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Preface

It is with great pleasure that we present the second edition of the “Real-time and
Autonomous Systems” volume, published by Springer in English. This collection show-
cases the advancements made in this field by European and Thai scientists. The con-
ference on “Autonomous Systems” has now reached its 15th iteration, with a brief
interruption due to the COVID-19 pandemic.

Originating in 2008 as a modest workshop for PhD students, our conference has
evolved into a cherished tradition. Since 2010, colleagues from diverse research domains
have contributed articles on their ongoing work, unsolved scientific challenges, and
research outcomes to our proceedings. The eventwas initially titled “Distributed Systems
and Networks”, but in subsequent years, it was aptly renamed “Autonomous Systems” to
encompass the broad spectrum of contributions. This term encapsulates self-contained
and self-controlled entities that operate without external oversight in various scientific
disciplines.

In 2019, we made the significant decision to rebrand the publication from “pro-
ceedings” to “almanac”, reflecting its evolving nature. Authors are now encouraged to
contribute without the obligation to attend or present at the conference. Maintaining
our commitment to openness, the almanac remains free from reviews or censorship,
fostering a platform for unconventional ideas and perspectives. Distributed among con-
ference participants, it serves as a catalyst for uninhibited discussions, emphasizing the
importance of intellectual diversity in scientific discourse.

In 2023, we ventured into a collaborative publication by combining the proceed-
ings of two conferences: the “Real-Time Systems” in Boppard and the “Autonomous
Systems” in Majorca Island. Regrettably, we couldn’t sustain this collaboration due to
the cancelation of the “Real-time Systems” meeting in 2023 owing to insufficient sub-
missions. Despite challenges, the “Autonomous Systems” conference in 2023 flourished
with over 40 participants, reminiscent of pre-pandemic times. Notable keynote speakers,
including Wookey Lee (Korea), Wolfram Schiffmann (Germany), and Phayung Meesad
(Thailand), enriched our program with insights into team synergy, emergency land-
ing systems, and stock analysis using deep reinforcement learning. Stephan Pareigis
(Germany) provided a comprehensive tutorial on Reinforcement Learning, while Kyan-
doghere Kyamakya showcased groundbreaking results in “Intelligent Traffic Systems”.
Additionally, for the first time a tutorial on the real-time, safety-related programming
language PEARL by Wolfgang Halang is published in English in this volume.

Innovating our presentation format, we introduced open discussion sessions for
major topics, fostering interactive exchanges among participants. This format, char-
acterized by brief talks followed by small-group discussions involving specialists and
non-specialists, received positive feedback, indicating a promising future for interactive
conference sessions.



vi Preface

The editors hope this publication inspires and informs readers, sparking new ideas
and expanding knowledge horizons.We extend awarm invitation to join us at the upcom-
ing conference in Cala Millor, Spain, from October 22–27 2024, either as a participant
or a contributor. Further details are available at https://www.confautsys.org.

We eagerly anticipate your engagement and contribution to our vibrant scientific
community.

January 2024 Herwig Unger
Marcel Schaible

https://www.confautsys.org
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Algorithmic Foundations
of Reinforcement Learning

Stephan Pareigis(B)

Department of Informatics, Hamburg University of Applied Sciences, Berliner Tor 7,
20099 Hamburg, Germany

stephan.pareigis@haw-hamburg.de

Abstract. A comprehensive algorithmic introduction to reinforcement
learning is given, laying the foundational concepts and methodologies.
Fundamentals of Markov Decision Processes (MDPs) and dynamic pro-
gramming are covered, describing the principles and techniques for
addressing model-based problems within MDP frameworks. The most
significant model-free reinforcement learning algorithms, including Q-
learning and actor-critic methods are explained in detail. A compre-
hensive overview of each algorithm’s mechanisms is provided, forming a
robust algorithmic and mathematical understanding of current practices
in reinforcement learning.

Keywords: reinforcement learning · MDP · markov-decision process ·
dynamic programming · deep reinforcement learning · SARSA ·
Q-learning · DQN · REINFORCE · A2C · PPO · DDPG · SAC ·
policy gradient methods · exploration vs exploitation · sparse rewards ·
robotics · offline reinforcement learning

1 Introduction

The article provides a comprehensive introduction and overview over the algo-
rithmic foundations of Reinforcement Learning (RL).

Reinforcement Learning forms an important part of artificial intelligence,
characterized by learning optimal decision-making through interactions with
dynamic environments. The field is characterized by numerous technological
applications, including autonomous systems, strategic game playing, and com-
plex decision-making processes.

Figure 1 illustrates the algorithmic and theoretical roots of reinforcement
learning, its categorization within the area of artificial intelligence, and impor-
tant fields of application. RL can be categorized as a distinct type of machine
learning, next to supervised learning and unsupervised learning. Its algorithmic
roots lie within optimal control theory and dynamic programming. Applications
include problems in which sequential decisions have to be made in order to opti-
mize a given objective function.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
H. Unger and M. Schaible (Eds.): AUTSYS 2023, LNNS 1009, pp. 1–27, 2024.
https://doi.org/10.1007/978-3-031-61418-7_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-61418-7_1&domain=pdf
https://doi.org/10.1007/978-3-031-61418-7_1


2 S. Pareigis

Fig. 1. The Roots of Reinforcement Learning: A visual map illustrating the interdisci-
plinary nature of Reinforcement Learning (RL). RL is considered a subfield of Artifi-
cial Intelligence. Its relationship with Machine Learning, Supervised and Unsupervised
Learning, and connections to Dynamic Programming, Game Theory, and Control Engi-
neering. The diagram further branches out to show RL’s diverse applications in sectors
such as healthcare, finance, robotics, energy, education, computer vision, and more,
underlining its profound impact across industries.

A comprehensive book on reinforcement learning is R. Sutton’s and A.
Barto’s book Reinforcement Learning: An Introduction [1]. Other books which
cover the basics of reinforcement learning including practical examples and mod-
ern research areas and applications are M. Lapan’s book on Deep Reinforcement
Learning [2] and the workshop book from Palmas et al. [3]. [4] gives theoretical
background on modern Deep RL methods like PPO and A2C.

Section 2 gives an introduction to the theoretical concepts of reinforcement
learning. Section 2.1 covers the key concept of a Markov Decision Process (MDP).
The problem setting is to find an optimal strategy for the MDP in form of a
policy which optimizes the total reward. If full knowledge of the MDP is given,
dynamic programming principles can be applied to obtain an optimal strategy.
Section 2.2 explains how the Bellman Equation is used to iteratively approximate
a solution.

If no model of the MDP is given, then exploration methods must be used to
learn from the interactions with the MDP as covered in Sect. 3. The methods are
based upon dynamic programming principles as described previously, and they
can be divided into on-policy and off-policy methods.

When observation spaces are based on image inputs from cameras or are
otherwise too large to handle, then artificial neural networks are used to approx-
imate an optimal strategy. This area is referred to as deep reinforcement learning.
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Obtaining a solution for the optimization problem can either be done based on
the approximation of an action-value function as described in Sect. 3.2 or the
approximation of a policy as explained in Sect. 3.3. A combination of value and
policy based methods are actor-critic methods as described in Sect. 3.4.

If the action space is continuous, then specially designed methods are used
as carried out in Sect. 3.5.

2 Reinforcement Learning Fundamentals

The theoretical foundation of reinforcement learning is based upon Markov Deci-
sion Processes (MDPs), which provide a mathematical framework for modeling
decision-making in stochastic environments. The central objective is to identify
an optimal decision-making strategy that maximizes a specified objective func-
tion. The chapter covers the definition of an MDP, derives a policy-induced tra-
jectory distribution, introduces value functions, and the Bellman Equation. The
chapter closes with dynamic programming principles which are used to obtain a
value function given full knowledge of the underlying MDP.

2.1 Markov Decision Processes (MDPs)

The following basic definitions from stochastic processes are frequently used in
the formulation of MDPs and Reinforcement Learning.

Definition. The conditional probability of an event A given an event B is defined
as P (A|B) := P (A∩B)

P (B) .
If events A and B are independent, then P (A|B) = P (A). In this case, the

probability that both events A and B occur can be calculated as

P (A ∩ B) = P (A) · P (B). (1)

The product rule for independent events is essential for calculations in MDPs.

Definition. If X is a random variable and p is its probability distribution, then
the expected value of X is defined as

E[X] :=
∫

x · p(X = x) dx or E[X] :=
∑

x

x · p(x) (2)

depending on whether X is continuous or discrete.

Elements of an MDP. An MDP is composed of the following components:

– States (S): A state represents a specific situation in the environment, the
physical world, or system to be controlled. A state space may be high dimen-
sional like the raw input from a camera. It may also be low dimensional like a
2D grid or a feature space. An MDP models a system that transitions between
different states.
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– Observations (O): Ideally all states can be fully observed. In this case
S = O. If not all states of an MDP can be fully observed, then it is called
a partially observable MDP or POMDP. The observation space is used in
RL to describe the set of all possible observable input (sensor input, feature
information, odometric information, etc.).

– Actions (A): Actions are the decisions or moves that an agent can take in
a given state. The set of all possible actions in a state is denoted as A(s).

– Transitions P: The transition probability function

P : S × A × S → [0, 1], (s, a, s′) �→ P (s′|s, a) ∈ [0, 1] (3)

describes the probability of transitioning from one state to another given a
particular action. It is often represented as P (s′|s, a), denoting the probability
of transitioning to state s′ from state s by taking action a.
The Markov property of an MDP states that the transition probability to a
state st+1 is only dependent on the predecessor state st and action at, not on
past states, i.e. a MDP is memory-less

p(st+1|st, at) = p(st+1|at, st, at−1, st−1, · · · ).
– Rewards R: Each state-action-state triple receives a numerical reward

R : S × A × S → R.

The immediate reward is denoted as R(s′|s, a). The expected immediate
reward in a state s with action a can be expressed as

E[R(s, a)] =
∑
s′∈S

P (s′|s, a) · R(s′|s, a) (4)

– Policy (π): A policy is a strategy that the agent follows to choose actions in
each state. It can be deterministic

π : S −→ A, π(s) = a ∈ A (5)

or stochastic
π : A × S −→ [0, 1], π(a|s) = p ∈ [0, 1]. (6)

When a policy π is given, the expected immediate reward in a state s can be
written as

E[R(s)] =
∑

s′∈S,a∈A

π(a|s) · P (s′|s, a) · R(s′|s, a) (7)

– Realizing an MDP: A sequence of states τ = (s0, a0, r0, s1, a1, r1, · · · , sT )
is called a realization of an MDP for some starting state s0, when at is chosen
according to π, i.e.

at = π(st) or choosen from the distribution at ∼ π(.|st)) (8)

and rt = R(st+1|st, at). τ is also called trajectory or path. T can be a finite
or infinite time horizon.
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– Total Return: The cumulated reward or total return G for some realization
τ is defined as

G :=
T−1∑
t=0

γtRt, Rt = R(st+1|st, at) along τ (9)

for some discount factor γ ∈ ]0, 1]. The goal in RL is to find a policy π� which
maximizes the expected total reward Eτ∼π[G]. τ ∼ π denotes a realization of
a trajectory given a policy π.
The discount factor γ may be set to 1 for MDPs which terminate after a
finite time. For infinite horizon MDPs a discount factor γ < 1 is necessary to
ensure existence of G.

Policy Induced Trajectory Distribution τ ∼ π. For a given policy π every
concrete trajectory τ = (s0, a0, r0, s1, a1, r1, · · · , sT ) has a certain probability.
The probability distribution for trajectories for a fixed policy π will be derived
in this section.

According to (3) the probability for ending up in state s1 when starting in
state s0 with a given action a0 is p(s1|s0, a0). If a0 is chosen according to the
given policy a0 ∼ π(.|s0), then the probability for the sequence (s0, a0, s1) is

P ((s0, a0, s1)) = π(a0|s0) · P (s1|s0, a0) (10)

Policy Induced Trajectory Distribution. Using the memory-lessness of an
MDP together with the product rule for independent probabilities (1), the prob-
ability for a specific trajectory τs0 starting in state s0 can be calculated as the
product of the probabilities in (10)

Pπ(τ) = Pπ(s0, a0, · · · , sT ) =
T−1∏
t=0

π(at|st) · P (st+1|st, at) (11)

Equation (11) is called the policy induced trajectory distribution for τ ∼ π.
This probability can be used to calculate the expected value of the total

return Eτ∼π[G] over all trajectories τ starting in state s0.
Equation (12A) uses the definition of the expected value. (12B) shows that

Eτ∼π[G] may be expressed as expected values of local rewards, using the occu-
pancy measure dπ.

Using (9) and (11) the expected total return for Gπ can be calculated as

Eτ∼π[Gπ] A=
∑

τ

Pπ(τ) · Gπ(τ) B=
∑

s

dπ(s) · E[R(s)] (12)

Occupancy Measure. The value dπ as introduced in Eq. (12) is called the
discounted occupancy measure.

dπ(s) = Eτ∼π

[
T−1∑
t=0

γt · I(st = s)

]
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where I(st = s) is 1 if the st = s. The value dπ expresses the discounted frequency
of visiting state s given a policy π. Figure 2 explains the property (12B) in a
simple example. The expected total return in state A can hence be expressed in
two different ways.

Fig. 2. The example illustrates Eq. (12) and shows a Markov Process which allows a red
path τred = (A, B, C, D) and a blue path τblue = (A, C, D). The rewards are k, r, m, n
as shown on the edges of the graph. The probability for τred is P (τred) = p · 1 · 1. The
probability for τblue is P (τblue) = (1−p)·1. The expected total return for A is therefore
E[G] = p · (r + m + n) + (1 − p) · (k + n). Using the occupancy measure and expected
one-step rewards in each state as shown in the image, alternatively the expected return
can be calculated as E[G] =

∑
s∈S d(s) · E[r(s)] = 1 · (pr + (1 − p)k) + p · m + 1 · n.

The following sections will deal with the expected total return, which will be
called value function V , and methods for calculating it.

Value Functions. The objective is to find an optimal policy that maximizes the
expected cumulative reward or total return. If in every state s ∈ S a prediction
of the expected total return Gs were known, then an optimal action a could be
chosen which leads to a subsequent state in which the prediction of the expected
total return is maximized. Such a prediction is called a state value function V .

State Value Function (V ): The state value function V (s) for a policy π in an
MDP is defined as the expected total return starting from state s and following
policy π thereafter. Mathematically, it can be expressed as:

V π(s) := Eτ∼π

[
T−1∑
t=0

γkRt | S0 = s

]
(13)

In order to be able to calculate a greedy action or policy based on the state
value function V π, the transition properties of the MDP must be known. A
greedy policy π∗,π with respect to some value function V π (based on a fixed
policy π) is then calculated as

π∗,π(s) = arg max
a∈A

[∑
s′∈S

P (s′|s, a)[R(s, a, s′) + γV π(s′)]

]
(14)
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In each state s the action a∗ = π∗,π(s) is chosen, which maximizes the expected
total return when taking one step with a∗ and continuing with policy π there-
after. Note that π∗,π is generally not an optimal policy. It is a greedy policy
based on the value function V π of given policy π.

If the transition properties of the MDP are not known, then the action value
function Qπ can serve as a prediction for the expected total return.

Action Value Function (Q): The action-value function Q(s, a), for a policy
π, in an MDP is defined as the expected return starting from state s, taking an
action a, and thereafter following policy π. It can be formally written as:

Qπ(s, a) = Eτ∼π

[
T−1∑
t=0

γkRt | St = s,At = a

]
(15)

The difference to the above is, that Q also depends on an action a. This way
an optimal action can be chosen by taking the action a∗ which maximizes the
Q-value in the current state s:

a∗ = arg max
a∈A

Q(s, a) (16)

Comparing (14) and (16) shows that in the latter case no transition information
of the MDP is necessary in order to choose a greedy action in every state.

Bellman Equations. The Bellman Equations form an essential component of
the algorithmic structure of dynamic programming and reinforcement learning.
They express that the value of a state can be expressed as an immediate reward
plus the value in the next state.

The Bellman Expectation Equation for the state value function V
given a policy π is given by

V π(s) =
∑
a∈A

π(a|s) ·
∑
s′∈S

P (s′|s, a)[R(s, a, s′) + γV π(s′)] (17)

The Bellman Expectation Equation for the action value function Q
given a policy π is given by

Qπ(s, a) =
∑
s′∈S

P (s′|s, a) ·
[
R(s, a, s′) + γ

∑
a′∈A

π(a′|s′)Qπ(s′, a′)

]
(18)

The Bellman Optimality Equation for the state value function is:

V ∗(s) = max
a∈A

∑
s′∈S

P (s′|s, a) · [R(s, a, s′) + γV ∗(s′)] (19)

The Bellman Optimality Equation for the action value function Q is
given by:

Q∗(s, a) =
∑
s′∈S

P (s′|s, a) · [R(s, a, s′) + γ max
a′∈A

Q∗(s′, a′)] (20)

The Bellman Equations form a basis for the following algorithms.
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2.2 Solving an MDP: Dynamic Programming

If the transition information of the MDP is known, then Eq. (17) can be applied
iteratively to calculate an optimal policy π∗. The methods are explained in the
following section.

Policy Iteration and Value Iteration. In Policy Iteration an optimal
policy is directly calculated using the following two steps:

1. Policy Evaluation: Compute V π for the current policy, iteratively applying
the Bellman Expectation Equation (17).

2. Policy Improvement: Update the policy π to a greedy policy π∗,π by select-
ing in every state the action which maximizes the expression in the Eq. (14).

3. Repeat until convergence.

Figure 3a shows the progression of the algorithm for a simple grid example. The
heat maps in the top row show the value function, the bottom row shows the
greedy policy with respect to the current value function.

In Value Iteration the optimal value function V ∗ is calculated directly
using iterative application of the Bellman Optimality Equation (19). It can be
said that policy evaluation and policy improvement are integrated into a single
update, iterating until convergence as shown in Fig. 3b.

Fig. 3. In policy iteration (left) a policy is evaluated and then improved acting greedily.
Often it is not necessary to calculate the value function precisely as the policy converges
fast to an optimal policy. In value iteration (right) the optimal value function is directly
approximated using the Bellman Optimality Equation (19).

Dynamic Programming Iteration Methods: There exist various methods
for the sequence in which the states are be updated when applying policy eval-
uation or value iteration. The methods are depicted in Fig. 4.

Synchronous Backups: In each iteration, the algorithm computes the new
value for every state based on the old values (from the previous iteration) and
updates them all at once at the end of the iteration. This method ensures that
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the updates in one iteration are independent of each other, providing stability
in the convergence process.

In-Place Dynamic Programming: The algorithm updates the value of a
state as soon as the new value is computed, using these updated values for
subsequent state value computations within the same iteration. It can lead to
faster convergence as it uses the most updated information available.

Prioritized Sweeping: The algorithm prioritizes updates for states where the
value change is expected to be largest. This way, it uses computational resources
more effectively.

Real-Time Dynamic Programming (RTDP): RTDP involves executing tri-
als (realizations) updating the value of states that are encountered in these trials.
It is particularly useful in large or continuous state spaces and where the full
model of the environment is not available.

Fig. 4. Different methods for iterating through the state space: Synchronous Backups,
In-Place Dynamic Programming, Prioritized Sweeping, RTDP. All the methods require
that the transition information of the MDP is given.

2.3 Model-Free Prediction

The previous methods were based on a given model of the MDP. The iterative
application of the Bellman Equation required knowledge of the transition prop-
erties of the MDP. In the model-free case, value functions have to be learned
through observation of the system. These methods can be categorized into learn-
ing from complete episodes and learning in temporal differences. Figure 5 figu-
ratively shows the difference between the methods dynamic programming (DP),
Monte Carlo Methods (MC), and temporal difference methods (TD).

Learning from Complete Episodes: Monte Carlo Method (MC) esti-
mate the value function based on complete episodes of experience. The value
of a state is computed as the average of the returns following that state over
many episodes. An episode must terminate for MC methods to update the value
function, making them suitable for episodic tasks.


