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Preface 

The purpose of this book is to address rapid progress in mathematical modeling 
and simulation, which intends to employ complex and stochastic models for making 
more accurate predictions, for formulating better strategies and for designing sophis-
ticated policies. Several optimal filtering algorithms have been designed for treating 
stochastic systems, where the optimality is understood in a statistical sense. The 
notion of optimal filtering refers to the family of computational techniques that are 
utilized for estimating the state of time-varying models which are indirectly observed 
through noisy discrete-time measurements. The state of a system is considered to 
be a vector of random variables related to positions, velocities, orientations of the 
plant under investigation and so on, which describe entirely the stochastic system 
in use. This contemporary mathematical modeling and simulation trend entails the 
necessity for exploring and exploiting nonlinear and continuous-time stochastic 
models with potentially stiff behavior, for which the state estimation task becomes 
extremely nontrivial and complicated, allowing for a numerical solution, only. There-
fore, computational algorithms, such as methods for the numerical solution of inte-
grals and ordinary differential equations, as well as numerous optimization means, 
can be interpreted as state estimation rules. Eventually, the accuracy and efficiency 
of nonlinear filtering rely basically on various aspects of the implemented numerical 
integration and optimization schemes and approximations. 

The traditional filtering solution to nonlinear stochastic systems is presented by 
the well-known and popular extended Kalman filter. Recently, two more advanced 
and accurate state estimation tools termed the cubature and unscented Kalman filters 
have been designed. Furthermore, these have given rise to the concept of universal 
Gaussian filtering with deterministically sampled expectation and covariance, which 
unifies and covers the majority of modern methods in filtering theory. The main topic 
of our study is why and how effective adaptive numerical integration means with 
automatic local and global error regulations contribute to the task of accurate state 
estimation in nonlinear continuous-time state-space stochastic models with additive 
noise and discrete-time measurements, including those whose dynamic behavior is 
stiff, within the framework of Gaussian filtering techniques. This discussion focuses 
mostly not on statistical properties of determining posterior densities of the stochastic
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model’s state but rather on the numerical aspects of calculation of the conditional 
expectation and covariance in the filtering solution derived. 

The book at hand is intended for researchers and practitioners in computational 
and applied science and engineering. However, advanced undergraduate and graduate 
students with a solid background in linear algebra, vector calculus, Bayesian infer-
ence, numerical analysis and with suitable programming skills can also benefit from 
it. Apart from theoretical developments, this book presents filtering methods under 
exploration in the form of comprehensive pseudo-codes, which are ready for imple-
mentation and use in MATLAB or in any other computation system. Practical perfor-
mances of state estimators elaborated are demonstrated on stochastic mathematical 
models in chemistry research, target tracking and electrical engineering. 

Strictly speaking, the topic covered in this book is far from new and goes back to 
the middle of the twentieth century, when it was initiated by the pioneering works of 
Stratonovich in the 50s–60s and the celebrated paper of Kalman published in 1960. 
However, what is actually novel and innovative and distinguishes our research from 
other state estimation studies is regarding numerical integration means as filtering 
methods. This interpretation allows many achievements in the theory of numerical 
methods for ordinary differential equations, such as automatic step size selection 
and error control, to be effectively accommodated to state estimation procedures. It 
boosts the quality and reliability of filters for estimating continuous-time stochastic 
systems and gives rise to the new notion of accurate state estimation. Practically, our 
adaptive filters are devised to be self-turned computational algorithms, which demand 
no user’s effort for discretizing any continuous-time stochastic model at hand with 
preassigned accuracy. In turn, such methods resolve the problem of sparse and ill-
conditioned measurements, automatically. Also, the designed filters admit naturally 
stochastic systems with missing/irregular sampling. However, the outstanding contri-
bution of this book is state estimation tools for treating stiff continuous–discrete 
stochastic systems, that is, when the drift coefficient of the stochastic differential 
equation exposes a stiff behavior. Such stochastic systems constitute a peculiar 
family of difficult problems, for which traditional filtering means are hardly effi-
cient, because the stiffness can increase the state estimation uncertainty and, hence, 
its error. On the other hand, stiff models arise often in a number of investigations 
as, for instance, the Van der Pol oscillator in electrical engineering and the Orego-
nator reaction in chemistry research. That is why stiff continuous–discrete stochastic 
systems are of special interest and deserve particular attention in our book. 

To summarize, in contrast to other existing studies in filtering theory, this consid-
eration cuts across applied science and engineering (state estimation) and computa-
tional mathematics (numerical solution of ordinary differential equations). The basic 
approach is to employ highly accurate and efficient numerical integration methods 
available presently for decent predictions of the state expectation and covariance in 
time-update iterations of the Gaussian filters under exploration. More formally, our 
focus here is on automatic step size selection and error control facilities underlying 
the methods in use, which result in self-turned state estimation algorithms where 
the discretization meshes are not prefixed but, alternatively, generated automatically 
by the filter itself and with no user’s effort required. The latter characteristic of the
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techniques under consideration is a necessary prerequisite for an efficient estimation 
in stiff stochastic systems. All this entails that the reading of the present material 
demands prior basic knowledge on a broad set of subjects related to numerous issues 
of numerical integration of ordinary differential equations. Because there exist a 
severely limited amount of researchers who are equally professional in both the theory 
of Kalman filtering and that addressing topics on contemporary numerical integra-
tion, the first part of our book provides a brief insight into the theory of numerical 
integration of ordinary differential equations. Structurally, it is split into two chapters. 
The first one is devoted to the minimal foundations of the aforementioned theory, that 
is, it gives precise definitions and explains all basic issues and notions of numerical 
integration in simple terms. These include the concepts of stepping formulas, their 
consistency, convergence and stability. A special emphasis is paid to implementation 
aspects of implicit numerical schemes, including the accuracy and stability of the 
fixed-point iteration as well as those of various Newton-type iterations. The important 
families of reversible and Hamiltonian problems are also covered, here. In addition, 
Chap. 1 completes by raising the accuracy of one-step methods via the Richardson 
extrapolation technique and elaborates all technical details of contemporary local 
and global error control mechanisms exploited for achieving a desirable accuracy 
of numerical integration in automatic mode. The presented theoretical analysis of 
stepping methods is accompanied by pseudo-codes, which clarify the algorithmic 
specifics of such numerical integration procedures. 

Chapter 2 of Part I presents a brief insight into the theory of Runge–Kutta methods 
for solving ordinary differential equations. More precisely, it gives precise defini-
tions and explains all basic issues and notions in such numerical integration tools. 
These include the concept of Runge–Kutta formula, its consistency, convergence and 
stability. The important families of Runge–Kutta schemes intended for integrating 
reversible and Hamiltonian problems are also covered, here. A special emphasis 
is paid to the implementation aspects of four subclasses in the realm of implicit 
Runge–Kutta methods, which allow cheap and efficient Newton-type iterations to 
be applied. Furthermore, Chap. 2 focuses on variable-stepsize implementations of 
stepping formulas under exploration and discusses all technical details of contem-
porary local and global error control mechanisms used for achieving a desirable 
accuracy of adaptive numerical integration in automatic mode. The outlined anal-
ysis of Runge–Kutta formulas is accompanied by pseudo-codes, which clarify the 
algorithmic specifics of such numerical integration procedures. Finally, an exhaus-
tive theoretical investigation and proper numerical examination of five ODE solvers 
employed commonly in nonlinear Kalman filtering are fulfilled in MATLAB. To 
conclude, the first part of our book presents concisely the numerical integration theory 
at some level suitable for researchers and practitioners working in the stochastic 
system state estimation area as well as for advanced undergraduate and graduate 
students learning this subject. Moreover, the readers possessing a solid background 
in the mentioned theory may skip Part I with no affect to understanding Kalman 
filtering means themselves, which are addressed in the remaining chapters of our 
study.
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Structurally, Part II of this book is split into five separate chapters devoted to 
a number of state estimation topics starting off at the most trivial linear discrete-
time filtering solution devised by Kalman in 1960 till the more complicated notions 
of the universal nonlinear continuous–discrete Gaussian filtering algorithms with 
deterministically sampled expectation and covariance and stiff problems. Chapter 3 
presents a brief insight into the theory of the traditional Kalman filtering for discrete-
time linear stochastic models. In particular, it gives precise definitions and explains all 
basic issues and concepts of state estimation in Gauss–Markov stochastic processes. 
A special emphasis is placed on implementation aspects of the Kalman filtering 
since it can expose instabilities in solving real-world state estimation tasks because 
of round-off operations implemented in computer-based simulations. Under some 
circumstances, such rounding may affect severely the calculation and result in non-
symmetric and/or indefinite covariance matrices yielded, which compromise the 
theoretical rigor of the Kalman filtering and produce poor state estimates. That is 
why this chapter pays particular attention to the issue of numerical stability and 
presents a remedy for treating such a covariance-matrix-symmetry-and-positivity-
loss in the fashion of square-root filtering methods. Two square-rooting schemes are 
explored and justified, here. The theoretical analysis of the traditional Kalman filter 
implementations under consideration is accompanied by their detailed pseudo-codes, 
which clarify the algorithmic specifics of such state estimation procedures. 

Chapter 4 of Part II presents a deep dive into the theory of extended Kalman 
filtering for continuous–discrete stochastic systems whose process models are of a 
continuous-time fashion, whereas the measurement ones are discrete-time. In partic-
ular, it gives precise definitions and explains all basic issues and notions of state 
estimation in nonlinear Gaussian systems of such sort. A special emphasis is placed 
on two extended Kalman filtering design approaches and on their practical imple-
mentation aspects since these can expose instabilities in solving real-world state 
estimation tasks because of the linearization, discretization and rounding opera-
tions implemented in computer-based simulations. Under some circumstances, such 
numerical integration and round-off errors committed may affect severely the calcu-
lation and result in non-symmetric and/or indefinite covariance matrices derived, 
which compromise the theoretical rigor of the extended Kalman filtering technique 
and produce poor state estimates. That is why this chapter pays particular attention to 
the issue of numerical stability and presents a remedy for treating such a covariance-
matrix-symmetry-and-positivity-loss in the fashion of square-root extended Kalman 
filtering. Two specific square-rooting schemes grounded on the Cholesky factoriza-
tion and SVD are explored and justified, here. The theoretical analysis of the extended 
Kalman filter implementations under study is accompanied by their pseudo-codes, 
which clarify the algorithmic aspects of such nonlinear state estimation procedures. 

Chapter 5 of Part II presents a sound insight into the theory of unscented 
Kalman filtering for continuous–discrete stochastic systems. In particular, it gives 
precise definitions of the unscented transform and explores its expectation and 
covariance approximation properties, which create a solid theoretical background 
for designing advanced state estimation techniques intended for treating contin-
uous–discrete nonlinear Gaussian systems. A special emphasis is placed on two
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unscented Kalman filtering design approaches and on their practical implementa-
tion aspects since these can expose instabilities in solving real-world state estima-
tion tasks because of the expectation and covariance approximation, discretization 
and rounding operations implemented in computer-based simulations. Under some 
circumstances, such numerical integration and round-off errors committed may affect 
severely the calculation and result in non-symmetric and/or indefinite covariance 
matrices computed, which demolish the theoretical rigor of the unscented Kalman 
filtering and can even fail this state estimation method itself. That is why Chap. 5 
pays particular attention to the issue of numerical stability and presents a remedy 
for treating such a covariance-matrix-symmetry-and-positivity-loss in the fashion 
of square-root unscented Kalman filtering. Two specific square-rooting techniques 
grounded on the Cholesky factorization and SVD are explored and justified, here. 
The theoretical analysis of the unscented Kalman filter implementations under study 
is accompanied by their pseudo-codes, which clarify the algorithmic aspects of such 
methods. 

Chapter 6 of Part II presents a deep dive into the new topic of universal Kalman 
filtering with deterministically sampled expectation and covariance for continuous– 
discrete nonlinear stochastic systems. In particular, it introduces the notion of the 
general expectation and covariance evaluation principle inspired by the quadrature 
and cubature rule approximations of the Gaussian-weighted integrals that arise as 
well as by the unscented transform discussed in Chap. 5. It creates a solid theoretical 
background for designing universal state estimation tools in the realm of all existing 
or future Gaussian filtering algorithms with deterministically sampled expectation 
and covariance. A special emphasis is placed on two Gaussian filtering with deter-
ministically sampled expectation and covariance design approaches and on their 
practical implementation and utilization aspects since these can expose instabilities 
in solving real-world state estimation tasks because of the expectation and covariance 
approximation, discretization and rounding operations involved in computer-based 
simulations. Under some circumstances, the numerical integration and round-off 
errors committed may affect severely the calculation and result in non-symmetric 
and/or indefinite covariance matrices derived, which demolish the theoretical rigor 
of the universal Kalman filtering with deterministically sampled expectation and 
covariance and can even fail such state estimation methods. That is why Chap. 6 
pays particular attention to the issue of numerical stability and presents a remedy 
for treating this covariance-matrix-symmetry-and-positivity-loss in the fashion of 
square-root overall filtering. Two specific square-rooting schemes grounded on the 
Cholesky factorization and SVD are explored and justified, here. The theoretical 
analysis of the universal Kalman filters with deterministically sampled expectation 
and covariance is accompanied by their detailed pseudo-codes, which clarify the 
algorithmic aspects of such advanced state estimation procedures. 

Chapter 7 of Part II presents the first insight into the novel topic of nonlinear 
Kalman filtering techniques intended for treating stiff continuous–discrete stochastic 
systems. In particular, it introduces the notion of stiffness in the stochastic differential 
equation framework and extends it then to continuous–discrete stochastic state esti-
mation tasks under study. Based on the conventional stability analysis of Dahlquist
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elaborated in Chap. 1, our consideration focuses on the stiffness features of the 
specific ordinary differential equations have arisen and been solved within the time-
update iterations in the non-square-root and square-root implementations of the tradi-
tional extended Kalman filters as well as those of the universal Gaussian ones with 
deterministically sampled expectation and covariance. The latter are grounded on 
the Gauss–Hermite quadrature filter, unscented Kalman filter, third- and fifth-degree 
cubature Kalman filter and derivative-free extended Kalman filter parameterizations. 
All this creates a solid theoretical background for devising state estimation tech-
niques effective for treating stiff continuous–discrete stochastic systems in practice. 
The theoretical analysis of A-stable universal Kalman filtering algorithms with deter-
ministically sampled expectation and covariance is accompanied by their detailed 
pseudo-codes, which clarify the algorithmic aspects of such state estimation tools. 

The content of this book covers more than 30 years of research fulfilled at three 
universities over the world, namely at the Ulyanovsk State University, at the Univer-
sity of the Witwatersrand and at the University of Lisbon. More precisely, the accom-
plishments of its Part I are an outgrowth of our investigation performed at the first 
two universities under the partial financial support of the Russian Foundation for 
Basic Research (Russian Federation) and the National Research Foundation of South 
Africa, whereas Part II reflects our success achieved while working at the Higher 
Technical Institute of the University of Lisbon and under the partial financial support 
of the Foundation for Science and Technology (Portugal). The main purpose of 
writing the book is exactly to bridge the Kalman filtering theory with that of the 
efficient and accurate numerical solutions of ordinary differential equations. These 
research fields have their natural interrelation and share so many common problems 
and techniques but are not yet effectively collaborating at present. 

Lisbon, Portugal 
August 2023 

Gennady Yu. Kulikov 
Maria V. Kulikova
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Part I 
Numerical Solution of Ordinary 

Differential Equations 

Part I is devoted to the theory of numerical integration of ordinary differential 
equations and organized as follows. Chapter 1 gives examples of problems to be 
solved numerically and introduces a brief overview of basic issues and concepts 
of numerical integration in terms of the first and most trivial solution procedures 
of low order. Its particular interest is paid to the notions playing a crucial role 
in the improved implementation of Kalman-like filters considered in Part II. The 
simple fashion of these methods facilitates a better understanding of the fundamental 
concepts in the theory of numerical solutions of ordinary differential equations under 
consideration. Then, Chap. 2 presents advanced numerical integration techniques of 
high order grounded in the contemporary Runge–Kutta formulas together with their 
most prominent properties and implementation particulars, which strongly influ-
ence the performance of such methods in modeling real-world dynamic phenomena. 
These computational techniques are extensively used in practice and create a fruitful 
background for the development of novel efficient state estimation algorithms for 
continuous–discrete stochastic systems, which are the topic of Part II. Theoretical 
properties of underlying numerical integration tools implemented for the calcula-
tion of the mean and covariance in the continuous–discrete Kalman-like filtering 
context allow many issues in the performance of such methods to be clearly seen and 
addressed.
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Chapter 1
Basic Issues and Concepts of Numerical
Integration

Abstract This chapter presents a brief insight into the theory of numerical inte-
gration methods for ordinary differential equations. In particular, it gives precise
definitions and explains all basic issues and notions of numerical integration. These
include the concepts of stepping formulas, their consistency, convergence and sta-
bility. A special emphasis is paid to implementation aspects of implicit numerical
schemes, including the accuracy and stability of the fixed-point iteration as well as
those of various Newton-type iterations. The important families of reversible and
Hamiltonian problems are also covered, here. This chapter pays a particular atten-
tion to raising the accuracy of one-step methods via the Richardson extrapolation
technique and elaborates all technical details of contemporary local and global error
control mechanisms used for achieving a desirable accuracy of numerical integra-
tion in automatic mode. The presented theoretical analysis of stepping methods
under consideration, which are all summarized in the form of pseudo-codes situ-
ated in Appendix of this chapter, is always supported with illustrative calculations
performed in MATLAB.

1.1 Introduction

Mathematical models enable us to better understand the world by organizing infor-
mation. They endow us with frameworks for making more accurate predictions, for
formulating better strategies and for designing sophisticated policies. Besides, many
real-life phenomena evolve in time and allow for their mathematical representation
in the form of ordinary differential equations (ODE)

.x′(t) = f
(
t, x(t)

)
, t ∈ [t0, tend], (1.1)

where .t is an independent scalar variable (time), the .n-dimensional vector .x(t) =
[ x1(t) x2(t) . . . xn(t) ]� ∈ R

n describes the state of the plant at time .t , the prime
stands for differentiation in time and the dynamic behavior of the model is defined
by the right-hand side .f(t, x(t)) = [ f1(t, x(t)) f2(t, x(t)) . . . fn(t, x(t)) ]� : D ⊂
R

n+1 → R
n , which is a sufficiently smooth vector-function on the domain .D. The

simulation interval .[t0, tend] is assumed to be limited and given in the ODE (1.1).
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4 1 Basic Issues and Concepts of Numerical Integration

Evidently, the formulated mathematical problem is incomplete and admits multi-
ple solutions, which are unacceptable in the deterministic setting considered in this
chapter. This inconsistency is resolved and the practical demand for a unique solution
is provided by assigning model’s initial values as follows:

.x(t0) = x0, (1.2)

where the vector .x0 = [ x1(t0) x2(t0) . . . xn(t0) ]� stands for the initial state of the
plant, which is supposed to be known at time.t0. Eventually, solving the initial value
problem (IVP) (1.1), (1.2) for the function.x(t) on the time interval of interest supplies
us with information on a future evolution of the process under investigation.

The mathematical model (1.1) and (1.2) is a powerful means in studying various
aspects of the surrounding world, which is employed extensively in applied science
and engineering. For instance, the well-known Van der Pol oscillator obeys the ODE

.

[
x ′
1(t)

x ′
2(t)

]
=
[

x2(t)
μ
(
1 − x2

1 (t)
)
x2(t) − x1(t)

]
with

[
x1(t0)
x2(t0)

]
=
[
2
0

]
, (1.3)

where the constant.μ > 0 is a fixed real-valued scalar parameter. This dynamicmodel
produces sustained oscillations and is utilized in various circuit explorations of elec-
trical engineering [17, 79–81]. It is also contributed widely to physical, geophysical
and biological sciences [16, 32, 71, 75].

The other famous example represents the well-known Oregonator in chemical
research and engineering. This model simulates the chemical dynamics of the oscil-
latory Belousov–Zhabotinsky reaction, as explained, for instance, in [28, 37, 101].
The underlying Oregonator kinetics is an activator/inhibitor system containing both
an autocatalytic step and a delayed negative feedback loop. It is composed of five
coupled stoichiometries [28]. According to Field and Noyes [31], this reaction can
be described mathematically in the fashion of the following ODE:

.

⎡

⎣
x ′
1(t)

x ′
2(t)

x ′
3(t)

⎤

⎦ =
⎡

⎣
77.27

[
x2(t)+x1(t)

(
1−8.375 · 10−6x1(t)−x2(t)

)]
[
x3(t) − x2(t)

(
1 + x1(t)

)]
/77.27

0.161
(
x1(t) − x3(t)

)

⎤

⎦ (1.4)

with the initial values

.

⎡

⎣
x1(t0)
x2(t0)
x3(t0)

⎤

⎦ =
⎡

⎣
4.0
1.1
4.0

⎤

⎦ . (1.5)

The IVP (1.4) and (1.5) as well as its modifications were exploited extensively in
investigations of Hopf bifurcations, Canard explosions, instability, bistability, chaos
and many other chemical and physical phenomena [3, 4, 7, 33, 44, 74, 82, 84].

In celestial mechanics, a crucial role is played by the celebrated Kepler problem.
This model describes the motion of two bodies, which interact by a central force (the
Newtonian gravity) [36]. Mathematically, this is simulated by the ODE
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.

[
x ′′
1 (t)

x ′′
2 (t)

]
=
[

−x1(t)
(
x2
1 (t) + x2

2 (t)
)−3/2

−x2(t)
(
x2
1 (t) + x2

2 (t)
)−3/2

]

with

⎡

⎢⎢
⎣

x1(t0)
x2(t0)
x ′
1(t0)

x ′
2(t0)

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

1 − e
0
0√

1 + e/
√
1 − e

⎤

⎥⎥
⎦ ,

(1.6)
where the real-valued constant parameter .e ≥ 0 is the eccentricity of the orbit. The
orbit itself can be elliptic, parabolic or hyperbolic depending on the initial total
energy [5]. Evidently, the IVP (1.6) is a second-order ODE, but it can be easily
transformed to the higher dimensional one of the form (1.1) by introducing artificial
variables for the first derivatives, as follows:

.

⎡

⎢
⎢
⎣

x ′
1(t)

x ′
2(t)

x ′
3(t)

x ′
4(t)

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎢
⎣

x3(t)
x4(t)

−x1(t)
(
x21 (t) + x22 (t)

)−3/2

−x2(t)
(
x21 (t) + x22 (t)

)−3/2

⎤

⎥
⎥
⎥
⎦
with

⎡

⎢
⎢
⎣

x1(t0)
x2(t0)
x3(t0)
x4(t0)

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

1 − e
0
0√

1 + e/
√
1 − e

⎤

⎥
⎥
⎦ . (1.7)

The Kepler problem is one of the most fundamental problems in classical mechanics.
Its solution represents a closed orbit for every possible set of initial conditions, that
is, it returns to the starting point with the same velocity, and can be employed for
simulation of a satellite moving around a planet, a planet around its sun or two binary
stars around each other and many other celestial phenomena. In addition, it can be
applied to modeling the motion of two charged particles and so on.

Another important source of IVP (1.1) and (1.2) is an implementation of the
method of lines (MoL), which is often applied to solving time-variate partial differ-
ential equations (PDE) in practice. The MoL implies a semidiscretization of a given
PDE, that is, all spatial derivatives are replaced with their discrete approximations
(finite differences) whereas time derivatives stay as they are. Eventually, one derives
a large-scale ODE of the fashion (1.1), which should be integrated numerically for
yielding an approximation to the solution of the original PDE.

To see how the MoL works in applied science and engineering, let us consider a
2D Brusselator model. According [40, p. 151], this PDE has the form

.

[
∂t u(t, x, y)

∂t v(t, x, y)

]
=
[
1 + u2(t, x, y)v(t, x, y) − 4.4u(t, x, y) + g1(t, x, y)

3.4u(t, x, y) − u2(t, x, y)v(t, x, y) + g2(t, x, y)

]
(1.8)

with the right-hand side entries

.g1(t, x, y) = α
(
∂2

xx u(t, x, y) + ∂2
yyu(t, x, y)

)+ f (t, x, y), (1.9)

.g2(t, x, y) = α
(
∂2

xx v(t, x, y) + ∂2
yyv(t, x, y)

)
, (1.10)

where.α > 0 is a fixed parameter and the inhomogeneous term is defined as follows:

. f (t, x, y) =
{
5 if(x − 0.3)2 + (y − 0.6)2 ≤ 0.12 and t ≥ 1.1
0 else .

(1.11)
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There are three independent variables .t (standing for time) and .x , .y (standing for
space) and two unknown functions.u(t, x, y) and.v(t, x, y) in Eqs. (1.8)–(1.11). The
differentiation operators .∂t and .∂2

xx , .∂
2
yy refer to the first- and second-order partial

derivatives of the argument functionwith respect to time and space. The stated PDE is
solved on the square domain:.0 ≤ t ≤ 6,.0 ≤ x ≤ 1,.0 ≤ y ≤ 1. Tomake the solution
that we are looking for unique, the periodic boundary conditions

.u(t, x, y) = u(t, x + 1, y) = u(t, x, y + 1), (1.12)

.v(t, x, y) = v(t, x + 1, y) = v(t, x, y + 1) (1.13)

are set on the boundaries of the space domain at any time .t and the initial values

.u(0, x, y) = 22y(1 − y)3/2, (1.14)

.v(0, x, y) = 27x(1 − x)3/2 (1.15)

are assigned at the time.t = 0 and at every space point.(x, y) on the solution domain.
The spacial discretization is fulfilled with use of the central differences of order

two. For that, we introduce the equidistant meshes in the .x and .y directions as
follows:

.{xi }Lx
i=0 = {xi = i τx , i = 0, 1, . . . , Lx , τx = 1/Lx } , (1.16)

.{y j }L y

k=0 = {y j = j τy, i = 0, 1, . . . , L y, τy = 1/L y
}
, (1.17)

where the positive integers.Lx and.L y are supplied for providing a desirable accuracy
of the numerical integration by the user, that is, these determine the quantities of
subdivision nodes utilized for approximating the solution functions .u(t, x, y) and
.v(t, x, y) on the space domain. The equidistant meshes (1.16) and (1.17) allow for
the following function and derivative approximations at the mesh nodes in use:

.u(t, xi , y j ) ≈ ui j (t), (1.18)

.v(t, xi , y j ) ≈ vi j (t), (1.19)

.∂2
xx u(t, xi , y j ) ≈ �2

xx ui j (t) = ui−1, j (t) − 2ui j (t) + ui+1, j (t)

τ 2
x

, (1.20)

.∂2
yyu(t, xi , y j ) ≈ �2

yyui j (t) = ui, j−1(t) − 2ui j (t) + ui, j+1(t)

τ 2
y

, (1.21)

.∂2
xx v(t, xi , y j ) ≈ �2

xx vi j (t) = vi−1, j (t) − 2vi j (t) + vi+1, j (t)

τ 2
x

, (1.22)

.∂2
yyv(t, xi , y j ) ≈ �2

yyvi j (t) = vi, j−1(t) − 2vi j (t) + vi, j+1(t)

τ 2
y

. (1.23)

Having replaced the solution functions.u(t, x, y) and.v(t, x, y) and the spacial deriva-
tives with the aforementioned approximations (1.18)–(1.23) in the PDE (1.8)–(1.11)
under exploration, we arrive at the large-scale ODE of the fashion
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.

[
u′

i j (t)
v′

i j (t)

]
=
[
1 + u2

i j (t)vi j (t) − 4.4ui j (t) + α
(
�2

xx ui j (t) + �2
yyui j (t)

)+ fi j (t)
3.4ui j (t) − u2

i j (t)vi j (t) + α
(
�2

xx vi j (t) + �2
yyvi j (t)

)
]

(1.24)
defined at all the nodes of meshes (1.16) and (1.17). In the right-hand side of ODE
(1.24), the term . fi j (t) implies the inhomogeneous function (1.11) evaluated at the
point.(t, xi , y j ). Also, we remark that while evaluating the central differences (1.20)–
(1.23) at the space boundaries the subscripts .i and/or . j can go outside their ranges
set in formulas (1.16) and (1.17), respectively. This situation is resolved by means
of the periodic boundary conditions (1.12) and (1.13) imposed on the solution. The
initial values of ODE (1.24) are computed by formulas (1.14) and (1.15) at the mesh
nodes in use as follows:

.

[
u′

i j (0)
v′

i j (0)

]
=
[
22y j (1 − y j )

3/2

27xi (1 − xi )
3/2

]
. (1.25)

Thus, we obtain the large-scale IVP (1.24) and (1.25), which is to be integrated on
the time interval.[0, 6]. We stress that this IVP can be high dimensional. For instance,
if one takes 49 subdivision steps in each spatial direction (that is, if .Lx = L y = 49
in meshes (1.16) and (1.17)) the size of the resulting ODE (1.24) will be 5000.

The IVP (1.1) and (1.2) can also arise in solving scalar boundary value problems
(BVP) of the conventional fashion

.x ′′(t) = f
(
t, x(t), x ′(t)

)
, t ∈ [t0, tend], with x(t0) = x0 and x(tend) = xend .

(1.26)
What distinguishes the BVP (1.26) from the conventional IVP is the fact that the
additional information on the solution’s behavior is given at different time instants.
This issue is resolved by means of the shooting method, which looks for the value
of the derivative .x ′(t0) at the left boundary .t0 (or, alternatively, for the value of the
derivative.x ′(tend) at the right boundary.tend) that ensures the other boundary condition
.x(tend) = xend (or .x(t0) = x0). Further details on implementation of the shooting
methods for solving the BVP arisen, for instance, in the Cahn–Hilliard continuum
modeling of multi-phase fluids can be found in [53] and references therein.

The IVP (1.1) and (1.2) plays a crucial role in filtering theory as well. The latter
issue is elaborated in detail and constitutes the topic of Part II in this book.

Eventually, we see that the accurate and efficient solution of the mentioned prob-
lem is a question of vital importance in various fields of applied science and engineer-
ing because it influences considerably prediction accuracies and, hence, can reduce
human power for formulating better strategies and designing sophisticated policies.
Furthermore, the above-presented examples of continuous-time dynamic systems
exhibit that the IVP (1.1) and (1.2) arisen can be strongly nonlinear and large-scale.
This excludes completely any closed-form solution and numerical integration meth-
ods should be applied. In the remaining sections of this chapter, we present a brief
overview of basic issues and concepts of the theory of numerical methods for ODE
in terms of the first and most trivial solution procedures of low order [11, 20, 34,
38–40, 86, 87]. Our particular interest is paid to the notions playing a crucial role
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in the improved implementation of Kalman-like filters studied in Part II, below. The
simple manner of these methods facilitates a better understanding of the fundamental
concepts in the elaborated theory. Then, Chap. 2 presents advanced numerical inte-
gration techniques of high-order grounded on contemporary Runge–Kutta formulas
together with their most prominent properties and implementation particulars, which
strongly affect the performance of such methods, including within stochastic state
estimation algorithms considered in the second part of our book.

1.2 Stepping Methods of Low Order

There exist a large variety of different techniques and approaches to integrating the
IVP in practice, numerically. It can be solved either in its original differential fashion
(1.1) and (1.2) or be translated into the mathematically equivalent integral form

.x(t) = x0 +
∫ t

t0

f
(
s, x(s)

)
ds (1.27)

at first. Then, numerical methods suitable for solving this integral equation are
applied. In what follows, we focus on stepping methods for integrating the IVP (1.1)
and (1.2) because these are more flexible and effective in comparison to quadrature
or cubature rules implemented usually for treating the integral problem (1.27).

All stepping schemes are grounded on the idea of replacement of the continuous-
time solution function .x(t) defined on the entire integration interval .[t0, tend] with a
sequence of vectors

.{xl}L
l=0 = {xl , l = 0, 1, . . . , L } (1.28)

evaluated at particular time instants

.{tl}L
k=0 = {tl+1 = tl + τl , l = 0, 1, . . . , L − 1, tend = tL} (1.29)

in the aforementioned integration interval. Sequences (1.28) and (1.29) are referred
to as a numerical solution to the IVP (1.1) and (1.2) and a numerical integration mesh
assigned in the time interval .[t0, tend]. The diameter of mesh (1.29) is its maximum
step size, that is,

.τ = max
l=0,1,...,L−1

{τl}. (1.30)

Any stepping method is a preassigned rule that allows the solution vector .xl+1

to be calculated at the subsequent mesh point .tl+1 by means of the numerical solu-
tions.xl+1−i already computed and available at the corresponding mesh nodes.tl+1−i ,
.i = 1, 2, . . . , m, and the size .τl of the.(l + 1)st step. When.m = 1 then the stepping
formula in use is termed one-step. Otherwise, it is referred to asmultistep. Thus, given
the initial value (1.2) and the integration mesh (1.29) each stepping method deter-
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mines the unique numerical solution (1.28), which approximates the exact solution
.x(t) to the IVP (1.1) and (1.2),whendiameter (1.30) of the utilizedmesh is sufficiently
small. In what follows, we focus on one-step numerical integration procedures.

Clearly, apart from the stepping formula itself, the derived numerical solution
.xl , .l = 1, 2, . . . , L , depends essentially on the assigned mesh nodes, at which these
solution vectors are computed. Such a mesh can be either variable (that is, when
.τl+1 �= τl at least for one subscript .l) or equidistant (that is, when .τl+1 = τl = τ

for all .l = 0, 1, . . . , L − 1). Any equidistant mesh (1.29) is defined uniquely by its
fixed step size .τ = (tend − t0)/L , which is equal to the diameter of the equidistant
mesh, or, this is the same, by the number .L + 1 of mesh points employed in the
integration interval .[t0, tend]. Variable meshes are used basically within adaptive
stepping schemes. In this case, both the numerical solution (1.28) and its mesh (1.29)
are generated by the IVP solver itself in automatic mode, that is, no human effort is
required for that. In contrast, equidistant meshes are usually fixed by hand, when no
information on the solution’s behavior is known in advance and can be taken into
account. In the second case, one deals with a fixed-stepsize numerical integration
procedure. Evidently, the variable-stepsize (or adaptive) numerical integration is
more accurate and efficient because it follows the behavior of the exact solution
to the IVP (1.1) and (1.2), which we are interested in, and, hence, can regulate its
accuracy, automatically. Later on, we address this issue with all the necessary details.

For deriving one-step stepping methods of low order, one can apply the following
simple scheme. First, in the concept of stepping procedures, a numerical solution
vector.xl is considered to be known at a current mesh node.tl . The task is to calculate
the solution vector.xl+1 with the step size.τl = tl+1 − tl at the next point.tl+1 of mesh
(1.29). Second, to replace the continuous-time IVP with a discrete-time formula, the
derivative .x′(t) in the ODE (1.1) should be approximated at first. In each step of
such a method, one has two solution values .xl and .xl+1 available at the mesh nodes
.tl and.tl+1, respectively. Then, the most evident approach is to exploit the first-order
divided difference for yielding the mentioned derivative in every step of mesh (1.29)
by the formula

.x′(t) ≈ (xl+1 − xl)/τl , t ∈ [tl, tl+1]. (1.31)

Third, in line with the ODE (1.1), the derivative approximation (1.31) must equal the
ODE’s right-hand side evaluated at some point .t∗ ∈ [tl, tl+1]. Eventually, choosing
different reference points .t∗ one arrives at the following four stepping formulas:

• Taking .t∗ = tl in each step results in the explicit Euler method (EEM)

.xl+1 = xl + τl f
(
tl , xl

)
, l = 0, 1, . . . , L − 1. (1.32)

• Taking .t∗ = tl+1 in every step leads to the implicit Euler method (IEM)

.xl+1 = xl + τl f
(
tl+1, xl+1

)
, l = 0, 1, . . . , L − 1. (1.33)
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• With use of .t∗ = [tl + tl+1]/2, one derives either the mid-point rule (MPR)

.xl+1 = xl + τl f
([tl + tl+1]/2, [xl + xl+1]/2

)
, l = 0, 1, . . . , L − 1, (1.34)

or the trapezoidal rule (TR)

.xl+1 = xl + τl
[
f
(
tl, xl

)+ f
(
tl+1, xl+1

)]
/2, l = 0, 1, . . . , L − 1. (1.35)

We stress that the EEM is the oldest numerical integration tool, which has been in
use starting at famous Leonhard Euler’s studies published in eighteenth century [11].

The one-stepmethods (1.32)–(1.35) produce unique numerical solution sequences
(1.28) for a sufficiently smooth IVP (1.1) and (1.2) on a given mesh of the fashion
(1.29) provided that themesh diameter.τ is sufficiently small. Besides, these solutions
will be different even if the same mesh (1.29) is utilized in the numerical integrations
fulfilled by the above-listed stepping formulas. The latter is because of their different
accuracy and other properties of the constructed numerical schemes.

Clearly, the derivative approximation (1.31) entails that the exact solution.x(t) of
IVP (1.1) and (1.2) differs from what is calculated by the stepping methods (1.32)–
(1.35) in practice. Thus, the crucial property of any numerical solution .{xl}L

l=0 is its
deviation characterized by the following sequence of error vectors:

.{gel}L
l=0 = {gel = x(tl) − xl , l = 0, 1, . . . , L

}
(1.36)

evaluated at all nodes of the numerical integration mesh .{tl}L
l=0. We remark that

the initial error .ge0 is always zero in this book because the initial values (1.2) are
known precisely. Sequence (1.36) is referred to as the global error (GE) of the
steppingmethod. It is also knownas thediscretization error in literature. The outcome
numerical solution (1.28) is considered to be acceptable when the committed GE is
negligible (or reasonably small, that is, it corresponds to the requested accuracy of
calculation).

To decide whether the committed GE (1.36) small or large, one has to measure
the vector sequence (1.36) in some norm. In theoretical science, one of the most
common choices is the use of sup-norm, which results in the error estimate

.‖{gel}L
l=0‖∞ ≡ max

l=0,1,...,L
‖gel‖∞ = max

l=0,1,...,L
max

i=1,2,...,n
|xi (tl) − xil |, (1.37)

where the subscript .i refers to a particular entry in the corresponding exact and
numerical solution vectors and.n is the size of the given IVP (1.1) and (1.2). The GE
estimate (1.37) is easily interpreted because it shows the maximum deviation of the
output numerical solution from the exact one in all entries of the solution vectors.

Unfortunately, the aforementioned absolute GE measurement method does not
suit for practical implementation. This is due to the maximum magnitude GE entry
search, which underlies the error evaluation formula (1.37). In practice, it means that
dissimilar physical values can be compared while looking for such an entry. Obvi-


