assessing writing efficiency in an
era of technological integration. The paper also discusses the balance between speed and
quality in writing, particularly concerning the limits of automation. We delve into how
AI tools may influence a writer’s maximum speed and explore the potential boundaries
of this technology. Our findings are grounded in a detailed data collection process, cap-
turing diverse perspectives from participants. The results offer insightful reflections on
students’ perceptions of LLMs and their impact on the writing process. Finally, the paper
concludes with a synthesis of these findings, contemplating the implications of LLMs
in academic writing and suggesting directions for future research. This exploration aims
not only to inform, but also to engage readers in a critical discussion on the evolving
intersection of technology and academia.

2 The Academic Writing Process and the Overall Equipment
Effectiveness Model

2.1 Potential Difficulties in the Academic Writing Process

The academic writing process consists of several steps, each of which can present chal-
lenges for the writer. Table 1 shows a simplified concept of the writing process with
examples of writing difficulties that may occur [9]:

Writing is inherently a highly individualized process, where the steps involved can
either be undertaken in sequence or concurrently. The writer’s excessive reliance on
technology is already a norm, covering everything from searching digital sources to
checking spelling and even employing voice commands to type, all of which are increas-
ingly supported by technological devices. The presence and accessibility of these tools
can significantly influence the overall writing process. In this context, identifying strate-
gies to overcome the various challenges in writing with increasingly automated tools
becomes crucial.

2.2 From Overall Equipment Effectiveness to Overall Writing Effectiveness

One approach is the application of the Overall Equipment Effectiveness [8], which
facilitates the measurement of challenges by quantifying availability, performance, and
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Table 1. Simplified concept of the academic writing process and potential writing difficulties.

Step in the writing process Potential writing difficulty (examples)

Finding a topic and formulating a research
question

Difficulty in defining a clear, manageable
scope that is neither overly broad nor
excessively narrow, often leading to
ambiguity in the research direction

Finding sources Challenges in sourcing relevant material,
either encountering an overwhelming
abundance of information or a scarcity of
adequate research on the topic

Writing Common issues include writer’s block, where
ideas don’t flow, or anxiety about articulating
thoughts coherently and persuasively

Revising Difficulty in critically evaluating and
restructuring the draft to enhance coherence,
clarity, and argument strength

Submitting Potential last-minute concerns about the
quality or completeness of the work, or
technical issues in meeting submission
requirements

quality. This quantifying and separating into separate categories is particularly insightful
for assessing where and how AI integration, especially through the use of LLMs, can be
most beneficial in enhancing the writing process.

• Availability: How do AI tools affect the frequency and duration of both planned and
unplanned stops in the writing process? Planned stops could be a lunch break, an
unplanned stop would be a technical problem interrupting the writer.

• Performance: Insufficient writing tools, or incompetence in using them compro-
mising the speed of the writing process, accounting for slow cycles and small
stops.

• Quality: The extent to which (AI) tools contribute to or mitigate defects in academic
writing, including the need for rework.

An OEE [8] score of 100%would indicate optimal writing conditions: uninterrupted
writing time, at maximum speed, and without the need for revisions of the written text;
unlike availability and quality, which are straightforward to measure and calculate:

100%Availability = Operating (Writing)Time

Loading (Planned writing)Time

where [LoadingTime] = [Operating (Writing) Time]

100% Quality = [
Number of parts Texts produced

]−[Revisions/rework]

−[
scrap

]
where [Revisions/rework] = 0 ∧ [

scrap
] = 0


