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Chapter 1 
Introduction 

Abstract In this chapter, we describe the background of our work presented in the 
monograph and explain the main results obtained. 

1.1 Backgrounds 

The aim of this book is to explore positivity conditions and establish the Hilbert-
Samuel formula and the equidistribution theorem in the context of adelic curves. 
This exploration traces its roots back to the foundational work of Dedekind 
and Weber [51], which revealed the striking resemblance between number fields 
and function fields, laying the groundwork for a prosperous research domain of 
arithmetic geometry. In particular, Arakelov’s work [4, 5] established the arithmetic 
intersection theory on a relative curve over .SpecZ, which is analogous to the classic 
intersection theory of divisors on a projective surface. Arakelov’s work has been 
generalized by Gillet and Soulé [60, 61] to a higher-dimensional case, leading to a 
rich theory of arithmetic schemes. 

1.1.1 Positivity Conditions 

Positivity conditions are important for a multitude of reasons. They act as a conduit 
for deeper insights into the structure and properties of algebraic varieties, play 
a crucial role in many fundamental theorems and conjectures, and establish vital 
connections with other branches of mathematics. 

In algebraic geometry, one of the main notions of positivity is ampleness, which 
is essential for the embedding of varieties into projective spaces. Thanks to the 
foundational paper of Serre [84], its importance has been widely recognized. Weaker 
positivity conditions, such as nefness, bigness and pseudo-effectivity, which have 
better behaviours by birational pullbacks, play a crucial role in birational algebraic 
geometry. 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024, 
corrected publication 2024 
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2 1 Introduction

In arithmetic geometry, the arithmetic ampleness has been studied by Zhang 
[102, 103]. In particular, a criterion of Nakai-Moishezon type has been proved 
for arithmetic ampleness and has been applied in the arithmetic approach to 
equidistribution problem and Bogomolov conjecture over number fields. The 
bigness in Arakelov geometry has been introduced in [79] and further studied in 
[80, 96]. An arithmetic analogue of Fujita’s approximation theorem has then been 
proved [35, 97]. As for the arithmetic version of the pseudo-effectivity, a link with 
Dirichlet’s unit theorem in algebraic number theory has been discovered in [81]. 

1.1.2 Hilbert Function 

In algebraic geometry, Hilbert function measures the growth of graded linear series 
of a line bundle on a projective variety. Let k be a field, X be an integral projective 
scheme of dimension .d ∈ N (= Z⩾0) over .Spec k, and L be an invertible .OX-
module. The Hilbert function of L is defined as 

. 
HL : N −→ N,

n |−→ dimk(H
0(X,L⊗n)).

If L is ample, then the following asymptotic estimate holds: 

.HL(n) = (Ld)

d! nd + o(nd). (1.1.1) 

This formula, which relates the asymptotic behaviour of the Hilbert function and 
the self-intersection number of L, is, for example, a consequence of Hirzebruch-
Riemann-Roch theorem and Serre’s vanishing theorem. It turns out that the 
construction and the asymptotic estimate of Hilbert function have analogue in 
various contexts, such as graded algebra, local multiplicity, relative volume of two 
metrics, etc. 

1.1.3 Arithmetic Hilbert-Samuel Function 

In Arakelov geometry, an arithmetic analogue of Hilbert function has been intro-
duced by Gillet and Soulé [60], and an analogue of the asymptotic formula (1.1.1) 
has been deduced from their arithmetic Riemann-Roch theorem. This result is called 
an arithmetic Hilbert-Samuel theorem. Let . 𝒳 be a flat regular integral projective 
scheme of dimension .d + 1 over .SpecZ, and .ℒ = (ℒ, ϕ) be a Hermitian line 
bundle on . 𝒳, namely an invertible .O𝒳-module . ℒ equipped with a smooth metric
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. ϕ on .ℒ(C). For any integer .n ∈ N, let  .‖ · ‖nϕ be the norm on the real vector space 

.H 0(𝒳,ℒ⊗n) ⊗Z R defined as 

. ∀ s ∈ H 0(𝒳,ℒ⊗n) ⊗Z R ⊆ H 0(𝒳C,ℒ⊗n

C
), ‖s‖nϕ = sup

x∈𝒳(C)

|s|nϕ(x).

Then the couple .(H 0(𝒳,ℒ⊗n), ‖ · ‖nϕ) forms a lattice in a normed vector space. 
Recall that its arithmetic Euler-Poincaré characteristic is 

. χ(H 0(𝒳,ℒ⊗n), ‖ · ‖nϕ) = ln
vol({s ∈ H 0(𝒳,ℒ⊗n) ⊗Z R | ‖s‖nϕ ⩽ 1})

covol(H 0(𝒳,ℒ⊗n), ‖ · ‖nϕ)

where .vol(·) denotes a Haar measure on the real vector space .H 0(𝒳,ℒ)⊗Z R, and 

. covol(H 0(𝒳,ℒ⊗n), ‖ · ‖nϕ)

is the covolume of the lattice .H 0(𝒳,ℒ⊗n) with respect to the Haar measure .vol(·), 
namely the volume of any fundamental domain of this lattice. In this setting, the 
arithmetic Hilbert-Samuel theorem shows that if . ℒ is relatively ample and the 
metric . ϕ is positive, then the sequence 

. 
χ(H 0(𝒳,ℒ⊗n), ‖ · ‖nϕ)

nd+1/(d + 1)! , n ∈ N, n ⩾ 1

converges to the arithmetic intersection number .(ℒ
d+1

). In the case where . ℒ is 
ample, the arithmetic Hilbert-Samuel theorem also permits to relate the asymptotic 
behaviour (when .n → +∞) of  

. card({s ∈ H 0(𝒳,ℒ⊗n) | ‖s‖nϕ ⩽ 1})

to the arithmetic intersection number of . ℒ. These results have various applications 
in arithmetic geometry, such as Vojta’s proof of Mordell conjecture [17, 88], 
equidistribution problem, and Bogomolov conjecture [86, 87, 101],. The arithmetic 
Hilbert-Samuel theorem has then been reproved in various settings and also been 
generalized in works such as [1, 48, 82]. 

1.1.4 Adelic Curves 

Recently, a new framework of Arakelov geometry has been proposed in [43], 
allowing for the consideration of arithmetic geometry over any countable field. Let 
K be a field. A structure of a proper adelic curve with the underlying field K is
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given by a family of absolute values .(| · |ω)ω∈Ω of K parametrized by a measure 
space .(Ω,A, ν), which satisfies a product formula of the form 

. ∀ a ∈ K×,

⎰
Ω

ln |a|ω ν(dω) = 0.

This notion is a very natural generalization of Weil’s adelic approach of number 
theory [89] (see also the work of Chevalley [47] in the case of function fields). The 
foundation of height theory and Arakelov geometry for projective varieties over 
an adelic curve has been established in the works of Gubler [65] (in a slightly 
different setting of M-fields) and Chen-Moriwaki [43], respectively; see also the 
model theoretical approach of Ben Yaacov and Hrushovski [67]. More recently, the 
arithmetic intersection theory in the setting of adelic curves has been developed in 
[45]. 

In general, it is not possible to consider global integral models of an adelic curve. 
Several classic notions and constructions, such as integral lattice and its covolume, 
do not have adequate analogue over adelic curves. It turns out that a modified and 
generalized form of normed lattice—adelic vector bundle—has a natural avatar in 
this setting. An adelic vector bundle consists of a finite-dimensional vector space V 
over K equipped with a family of norms .(‖·‖ω)ω∈Ω on vector spaces . Vω = V ⊗KKω

(where . Kω denotes the completion of K with respect to the absolute value .| · |ω), 
which satisfy dominancy and measurability conditions [43, §§4.1.2-4.1.3]. In the 
framework of adelic curves, adelic vector bundles have been studied in [43, Chapter 
4], generalizing previous works of Bost [21, Appendix A] and Gaudron [59] in the  
classic context of usual global fields. 

1.2 Results 

In this section, we present the main results of the book. We fix a proper adelic curve 
.S = (K, (Ω,A, ν), (| · |ω)ω∈Ω), where K is a field, .(Ω,A, ν) is a measure space, 
and each .| · |ω is an absolute value on K , such that, for any .a ∈ K× = K \ {0}, the  
function .(ω ∈ Ω) |→ log |a|ω is .ν-integrable and of integral 0 on . Ω. 

1.2.1 Arithmetic χ-Volume 

Let .π : X → SpecK be a projective K-scheme. For any .ω ∈ Ω, let . Xω = X×SpecK

SpecKω and let .Xan
ω be the analytic variety associated with .Xω (in the sense of 

Berkovich [13] if  .| · |ω is non-Archimedean). If E is a vector bundle on X, namely 
a locally free .OX-module of finite rank, we denote by . Eω the pull-back of E on 
. Xω. As an  adelic vector bundle on X, we refer to the data . E = (E, (ψω)ω∈Ω)

consisting of a vector bundle E on X and a family .(ψω)ω∈Ω of metrics on . Eω with
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.ω ∈ Ω, such that the tautological line bundle .OE(1) on .P(E) equipped with the 
Fubini-Study metric family .ψFS is composed of continuous metrics satisfying the 
dominancy and measurability conditions [43, §6.1.2 and §6.1.4]. It turns out that 
if X is geometrically reduced, then the vector space of global sections . H 0(X,E)

equipped with supremum norms .(‖ · ‖ψω)ω∈Ω forms an adelic vector bundle on the 
base adelic curve, denoted as .π∗(E). 

Let .π : X → SpecK be an integral and geometrically reduced projective K-
scheme of dimension d and .L = (L, ϕ) be an adelic line bundle on X, that is, an 
adelic vector bundle of rank 1 on X. Assume that the line bundle L is ample. We 
introduce the notion of arithmetic .χ -volume as 

. ̂volχ (L) = lim sup
n→+∞

d̂eg(π∗(L⊗n))

nd+1/(d + 1)! .

In the above formula, the Arakelov degree of the adelic vector bundle 

. V = (V , (‖ · ‖ω)ω∈Ω)

is defined as 

. d̂eg(V ) := −
⎰

Ω

ln ‖s1 ∧ · · · ∧ sr‖ω,det ν(dω),

where .(si)ri=1 is an arbitrary basis of E over K . This notion is a good candidate to 
replace the Euler-Poincaré characteristic (which is not defined in the adelic curve 
setting). 

In view of the similarity between Arakelov degree and Euler-Poincaré character-
istic of Euclidean lattices, the notion of .χ -volume is analogous to that of sectional 
capacity introduced in [83] or to that of volume in [96]. Moreover, similarly to the 
number field case, we show in Theorem-Definition 4.2.1 that the above superior 
limit defining the .χ -volume is actually a limit. However, from the methodological 
point of view, we do not follow the classic approaches, which are difficultly 
implantable in the adelic curve setting. Our strategy consists in casting the Arakelov 
geometry over an adelic curve to that in the particular case where the adelic curve 
contains a single copy of the trivial absolute value on K , that is, the absolute value 
.| · |0 such that .|a|0 = 1 for any .a ∈ K \ {0}. More precisely, to each adelic vector 
bundle .V = (V , (‖ · ‖ω)ω∈Ω), we associate an ultrametric norm .‖ · ‖0 on V (where 
we consider the trivial absolute value .| · |0) via Harder-Narasimhan theory in the 
form of .R-filtrations such that 

. 

|||d̂eg(V , (‖ · ‖ω)ω∈Ω) − d̂eg(V , ‖ · ‖0)
||| ⩽ 1

2
ν(Ω∞) dimK(V ) ln(dimK(V )),

where .Ω∞ denotes the set of .ω ∈ Ω such that .| · |ω is Archimedean. Then the 
convergence of the sequence defining .v̂olχ (L) follows from a limit theorem of



6 1 Introduction

normed graded linear series as follows (see Theorem 3.4.3 and Corollary 3.4.4 for 
this result in a more general form and for more details): 

Theorem A Assume that the graded K-algebra .
⊕

n∈NH 0(X,L⊗n) is of finite 
type. For any integer .n ⩾ 1, let  .‖ · ‖n be a norm on .H 0(X,L⊗n) (K is equipped 
with the trivial absolute value). Assume that 

(a) . inf
s∈Vn\{0} ln ‖s‖n = O(n) when .n → +∞, 

(b) for any .(n,m) ∈ N2⩾1 and any .(sn, sm) ∈ Vn × Vm, one has 

. ‖sn · sm‖n+m ⩽ ‖sn‖n · ‖sm‖m.

Then the sequence 

. 

⎛ d̂eg(Vn, ‖ · ‖n)

nd+1/(d + 1)!
⎞

n∈N⩾1

converges in . R. 

1.2.2 Hilbert-Samuel Formulas 

In view of the classic Hilbert-Samuel theorems in algebraic geometry and in 
Arakelov geometry, it is natural to compare the .χ -volume to the arithmetic 
intersection number of adelic line bundles introduced in [45] (see also the work  
[65] on heights of varieties over M-fields under the assumption of integrability of 
local heights). Let .π : X → SpecK be a projective K-scheme of dimension . d ⩾ 0
and .L = (L, ϕ) be an adelic line bundle on X such that L is ample and the metrics in 
the family . ϕ are semi-positive. Then the arithmetic self-intersection number . (Ld+1)

of . L is written in a recursive way as 

.
1

N

⎾
(L|ddiv(s)) −

⎰
Ω

⎰
Xan

ω

ln |s|ϕω(x) c1(Lω, ϕω)d(dx) ν(dω)

⏋
, (1.2.1) 

where N is a positive integer and s is a global section of .L⊗N , which intersects 
properly with all irreducible components of the projective scheme X. One of the 
main results of the book is the following theorem (see Theorem 5.5.1). 

Theorem B Let X be an integral projective K-scheme. Assume that either X is 
geometrically integral, or the field K is perfect. Let .L = (L, ϕ) be an adelic line 
bundle on X such that L is ample and that all metrics in the family . ϕ are semi-
positive, then the following equality holds: 

.v̂olχ (L) = (Ld+1).
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Note that in the literature, there exists a local version of the Hilbert-Samuel 
theorem which establishes an equality between the relative volume of two metrics 
and the relative Monge-Ampère energy between them. We refer the readers to [14] 
for the Archimedean case and to [23, 26] for the non-Archimedean case (see also 
[24]). These results show that, for a fixed ample line bundle L on X, the difference 
between .v̂olχ (L) and .(Ld+1) does not depend on the choice of the metric family 
on L (see Proposition 5.1.4 and Remark 5.1.6). Moreover, by an argument of the 
projection to a projective space (on which the arithmetic Hilbert-Samuel theorem 
can be proved by explicit computation, see Proposition 5.2.5), one can show that the 
inequality .v̂olχ (L) ⩾ (Ld+1) holds (see Step 2 of the proof of Theorem 5.5.1). 

In view of the recursive formula (1.2.1) defining the self-intersection number, 
a natural idea to prove Theorem B could be an argument of induction, following 
the approach of [1] by using an adaptation to non-Archimedean setting of some 
techniques of complex analytic geometry developed in [23, 55]. However, it seems 
that a refinement in the form of an asymptotic expansion of the function defining 
the local relative volume is necessary to realize this strategy. Unfortunately, such 
refinement is not yet available. 

Our approach consists in casting the arithmetic data of . L to a series of metrics 
over a trivially valued field. This could be considered as a higher-dimensional 
generalization of the approach of Harder-Narasimhan .R-filtration mentioned above. 
What is particular in the trivial valuation case is that the local geometry becomes 
automatically global, thanks to the trivial “product formula”. In this case, the 
arithmetic Hilbert-Samuel theorem follows from the equality between the relative 
volume and the relative Monge-Ampère energy with respect to the trivial metric 
(see Theorem 5.3.2). Note that this result also shows that, in the case of a projective 
curve over a trivially valued field, the arithmetic intersection number defined in [45] 
coincides with that constructed in a combinatoric way in [44] (see Remark 5.3.3). 
The comparison of diverse invariants of . L with respect to those of its casting to 
the trivial valuation case provides the opposite inequality .v̂olχ (L) ⩽ (Ld+1). As a  
sequel to the above arguments in terms of trivially valued fields, our way towards 
the arithmetic Hilbert-Samuel theorem over an adelic curve gives a new approach 
even for the classic case. 

As an application, we prove the following higher-dimensional generalization of 
Hodge index theorem (see Corollaries 6.5.1 and 6.5.2). 

Theorem C Let X be an integral projective K-scheme. Assume that either X is 
geometrically integral, or the field K is perfect. Let .L = (L, ϕ) be an adelic line 
bundle on X. Assume that L is nef and all metrics in the family . ϕ are semi-positive, 
then the inequality .v̂ol(L) ⩾ (Ld+1) holds. In particular, if .(Ld+1) > 0, then L is 
big. 

Theorem B naturally leads to the following refinement of the arithmetic Hilbert-
Samuel theorem, by introducing a tensor product by an adelic vector bundle on 
X (see Corollary 5.5.2). Same as in Theorem B, we assume that either X is 
geometrically integral, or the field K is perfect.
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Theorem D Let .L = (L, ϕ) be an adelic line bundle on X and .E = (E,ψ) be 
an adelic vector bundle on X. Assume that L is ample and the metrics in . ϕ are 
semi-positive. Moreover, we suppose that either .rk(E) = 1 or X is normal. Then 
one has 

. lim
n→+∞

d̂eg
⎛
H 0(X,L⊗n ⊗ E), (‖ · ‖nϕω+ψω)ω∈Ω

⎞

nd+1/(d + 1)! = rk(E)(Ld+1).

1.2.3 Asymptotic Minimal Slope and Arithmetic Ampleness 

The second part of the book is devoted to the study of positivity conditions of adelic 
line bundles. Positivity of line bundles is one of the most fundamental and important 
notions in algebraic geometry. In Arakelov geometry, the analogue of ampleness and 
Nakai-Moishezon criterion have been studied by Zhang [102, 103]. The arithmetic 
bigness has been introduced in the works of Moriwaki and Yuan [79, 80, 96]. These 
positivity conditions and their properties have various applications in Diophantine 
geometry. 

We assume that the underlying field K of the adelic curve S is perfect. Let X 
be a projective scheme over .SpecK . Given an adelic line bundle . L on X, we are  
interested in various positivity conditions of the adelic line bundle . L. We say that the 
adelic line bundle . L is relatively ample if the invertible .OX-module L is ample and 
if the metrics of . L are all semi-positive. The relative nefness can then be defined in a 
limit form of relative ampleness, similarly to the classic case in algebraic geometry. 
Recall that the global intersection number of relatively ample adelic line bundles (or 
more generally, integrable adelic line bundles) can be defined as the integral of local 
heights along the measure space in the adelic structure (cf. [65], [45, §4.4]). This 
construction is fundamental in the Arakelov height theory of projective varieties. 

We first introduce a numerical invariant—asymptotic minimal slope—to describe 
the global positivity of an adelic line bundle . L such that L is ample. This invariant, 
which is denoted by .μ̂

asy
min(L), describes the asymptotic behaviour (when .n → +∞) 

of the minimal slopes of the sectional spaces .H 0(X,L⊗n) equipped with sup norms, 
which are adelic vector bundles on S. It turns out that this invariant is super-additive 
with respect to . L. This convexity property allows us to extend the construction of 
the asymptotic minimal slope to the cone of adelic line bundles with nef underlying 
invertible .OX-module (see Sect. 6.2 for the construction of the asymptotic minimal 
slope and its properties). The importance of this invariant can be shown by the 
following height estimate (see Theorem 6.3.2 for its proof and Proposition 6.4.8 
for its generalization to the relatively nef case). 

Theorem E Assume that the field K is perfect. Let X be a reduced projective 
scheme of dimension .d ⩾ 0 over .SpecK and .L0, . . . , Ld be a family of relatively
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ample adelic line bundles on X. For any .i ∈ {0, . . . , d}, let  

. δi = (L0 · · · Li−1Li+1 · · · Ld).

Then the following inequality holds: 

. (L0 · · · Ld) ⩾
d⎲

i=0

δi μ̂
asy
min(Li),

where .(L0 · · ·Ld) denotes the arithmetic intersection number of .L0, . . . , Ld . 

The asymptotic minimal slope always increases if one replaces the adelic line 
bundle by its pullback by a projective morphism (see Theorem 6.6.6): if . g : X → P

is a projective morphism of reduced K-schemes of dimension .⩾ 0, then for any 
adelic line bundle . M on P such that M is nef, one has .μ̂asy

min(g
∗(M)) ⩾ μ̂

asy
min(M). 

Typical situations include a closed embedding of X into a projective space, or a 
finite covering over a projective space, which allow to obtain lower bounds of 
.μ̂
asy
min(Li) in the applications of the above theorem. Note that the particular case 

where .L0, . . . , Ld are all equal to the same adelic line bundle . L gives the following 
inequality 

.
(L

d+1
)

(d + 1)(Ld)
⩾ μ̂

asy
min(L), (1.2.2) 

which relates the normalized height of X with respect to . L and the asymptotic 
minimal slope of the latter. 

This inequality is similar to the first part of [103, Theorem 5.2]. However, the 
imitation of the devissage argument using the intersection of hypersurfaces defined 
by small sections would not work in the setting of adelic curves. This is mainly 
due to the fact that the analogue of Minkowski’s first theorem fails for adelic 
vector bundles on a general adelic curve. Although (in the case where X is an 
integral scheme) the inequality (1.2.2) could be obtained in an alternative way by 
the arithmetic Hilbert-Samuel formula of . L together with the fact that the minimal 
slope of an adelic vector bundle on S is always bounded from above by its slope (see 
Proposition 6.7.1), the proof of Theorem E needs a new idea. Our approach consists 
in combining an analogue of the slope theory of Bost [20, 21] with the height of 
multi-resultant. 

1.2.4 Applications in Equidistribution Problem 

By virtue of the relative positivity and the Hilbert-Samuel formula, one has natural 
applications in equidistribution problems. In Arakelov geometry, equidistribution of
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algebraic points of small height in an arithmetic projective variety has firstly been 
studied in the work of Szipro et al. [86] (see also the Bourbaki’s seminar review 
[2] of Abbes), which has a fundamental importance in the resolution of Bogomolov 
conjecture [87, 101] by Arakelov geometry method (see [49] for another approach 
to the conjecture by Diophantine geometry). 

Let us remind the statement of the arithmetic equidistribution theorem in its 
classic form. Let A be an abelian variety over a number field and . L be an adelic line 
bundle on A, which is composed of a symmetric ample line bundle L and a positive 
adelic metric . ϕ, such that the Arakelov height function with respect to . L coincides 
with the Néron-Tate height. Let .(xn)n∈N be a sequence of algebraic points of A such 
that the Néron-Tate height of . xn converges to 0 when .n → +∞ (we say that such 
a sequence is small). Then the Zariski closure X of .(xn)n∈N is the translation of an 
abelian subvariety of A by a torsion point. Moreover, if in addition any subsequence 
of .(xn)n∈N is Zariski closed in X, then, for any Archimedean place . σ of the number 
field, the Borel measure .δxn,σ on .Xσ (C) of taking the average on the Galois orbit of 
. xn converges weakly to the Monge-Ampère measure .c1(Lσ , ϕσ )dim(X) on .Xσ (C). 

This equidistribution theorem has then been generalized in various contexts. We 
refer the readers to [79] for the case where the base field is a finitely generated 
extension of . Q, to [32, 73] for the case of a semi-abelian variety, to [6, 8] for  the  
equidistribution of a small sequence of sub-varieties, to [9, 10, 56] for the case 
of a dynamical system on a projective line, and to [31] for an equidistribution 
theorem of a small sequence of algebraic points in the analytic variety over a non-
Archimedean place. We also refer to [54, 64] for similar results over function fields. 
In [96], an arithmetic analogue of Siu’s inequality has been proved, which leads to 
an equidistribution theorem with a weaker condition on the metrics of the adelic line 
bundle. 

We revisit the equidistribution of a small sequence of subvarieties in the setting 
of Arakelov geometry over an adelic curve. Assume that the underlying field K 
is countable and perfect. Let X be an integral projective scheme over . SpecK

and d be .dim(X). Let  .L = (L, ϕ) be an adelic line bundle on X, namely an 
invertible .OX-module L together with a family .ϕ = (ϕω)ω∈Ω of metrics on . Lω

satisfying dominancy and measurability conditions. We assume in addition that 
L is semiample (namely a tensor power of L is generated by global sections), 
.degL(X) = (Ld) > 0, and . ϕ is semi-positive. The data . L permit to construct an 
arithmetic intersection number .

(
L|dim(Y )+1

Y

)
for any integral closed subscheme Y of 

X, which can be written as an integral over . Ω of local intersection numbers. In the 
case where .degL(Y ) = (

L|dim(Y )
Y

)
> 0, the  normalized height of Y with respect to 

. L is defined as 

. hL(Y ) =
(
L|dim(Y )+1

Y

)
(dim(Y ) + 1) degL(Y )

.

Let Y be an integral closed subscheme of X such that .degL(Y ) > 0. For any . ω ∈
Ω, we denote by .δL,Y,ω the Radon measure on .Xan

ω such that for any continuous
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function f on the analytic space . Xan
ω , 

. 

⎰
Xan

ω

f (x) δL,Y,ω(dx) = 1

degL(Y )

⎰
Y an

ω

f (y) c1(Lω|Yω , ϕω|Yω)dim(Y )(dy).

In the case where .| · |ω is non-Archimedean, the Monge-Ampère measure 

. c1(Lω|Yω , ϕω|Yω)dim(Y )(dy)

has been constructed in [31, Definition 2.4]. 
Note that if one modifies the metrics . ϕω for . ω belonging to a set of measure 0, 

the height of subvarieties of X does not change. However, the local Monge-Ampère 
measure can be modified by this procedure. Hence, it is not adequate to consider 
a local equidistribution problem with respect to a single place . ω unless the set . {ω}
belongs to . A and has a positive measure with respect to . ν. We therefore introduce 
the following global version of Monge-Ampère measure. Let . Ω' be an element of 
. A such that .ν(Ω') > 0. We denote by .Xan

Ω' the disjoint union .
∐

ω∈Ω' Xan
ω of local 

analytifications indexed by . Ω'. We equipped this set with a suitable .σ -algebra . BX,Ω'
so that the canonical projection map .Xan

Ω' → Ω' sending the elements of .Xan
ω to 

. ω gives a fibration of measurable spaces. It turns out that local Monge-Ampère 
measures mentioned above form a disintegration of a measure on .(Xan

Ω' ,BX,Ω') over 
. ν|Ω' : for any integral closed subscheme Y of X such that .degL(Y ) > 0, we denote 
by .δL,Y,Ω' the measure on .(Xan

Ω',BX,Ω') which is defined as 

. 

⎰
Xan

Ω'
f (x) δL,Y,Ω'(dx) :=

⎰
Ω'

⎛⎰
Xan

ω

f (x) δL,Y,ω(dx)

⎞
ν(dω).

It is worthwhile to say that the global adelic measure determines the local 
measures almost everywhere, that is, if the global measure .δL,Y,Ω' coincides with 
another global measure .δL',Y,Ω' , then .δL,Y,ω = δL',Y,ω is verified almost everywhere 
on . Ω' (cf. Proposition 7.7.1). From a functional point of view, one can consider 
.δL,Y,Ω' as a linear form on the vector space of adelic families of continuous functions 

on X. Denote by .𝒞0
a (X) the set of families .f = (fω)ω∈Ω of continuous functions 

on X such that .(OX, (e−fω | · |ω)ω∈Ω) forms an adelic line bundle on X. Note that f 
yields a measurable function . fΩ on .Xan

Ω given by .fΩ(x) = fω(x) for .x ∈ Xan
ω . We  

denote by .𝒞0
a (X;Ω') the vector subspace of .𝒞0

a (X) consisting of .f ∈ 𝒞0
a (X) such 

that .fω = 0 for any .ω ∈ Ω \ Ω'. Then 

. (f ∈ 𝒞0
a (X;Ω')) |−→

⎰
Xan

Ω'
f (x) δL,Y,Ω'(dx)

defines a linear functional on .𝒞0
a (X;Ω'). One of the main results of the book is the 

following (see Theorem 8.11.2 and Corollary 8.11.4).
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Theorem F Let X be an integral projective scheme of dimension d over . SpecK

and .L = (L, ϕ) be an adelic line bundle on X such that L is semiample, .(Ld) > 0, 
and . ϕ is semi-positive. Let .(Yn)n∈N be a sequence of closed points of X such that 
each of its subsequences is Zariski dense in X and that .hL(Yn) is well defined and 
converges to .hL(X) when .n → +∞. Then, for any .Ω' ∈ A such that .ν(Ω') > 0, 
the sequence of measures .(δL,Yn,Ω')n∈N, viewed as a sequence of linear functionals 
on .𝒞0

a (X;Ω'), converges pointwise to .δL,X,Ω' . 

The proof of the theorem is inspired by the original work of Szipro, Ullmo, and 
Zhang and the subvariety version of Autissier, together with the differentiability 
interpretation introduced in [37]. The idea relies on the following simple observa-
tion. Let V be a real vector space, . x0 be an element of V , and f and g be two 
real-valued functions on V such that .f (x) ⩾ g(x) for any .x ∈ V . Assume f is 
concave on V , g is Gâteaux differentiable at . x0, and .f (x0) = g(x0). Then the 
function f is also Gâteaux differentiable at . x0 and its differential identifies with 
that of g. Concretely in the case of the equidistribution problem, we consider, 
for any integral closed subscheme Y of X such that .degL(Y ) > 0, the functional 
.ФY : 𝒞0

a (X;Ω') → R which sends .f ∈ 𝒞0
a (X;Ω') to 

. ̂μ
asy
max((L, ϕ + f )|Y ) := lim

n→+∞
μ̂max

(
H 0(Y, L|⊗n

Y ), (‖ · ‖(nϕω+nfω)|Yω
)ω∈Ω

)
n

,

This functional is concave. Consider now a generic sequence .(Yn)n∈N of integral 
closed subschemes of X. For any .f ∈ 𝒞0

a (X;Ω'), let  

. ФY•(f ) := lim inf
n→+∞ ФYn(f ).

Since the functionals .ФYn are concave, so is . ФY• . The sequence .(Yn)n∈N being 
generic, the functional .ФY• is bounded from below by .ФX (see Remark 8.10.2). 
Therefore, if .ФX is Gâteaux differentiable at 0 and if .ФY•(0) coincides with 
.ФX(0), then the functional .ФY• is also Gâteaux differentiable at 0. Note that . ФX

is differentiable at 0 notably when .ФX(0) = hL(0). Therefore, the particular case 
where . Yn are closed points leads to Theorem F. 

Moreover, the lower bound .μ̂
asy
max(L, ϕ) of .ФY•(0) is attained by a certain generic 

sequence .(Yn)n∈N (see Sect. 8.10). In particular, if the function 

. (f ∈ 𝒞0
a (X;Ω')) |−→ μ̂

asy
max(L, ϕ + f )

is Gâteaux differentiable at 0, then the relation 

. lim
n→+∞ lim

t→0+
μ̂
asy
max

(
(L, ϕ + tf )|Yn

) − μ̂
asy
max

(
(L, ϕ)|Yn

)
t

= d

dt

|||
t=0

μ̂
asy
max(L, ϕ + tf )

holds. Note that Theorem F gives a partial answer of [98, Conjecture 5.4.1] by Yuan-
Zhang.
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1.2.5 Bigness and Relative Fujita Approximation 

The global adelic space that we use to study the equidistribution problem permits 
to extend the construction of arithmetic intersection product in allowing one of the 
adelic line bundles to be possibly not integrable. This construction has applications 
in the study of weak relative positivity conditions. Bigness is another type of 
positivity condition which describes the growth of the total graded linear series 
of a line bundle. In Arakelov geometry of number fields, the arithmetic bigness 
describes the asymptotic behaviour of the number of small sections in the graded 
sectional algebra of adelic vector bundles. This notion can be generalized to the 
setting of Arakelov geometry over adelic curves in replacing the logarithm of the 
number of small sections by the positive degree of an adelic vector bundle (namely 
the supremum of the Arakelov degrees of adelic vector subbundles). 

In [43, Proposition 6.4.18], the arithmetic bigness is related to an arithmetic 
sectional invariant—asymptotic maximal slope, which is quite similar to asymptotic 
minimal slope: for any integral projective K-scheme and any adelic line bundle . L on 
X such that L is big, we introduce a numerical invariant .μ̂asy

max(L) which describes 
the asymptotic behaviour (when .n → +∞) of the maximal slopes of . H 0(X,L⊗n)

equipped with sup norms (see Sect. 8.3 for its construction and properties). It turns 
out that this invariant is also super-additive with respect to . L, which allows to extend 
the function .μ̂asy

max(·) to the cone of adelic line bundles . L such that L is pseudo-
effective. Moreover, in the case where L is nef, the inequality . ̂μasy

min(L) ⩽ μ̂
asy
max(L)

holds. 
Recall that Fujita’s approximation theorem asserts that a big line bundle can be 

decomposed on a birational modification into the tensor product of two .Q-line bun-
dles which are, respectively, ample and effective, with a good approximation of the 
volume function. In this book, we establish the following relative version of Fujita’s 
approximation theorem for the asymptotic maximal slope (see Theorem 8.5.6 and 
Corollary 8.5.7). 

Theorem G Assume that the field K is perfect and the scheme X is integral. Let . L
be an adelic line bundle on X such that L is big. For any real number .t < μ̂

asy
max(L), 

there exist a positive integer p, a birational projective K-morphism .g : X' → X, a  
relatively ample adelic line bundle . A, and an effective adelic line bundle . M on . X'
such that .g∗(L⊗p

) is isomorphic to .A ⊗ M and .μ̂
asy
min(A) ⩾ pt . 

As an application, in the case where X is an integral scheme, we can improve 
the height inequality in Theorem E in relaxing the positivity condition of one of the 
adelic line bundles and in replacing the asymptotic minimal slope of this adelic line 
bundle by the asymptotic maximal slope (see Theorem 8.6.1). 

Theorem H Assume that the field K is perfect. Let X be an integral projective 
scheme of dimension d over .SpecK and .L0, . . . , Ld be adelic line bundles on X 
such that .L1, . . . , Ld are relatively ample and . L0 is big. For any .i ∈ {0, . . . , d}, let
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.δi = (L0 · · ·Li−1Li+1 · · · Ld). Then the following inequality holds: 

. (L0 · · · Ld) ⩾ δ0 μ̂
asy
max(L0) +

d⎲
i=1

δi μ̂
asy
min(Li).

In the case where .L0, . . . , Ld are all equal to the same adelic line bundle . L, the  
above inequality leads to 

. 
(L

d+1
)

(Ld)
⩾ μ̂

asy
max(L) + d μ̂

asy
min(L).

1.2.6 Successive Minima 

In the case where the adelic curve S comes from the canonical adelic structure of 
a number field, if . L is a relatively ample adelic line bundle, then .μ̂asy

min(L) is equal 
to the absolute minimum of the Arakelov (absolute) height function .hL(·) on the 
set of closed points of X. This is essentially a consequence of [103, Corollary 5.7]. 
Similarly, the asymptotic maximal slope .μ̂

asy
max(L) is equal to the essential minimum 

of the height function . hL. This is a result of Ballaÿ [11, Theorem 1.1]. In this book, 
we show that these results can be extended to the case of general adelic curves if 
we consider the heights of all integral closed subschemes of X. More precisely, we 
obtain the following result (see Theorem 8.8.3 and Proposition 8.10.1). 

Theorem I Assume that the field K is perfect. Let X be a non-empty reduced 
projective scheme over .SpecK and .ΘX be the set of integral closed subschemes 
of X. For any relatively ample adelic line bundle . L on X, the following equalities 
hold: 

. ̂μ
asy
min(L) = inf

Y∈ΘX

(L|dim(Y )+1
Y )

(dim(Y ) + 1)(L|dim(Y )
Y )

= inf
Y∈ΘX

μ̂
asy
max(L|Y ).

Moreover, if X is an integral scheme, the following equality holds: 

. ̂μ
asy
max(L) = sup

Y∈ΘX
Y /=X

inf
Z∈ΘX
Z /⊆Y

μ̂
asy
max(L|Z).

We also show that a property similar to Minkowski’s first theorem permits to 
recover the link between the asymptotic maximal and minimal slopes, and the 
Arakelov height of closed points in the number field case. More precisely, we say 
that a relatively ample adelic line bundle . L is strongly Minkowskian if for any 
.Y ∈ ΘX one has
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. lim
n→+∞

1

n
sup

s∈H 0(Y,L|⊗n
Y )

s /=0

d̂eg(s) ⩾
(L|dim(Y )+1

Y )

(dim(Y ) + 1)(L|dim(Y )
Y )

.

This condition is always satisfied notably when the adelic curve S comes from a 
number field (consequence of Minkowski’s first theorem) or the function field of 
a projective curve (consequence of Riemann-Roch theorem). We then establish the 
following result (see Corollary 8.9.3). 

Theorem J Assume that the field K is perfect. Let X be an integral projective 
scheme over .SpecK and . L be a relatively ample adelic line bundle on X which 
is strongly Minkowskian. Denote by .X(0) the set of closed points of X. Then the 
equality .μ̂

asy
min(L) = inf

x∈X(0)
hL(x) holds. 

Motivated by Theorem I, we propose the following analogue of successive 
minima for relatively ample adelic line bundles. Let .f : X → SpecK be an integral 
projective K-scheme of dimension d and . L be a relatively ample adelic line bundle 
on X. For .i ∈ {1, . . . , d + 1}, let  

. ei(L) = sup
Y⊆X closed
codim(Y )⩾i

inf
Z∈ΘX
Z /⊆Y

μ̂
asy
max(L|Z).

With this notation, one can rewrite the assertion of Theorem I as 

. e1(L) = μ̂
asy
max(L), ed+1(L) = μ̂

asy
min(L).

We show in Remark 8.10.3 that, in the number field case, one has 

.∀ i ∈ {1, . . . , d + 1}, ei(L) = sup
Y⊆X closed
codim(Y )⩾i

inf
x∈(X\Y )(0)

hL(x). (1.2.3) 

Thus, we recover the definition of successive minima in the sense of [102, §5]. We 
propose several fundamental questions about these invariants: 

(1) Do the equalities (1.2.3) hold in the case of a general adelic curve, under the 
assumption that . L is strongly Minkowskian? 

(2) What is the relation between the invariants .e2(L), . . . , ed(L) and the sectional 
algebra .

⊕
n∈N f∗(L

⊗n
)? 

(3) Does the analogue of some classic results in Diophantine geometry concerning 
the successive minima, such as the inequality 

. 
(L

d+1
)

(Ld)
⩾

d+1⎲
i=1

ei(L),

still hold for general adelic curve?
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(4) In the case where .(X,L) is a polarized toric variety and the metrics in . ϕ are toric 
metrics (namely metrics that are stable by the action of the torus), is it possible 
to describe in a combinatoric way the positivity conditions of . L and express the 
invariants .ei(L) in terms of the combinatoric data of .(X,L), generalizing some 
results of [27, 28], for example? 

1.2.7 Global Positivity and Applications 

The last chapter of the book is devoted to the study of global positivity of adelic 
line bundles. Motivated by Nakai-Moishezon criterion of ampleness, we say that an 
adelic line bundle . L on X is ample if it is relatively ample and if the normalized 
height with respect to . L of integral closed subschemes of X has a positive lower 
bound. We show that this condition is equivalent to the relative ampleness together 
with the positivity of the invariant .μ̂asy

min(L). Therefore, we deduced from Theorem E 
that if .L0, . . . , Ld are ample adelic line bundles on X, where d is the dimension of 
X, then one has (see Proposition 9.1.3) 

. (L0 · · ·Ld) > 0.

In the case where . L is strongly Minkowskian, . L is ample if and only if it is relatively 
ample and the height function . hL on the set of closed points of X has a positive lower 
bound (see Proposition 9.1.4). Once the ample cone is specified, one can naturally 
define the nef cone as its closure. It turns out that the nefness can also be described 
in a numerical way: an adelic line bundle . L is nef if and only if it is relatively nef 
and .μ̂

asy
min(L) ⩾ 0 (see Proposition 9.1.7). 

Bigness and pseudo-effectivity are also described in a numerical way by the 
invariant .μ̂asy

max(·): an adelic line bundle . L is big if and only if L is big and 
.μ̂
asy
max(L) > 0 (which coincides with the bigness in [43]); it is pseudo-effective if 

and only if L is pseudo-effective and .μ̂
asy
max(L) ⩾ 0 (see [43, Proposition 6.4.18] and 

Proposition 9.2.5). We deduce from Theorem H that if .L0, . . . , Ld are adelic line 
bundles on X such that . L0 is pseudo-effective and that .L1, . . . , Ld are nef, then the 
inequality .(L0, . . . , Ld) ⩾ 0 holds (see Proposition 9.2.6). 

As an application of the equidistribution theorem together with the global 
positivity properties of adelic line bundles, we consider Bogomolov conjecture over 
a countable field of characteristic zero (see Theorem 9.4.1). We assume that K is an 
algebraically closed field of characteristic zero, .ν(Ω∞) > 0, and .ν(A) /⊆ {0,+∞}. 
The following theorem is a generalization of [79, Theorem 8.1]. 

Theorem K Let A be an abelian variety over K , L be an ample and symmetric line 
bundle on A, and . ϕ be a family of semi-positive metrics of A such that .(A, ϕ) is nef 
and . ϕω is the canonical metric of . Lω for each .ω ∈ Ω. If the essential minimum of 
. (L, ϕ)|X is zero, then X is a translation of an abelian subvariety of A by a closed
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point of Néron-Tate height 0, which is a torsion point provided that any finitely 
generated subfield of K has Northcott’s property (cf. [45, Theorem 2.7.18]). 

We also discuss arithmetic dynamical systems in the adelic curve setting. We 
assume that K is algebraically closed. Let X be a projective integral scheme over 
.SpecK and L be an ample line bundle on X. We denote by .End(X;L) the set of all 
endomorphisms .f : X → X such that .f ∗(L) is isomorphic to a tensor power of L 
with exponent . > 1. Note that f forms a polarized dynamical system with respect 
to L. For any .f ∈ End(X;L) with .f ∗(L) ∼= L⊗d for some .d > 1, there exists a 
unique metric family . ϕf such that .(L, ϕf ) forms an adelic line bundle and . f ∗(L)

is isometric to .L
⊗d

. We call it the global canonical compactification of L. It is easy 
to see that any f -preperiodic rational point of X is of height 0. The converse is also 
true if the adelic curve S has Northcott property. We establish the following result 
(see Theorem 9.5.1). 

Theorem L Let L be an ample line bundle on X and f and g be two elements of 
.End(X;L). Then the following statements are equivalent: 

(1) The adelic line bundles .(L, ϕf ) and .(L, ϕg) define the same height function on 
the set of rational points of X. 

(2) .{x ∈ X(K) | h(L,ϕf )(x) = 0} = {x ∈ X(K) | h(L,ϕg)(x) = 0}. 
(3) .{x ∈ X(K) | h(L,ϕf )(x) = h(L,ϕg)(x) = 0} is Zariski dense in .X(K). 

Moreover, when these conditions are satisfied, there exist an integrable function . 𝓁
on . Ω and .Ω' ∈ A such that .ν(Ω \ Ω') = 0 and that 

. ∀ω ∈ Ω', ϕg,ω = e𝓁(ω)ϕf,ω.

1.2.8 Organization of the Book 

The rest of the book is organized as follows: 
In Chap. 2, we consider metric families on vector bundles and discuss their 

dominancy and measurability. We also remind the notation that we use all through 
the book. 

In Chap. 3, we study normed graded linear series over a trivially valued field 
and prove the limit theorem of their volumes. Then in Chap. 4, we deduce the limit 
theorem for graded algebra of adelic vector bundles over a general adelic curve, 
which proves in particular that the sequence defining the arithmetic volume function 
actually converges. We also show that the arithmetic Hilbert-Samuel theorem in the 
original form implies the generalized form with tensor product by an adelic vector 
bundle. 

In Chap. 5, we prove the arithmetic Hilbert-Samuel theorem. We first prove that 
the difference of the arithmetic .χ -volume and the arithmetic intersection product 
does not depend on the choice of the metric family. Then we prove the arithmetic


