
SpringerBriefs in Philosophy

David Ellerman

Partitions, Objective 
Indefiniteness, and 
Quantum Reality
The Objective 
Indefiniteness 
Interpretation of Quantum 
Mechanics



SpringerBriefs in Philosophy



SpringerBriefs present concise summaries of cutting-edge research and practical 
applications across a wide spectrum of fields. Featuring compact volumes of 50 to 
125 pages, the series covers a range of content from professional to academic. Typical 
topics might include: 

• A timely report of state-of-the art analytical techniques 
• A bridge between new research results, as published in journal articles, and a 

contextual literature review 
• A snapshot of a hot or emerging topic 
• An in-depth case study or clinical example 
• A presentation of core concepts that students must understand in order to make 

independent contributions 

SpringerBriefs in Philosophy cover a broad range of philosophical fields including: 
Philosophy of Science, Logic, Non-Western Thinking and Western Philosophy. We 
also consider biographies, full or partial, of key thinkers and pioneers. 

SpringerBriefs are characterized by fast, global electronic dissemination, stan-
dard publishing contracts, standardized manuscript preparation and formatting guide-
lines, and expedited production schedules. Both solicited and unsolicited manuscripts 
are considered for publication in the SpringerBriefs in Philosophy series. Potential 
authors are warmly invited to complete and submit the Briefs Author Proposal form. 
All projects will be submitted to editorial review by external advisors. 

SpringerBriefs are characterized by expedited production schedules with the aim 
for publication 8 to 12 weeks after acceptance and fast, global electronic dissemina-
tion through our online platform SpringerLink. The standard concise author contracts 
guarantee that 

• an individual ISBN is assigned to each manuscript 
• each manuscript is copyrighted in the name of the author 
• the author retains the right to post the pre-publication version on his/her website 

or that of his/her institution.



David Ellerman 

Partitions, Objective 
Indefiniteness, and Quantum 
Reality 
The Objective Indefiniteness Interpretation 
of Quantum Mechanics



David Ellerman 
University of Ljubljana 
Ljubljana, Slovenia 

ISSN 2211-4548 ISSN 2211-4556 (electronic) 
SpringerBriefs in Philosophy 
ISBN 978-3-031-61785-0 ISBN 978-3-031-61786-7 (eBook) 
https://doi.org/10.1007/978-3-031-61786-7 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024 

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether 
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse 
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and 
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar 
or dissimilar methodology now known or hereafter developed. 
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication 
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant 
protective laws and regulations and therefore free for general use. 
The publisher, the authors and the editors are safe to assume that the advice and information in this book 
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or 
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any 
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional 
claims in published maps and institutional affiliations. 

This Springer imprint is published by the registered company Springer Nature Switzerland AG 
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland 

If disposing of this product, please recycle the paper.

https://orcid.org/0000-0002-5718-618X
https://doi.org/10.1007/978-3-031-61786-7


To the memory of Abner Shimony 
—Physicist, Philosopher, and Friend.



Preface 

My main formation as a mathematician was in collaboration in the early 1980s with 
Gian-Carlo Rota of MIT. We wrote a joint paper that took my Erdös number from 
infinity down to 3. But most of my employment in later years was in Economics, not 
mathematics. 

A big shock came in 1999 just before my retirement when Rota died relatively 
young at age 66. Some of us who had worked with him wanted to pick up some of his 
unfinished strands to further develop. One of those strands was a 1996 paper by Rota 
and some colleagues entitled: “Logic of Commuting Equivalence Relations.” Rota 
was well aware of the category-theoretic duality between subsets and partitions (or 
equivalence relations). Since ordinary logic starts with the Boolean logic of subsets 
(usually presented in the special case of “propositional logic”), Rota had the idea of 
developing a logic of that dual concept, a logic of partitions or equivalence relations. 
But the use of the word “logic” in that 1996 paper was an overstatement since there 
was no known implication operation on equivalence relations or partitions, only the 
lattice operations of join and meet known in the nineteenth century (e.g., Dedekind 
and Schröder). 

In fact, no new operations of partitions, such as the implication operation, were 
developed throughout the twentieth century. Eventually, perhaps with a little luck, 
I was able to define the implication operation on partitions. Soon it became clear 
that there were, in fact, two algorithms that could be used to define all the Boolean 
operations on partitions. That was the beginning of partition logic developed in my 
recent book, The Logic of Partitions: With Two Major Applications. 

The first major application was again foreshadowed by Rota who emphasized the 
analogy: Probability Subsets ≈ Information 

Partitions . Boole logically developed finite probability theory 
starting as the quantitative notion of subsets, e.g., the probability of getting a subset S 
of a finite equiprobable sample space U is just the normalized number of elements: 
Pr(S) = |S| 

|U | . Hence, using Rota’s equivalence, the logical notion of information 
should start with the quantitative notion of the “size” of a partition. The duality of 
subsets and partitions reveals an underlying duality between elements of subsets and 
the ordered pairs called the distinctions or dits of the partition, i.e., ordered pairs in 
different blocks of a partition.
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Then we can finally answer the question raised by Rota’s analogy; the quantitative 
notion of a partition is the size of its set of distinctions, its ditset. The basic logical 
notion of information in a partition is just the normalized size of its ditset, so the 
initial definition of logical entropy for π = {B1, ..., Bm} is 

h(π) = 
|dit(π)| 
|U × U | =
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with equiprobable points in U . If there is a general probability distribution p = 
(p1, ..., pn) on the points of U , then the logical entropy of π is just the value of 
product probability measure p × p on the ditset dit(π) ⊆ U × U . The interpretations 
of Pr(S) and h(π) are thus also analogous. One random draw from U gets an element 
of S with the probability Pr(S), and two random draws from U get a distinction of π 
with the probability h(π). This also (finally) gives a logical definition of information, 
i.e., information as distinctions. 

The quantum version, quantum logical entropy, is one of the topics briefly devel-
oped in this book. It has the analogous interpretation, i.e., the quantum logical entropy 
resulting from a projective measurement of an observable on a state is the proba-
bility that in two independent measurements of the same observable on an identically 
prepared state, different eigenvalues are obtained. 

Hence the first major application of partition logic is simply its quantitative version 
as a logical definition of information analogous to the way Boole approached prob-
ability theory as a quantitative version of subset logic. That supplies a much-needed 
logical foundation for information theory (classical and quantum) developed in my 
2021 book New Foundations for Information Theory: Logical Entropy and Shannon 
Entropy. 

The second major application and the topic of this book is the century-old problem 
of understanding the reality that quantum mechanics (QM) describes so well. QM 
was consolidated in the mid-1920s but, over the last century, there has been no agree-
ment on the nature of reality at the quantum level. New so-called “interpretations” are 
continually being created without any noticeable convergence. Otherwise sane physi-
cists are driven to rather bizarre ideas, e.g., the many-worlds interpretation, when 
confronted with the “paradoxes” of quantum theory. It is in this intellectual “demoli-
tion derby” of quantum interpretations where partition logic and logical entropy offer 
a new approach to corroborate (in a suitably reformulated manner) an interpretation 
already promoted by Werner Heisenberg and Abner Shimony, among others. 

This new approach first “cuts at the joint” between the mathematics and the physics 
of quantum mechanics. The mathematics is quite distinctive and different from the 
mathematical framework of classical physics. The new approach asks: 

Where does the distinctive mathematics of QM come from?
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The answer is that the math of QM is the vector space or, particularly, Hilbert 
space version of the mathematics of partitions. The argument is based, in part, on 
using a semi-algorithmic procedure, herein called the Yoga of Linearization (part of 
mathematical folklore), to build a translation dictionary between set-level partition 
math and Hilbert space QM math. 

For instance, here is a set-level construction in partition math whose quantum math 
version is Dirac’s notion of a Complete Set of Commuting Observables (CSCO). 

Partition-math version: A set f , ..., g : U → R of real-valued numerical attributes 
on a set U = {u1, ..., un} is said to be complete (a Complete Set of Compatible 
Attributes or CSCA) if the join (non-empty intersections of the blocks) of their 
inverse-image partitions is the partition with all blocks of cardinality one. Then each 
element ui of U is uniquely characterized by its ordered set of values for f , ..., g. 

Quantum-math version: A set  F, ..., G of commuting observables on a Hilbert 
space V is said to be complete (a Complete Set of Commuting Observables or CSCO) 
if the join (non-zero intersections of the eigenspaces) of their direct-sum decompo-
sitions (DSDs) of eigenspaces is the direct-sum decomposition with all subspaces 
of dimension one. Then each eigenvector vi in the set of simultaneous eigenvectors 
spanning V is uniquely characterized by its ordered set of eigenvalues for F, ..., G. 

Each version is essentially a word-for-word translation using the following trans-
lation dictionary. Many of the tables in the book are additions to the translation 
dictionary to show how the QM math (right side of the table) is the vector space, and 
particularly Hilbert space version of the math of partitions (left side of the table). 

Partition math Quantum math 

Real-valued attributes on a set Observable ops. on a Hilbert space 

Attributes defined on same U Observables that are commuting 

Domain U of the attributes Basis simult. eigenvectors of comm. ops. 

Inv.-image partition of attribute DSD of eigenspaces of an observable 

Join of inverse-image partitions Join of DSDs of commuting observables 

Cardinality of subset in partition Dimension of subspace in DSD 

Partition blocks of cardinality 1 DSD subspaces all of dimension 1 

Values of attributes on ui ∈ U Eigenvalues of simultaneous eigenvectors 

ui ∈ U given by attrib. values Eigenvectors given by eigenvalues 

Illustration of QM math being Hilbert space version of partition math 

The next step in the argument is to ask: 

What basic concepts are represented at the logical level by partitions? 

The answer is the concepts described in various vocabularies as indistinctions 
versus distinctions, indefiniteness versus definiteness, indistinguishability versus 
distinguishability, equivalence versus inequivalence, or difference versus identity. 
These pairs of concepts, described by different words in different contexts, might
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be referred to as the “identity & difference concepts.” The logic of those identity & 
difference concepts is the logic of partitions (or equivalence relations) on a set. 

Then to interpret QM, we ask: 

What is the essential non-classical concept in QM? 

The answer is the notion of superposition (entanglement being a particularly 
vexing special case). But that non-classical notion has been emphasized from the 
beginning (e.g., by Dirac) so, 

Why has there been so little progress in understanding the reality behind the notion of 
superposition? 

The answer lies in the mathematics of QM itself. A Hilbert space is a vector space 
over the complex numbers C, and the complex numbers are the natural mathematics 
to describe waves, i.e., the polar representation of a complex number is an ampli-
tude and phase of a wave. In fact, QM was often called “wave mechanics” and the 
“wave function” is a commonly used mathematical tool to represent the quantum 
state. Hence, superposition has usually been interpreted simply like the addition of 
waves—just as water waves might add and interfere with each other in the classroom 
ripple tank model of the double slit experiment. But after a century of looking, no 
physical reality has been found for the wave functions—much to the dismay of Erwin 
Schrödinger who invented the wave equation bearing his name. The wave functions 
were “probability waves” which are not physical entities at all. 

Indeed, the math of QM is formulated using the complex numbers for reasons 
that have nothing to do with waves, namely that the complex numbers are the alge-
braically complete extension of the real numbers so that the real-valued quantum 
observables will then have a complete set of eigenvectors. The whole wave interpre-
tation of QM math was mistakenly giving an ontological importance to the wave-like 
computational artifacts present in any vector space over the complex numbers. 

How to escape this conundrum that the wave-like math is not reflected in quantum level 
ontology? 

What is needed is a totally different interpretation of superposition (than the 
mathematically correct but ontologically misleading addition of vectors that can 
be interpreted as waves). And that new interpretation is supplied by the mathe-
matics of partitions. At the simple logical level, a partition is made up of blocks 
of elements of the underlying set. Each block is an equivalence class that says, 
according to this partition, these elements in the block are equated, blobbed, blurred, 
and cohered together with no distinctions between them—since the distinctions are 
between different blocks. Thus, the blocks (or equivalence classes) with two or 
more elements are the logical version of a superposition of eigenstates in QM math. 
The block is indefinite or indistinct on the differences between elements (or eigen-
states)—and definite on commonalities. The elements in the set (or eigenstates in 
the QM version) represent (not different particles but) different states of a particle 
that are equated, blobbed together, or cohered together in the superposition. That 
is the non-wave indefiniteness reinterpretation of superposition that corroborates an
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interpretation of QM proposed by Heisenberg, Shimony, and others. The key idea of 
this version of superposition is that a particle can be in an objectively indefinite state 
like a particle in a superposition state of “here” and “there”, i.e., it is “not definitely 
here and not definitely there, but definitely not anywhere else.” 

Quantum theorists constantly use the wave-math without finding any physical 
waves, and they (mostly) recognize the reality of indefinite states. That is, when the 
quantum state is a superposition in the basis of the observable being measured, then 
it is widely recognized that the quantum state does not have a definite value before 
the measurement which causes the quantum jump into a definite state. And the set-
level version of (projective) measurement is just the partition join operation from 
partition logic. Heisenberg, Shimony, and others then extrapolate that notion of an 
indefinite state to the whole of quantum-level reality. The quantum world is Indefinite 
World. And the set-level mathematics to represent definiteness versus indefiniteness 
is the math of partitions with the math of QM being the Hilbert space version of 
that partition math. That new partition-math approach to the Heisenberg-Shimony 
Objective Indefiniteness Interpretation of QM is the topic of this book. 

In addition to the influence of Gian-Carlo Rota and Abner Shimony (my under-
graduate advisor at MIT ’65), I would like to acknowledge the assistance of the late 
Larry Harper, Brian Linard, John DePillis, and Tom Payne who were the members 
of the “Schmooze Group” of retired professors studying quantum mechanics at the 
University of California at Riverside. 

Ljubljana, Slovenia 
March 2024 

David Ellerman 
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