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Preface 

About the Finite Element and Mixed Finite Element Methods 

Many people ask: what is finite element . (FE. ) method? What is it used for? 
We can only give rough answer herein. If you want to know more details about 

the FE method, you have to read the book well. 
As we know, a large number of natural laws and phenomena can be described by 

partial differential equations (PDEs). Unfortunately, when their calculation domains 
are irregular geometric shape, or their initial and boundary values, or source terms 
are complicated, we cannot find out their analytical solutions, so we can only find 
their numerical solutions, i.e., approximate solutions. 

The simplest idea is to substitute a polynomial with known basis functions and 
unknown coefficients into PDE and to solve out the unknown coefficients, and 
then multiplied by the corresponding basis functions to obtain an approximate 
solution. This method is known as the Galerkin method, which is to adopt the 
same basis functions on the whole computing domain. But in the textbook of 
numerical methods, there is an example where a bell-shaped function such as 
.y = exp(−x2) cannot be approximated with very high-degree polynomial defined 
on the whole computational domain, whereas segmenting linear functions in the 
one-dimensional (1D) space, piecewise linear functions in the two-dimensional 
(2D) space, or chunking linear functions in the three-dimensional (3D) space can 
uniformly converge to the bell function. Therefore, the Galerkon method is not 
suitable for solving the radically varied PDEs. Especially, the Galerkin method can 
only be used to solve PDEs defined on rectangular computational domain since its 
basis functions are identical on the whole computational domain. 

In order to ensure that the approximate numerical solutions converge to the 
genuine solution of PDEs, ones divide the computation domain into some sub-
domains, which are known as finite elements, and adopt lower degree polynomials 
(usually the linear functions are enough) on each sub-domain to approximate the 
genuine solution of PDEs so that the obtained approximate numerical solutions can 
uniformly converge to the genuine solutions of PDEs. This is just the basic idea of
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the FE method, which is come down to two steps that the computation domain is 
divided into several sub-domains and the solutions of PDEs are replaced with the 
low-degree polynomials on each sub-domain. 

However, the lower degree (such as linear or quadratic) polynomials on each 
sub-domain are usually only guaranteed to be continuous on the common interface 
of two sub-domains, so they are only whole continuous on the whole computing 
domain . Ω. Therefore, they usually only belong to .H 1(Ω), namely they have 
only first-order generalized derivatives (see Theorem 1.3.1) and cannot be directly 
input into PDEs. Thus, we first employ Green’s formula to convert PDEs with 
2kth-order classical derivatives into the equivalent variational problems with kth-
order generalized derivatives. We then employ the lower degree (such as linear or 
quadratic) polynomials on each element to construct the element stiffness matrix by 
means of the equivalent variational problems. Finally, by compositing all element 
stiffness matrices into the total stiffness matrix, we obtain the system of FE algebraic 
equations on the whole calculating domain. As long as the unknown coefficient 
vectors in the system of FE algebraic equations are solved out, the FE approximate 
solutions for PDEs can be obtained. Hence, to find the FE approximate solutions for 
PDEs usually includes the following five aspects. 

(1) By using Green’s formula, we convert PDEs with 2kth-order classical deriva-
tives into the equivalent variational problems with kth-order generalized deriva-
tives and prove that the equivalent variational problems have a unique gener-
alized solutions by means of the theories of functional analysis and Sobolev 
spaces. This is basic part which will be provided in this book. 

(2) Since the system of FE algebraic equations consists of the lower degree (such as 
linear or quadratic) polynomials on each sub-domain (finite element), we need 
to study function interpolation polynomials in various cases, i.e., to learn the 
constructions for interpolation polynomials and the error estimates of function 
interpolation polynomials. The function interpolations and their error estimates 
on the 2D triangle element and the 3D tetrahedron element are classical and 
can be found in FE textbooks (see, e.g., [25]), but they are not practical. The 
author of this book proposed the function interpolations and error estimates 
on the 2D arbitrarily quadrilateral element and the 3D arbitrarily hexahedron 
element in his Master’s Thesis in 1989 (see [76]) or his papers [78, 84] and 
books [81, 90, 96]; these works belonged to original at the time. They will be 
provided in this book. 

(3) The existence and uniqueness of FE solution for the FE equation need to be 
proved theoretically, which are the main basic theory in this book. 

(4) For complex systems of PDEs, such as Burgers equation, Stokes equation, 
Navier-Stokes equation, and Boussinesq equation, their systems of FE equa-
tions are composed of several sets of FE equations with mutual constraints. 
The FE method with restricted conditions is known as the mixed FE . (MFE. )

method. The MFE method plays an important role in reducing the derivative 
orders of PDEs, too. It can convert the higher order PDEs into the system of 
lower order PDEs, which can be solved with the lower degree polynomials.
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The earliest MFE works are, respectively, the reduced derivative-order method 
for solving biharmonic equation (see [26, 59]), the Raviart and Thomas’ 
elements for solving 2D second-order elliptic equation (see [167]), and the 
MFE methods for solving Stokes equation and Navier-Stokes equation (see 
[15, 46, 175, 196]), the MFE methods for solving plane elasticity equation 
(see [163]), and the more general and more adaptable MFE method (see [37]). 
The author of this book found that the above-mentioned MFE methods have 
too more degrees of freedom and the argument process is too complicated, so 
he proposed some MFE methods with the fewer degrees of freedom and very 
simple argument process for the second-order elliptic equation, plane elasticity 
equation, Stokes equation, Navier-Stokes equation, and Boussinesq equation 
(see [76, 78, 81, 84, 90, 96]). These methods will be partly provided in this 
book. Readers can learn about the MFE method and its application, and make 
use of the MFE method to settle more real-world problems. 

(5) Most PDEs in practical engineering are time-dependent unsteady. To establish 
the FE or MFE equations for unsteady PDEs is also main task in this book, 
which is the important applications of FE and MFE methods. Readers may learn 
about the various techniques for solving the unsteady PDEs and make use of the 
techniques to solve more complex problems. 

The above five aspects are just classical FE method, which has been widely used 
in scientific engineering computations since it was proposed by Turner et al. in 
1956 in order to solve a complex structural problem (see [193]). It has emerged 
as a powerful approach for solving PDEs including elliptic type, parabolic type, 
hyperbolic type, and complex hydrodynamics equations. At present, the basic theory 
of FE method has been developed perfectly. However, when it is used to solve 
the real-world engineering problems, the FE equation usually includes hundreds 
of thousands or even tens of millions unknowns (degrees of freedom). Even if it is 
computed on some advanced computers, it takes days or even tens of days to obtain 
the numerical results. Owing to the FE method containing a lot of unknowns, the 
round-off errors in the calculation process are rapidly accumulated, resulting in that 
the obtained numerical solutions appear very large deviation, which is very difficult 
to obtain the desired numerical solutions. A key question for employing the FE 
method to solve the real-world engineering problems is to lessen the unknowns in 
the FE method so as to be able to retard the accumulation of round-off errors in the 
computation process, save CPU runtime, lighten the calculating load, and enhance 
the real-time calculating accuracy of numerical solutions. This is the ultimate goal 
of the book.
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About the Reduced-Dimension of Finite Element and Mixed 
Finite Methods 

The ultimate goal in this book is to reduce the dimension of FE and MFE methods 
for the unsteady PDEs from two aspects about the reduced-dimension for FE 
subspaces and for unknown FE solution coefficient vectors in FE equations, where 
mainly includes the author Z.D. Luo’s study results on the FE reduced-dimension 
in 20 years from 2003 to now. The above five aspects are prepared for the reduced-
dimension of FE equations of unsteady PDEs. Of course, they can also serve as 
the best reference materials for learning FE method since they are exactly main FE 
basic theory, which are basic part in this book. 

The reduced-dimension for the FE subspaces was first initiated by the author 
of this book and his coworkers in 2007 (see [132]); for more details, see [107]. 
The author Z.D. Luo’s most contribution is to link the classical FE method with 
the reduced-dimension FE method skillfully by the Hahn-Banach theorem (i.e., 
bounded linear functional continuation theorem in functional analysis) and to 
establish the theory of existence, stability, and convergence of reduced-dimension 
FE solutions, which should be original and is introduced in Chap. 4. 

The reduced-dimension for the unknown solution coefficient vectors of FE 
equations was first initiated by the author of this book in 2020 (see [103, 109]). The 
biggest highlight of reduced-dimension for the unknown solution coefficient vectors 
is only to lower the dimension of unknown solution coefficient vectors, but to 
maintain the FE subspace unchanged in the reduced-dimension FE method, namely 
the reduced-dimension FE method has the same basis functions as the classical FE 
method so that it has the same accuracy as the classical FE method. In addition, 
the stability and convergence of the reduced-dimension solutions are discussed by 
the matrix analysis, which makes the theoretical analysis more convenient. The 
reduced-dimension method is introduced in Chap. 5. 

About Proper Orthogonal Decomposition Method 

The two reduced-dimension methods mentioned above are established by using, 
respectively, the continuous and discrete proper orthogonal decomposition (POD) 
methods to lower the dimension for the FE equations. The POD method is very old; 
its predecessor is principal vector analysis, now it is still used in data mining. The 
POD method essentially provides a set of orthogonal bases for representing a given 
set of data in a certain least squares optimal sense, i.e., it offers a way to find optimal 
lower dimensional approximations for the set of given data. It was an eigenvector 
analysis method, which was initially presented by Pearson in 1901 and was used 
to extract targeted main ingredients of huge amounts of data (see [162]). Pearson’s 
data mining and sample analysis as well as data processing are still relevant even 
today. The fashionable name of such data is called “Big Data.”
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The method of snapshots for POD was first proposed by Sirovich in 1987 (see 
[174]). The POD method has been widely and successfully applied in many fields, 
including signal analysis and pattern recognition (see [41]), statistics (see [61]), 
geophysical fluid dynamics or meteorology (see also [61] or [74]), and biomedical 
engineering (see [48]). For a long time since 1987, the POD method was mainly 
used to perform the principal component analysis in statistical computations and 
to search for certain main behavior of dynamic systems. It was not until 2001 that 
Kunisch-Volkweind used the POD method to deal with the reduced-order Galerkin 
methods for PDEs (see [62, 63]). From that moment forth, the model order reduction 
or reduced-basis of the numerical computational methods based on the POD 
technique for PDEs began rapidly to develop and had brought on high efficiency for 
finding numerical solutions to PDEs (see, e.g., [2, 9, 12, 16, 44, 48, 51, 54, 55, 164– 
166, 168, 194, 195, 199, 200, 208–210]). 

Although Kunisch-Volkweind’s POD reduced-order Galerkin methods in [62, 
63] included the error estimates of reduced-order Galerkin numerical solutions, 
those error estimates consist of some matrix norms without concrete orders of 
convergence. Especially, they took all the numerical solutions of classical Galerkin 
method at all time nodes on the total time span .[0, te] to construct the POD basis 
functions and used them to establish the POD-based reduced-order models, and 
then recompute the numerical solutions at all same time nodes. This is completely 
repetitive computation but not much extra reward and gain. The author Luo begin 
to ponder how to improve on this and further extend the methodology initiated 
by Kunisch-Volkweind’s work beyond the Galerkin method to other numerical 
methods, such as the FE method, MFE method, time-space FE (TSFE) method, 
finite difference (FD) scheme, collection spectral (CS) method, finite spectral 
element (FSE) method, natural boundary element (NBE) method, and finite volume 
element (FVE) method, and construct the reduced-dimension methods without 
recomputing. 

The author of this book was attracted to study the reduced dimensionality of 
numerical methods based on the POD method for PDEs at the beginning of 2003. 
At that time, few or none comprehensive accounts existed and only fragmentary 
introductions about POD were available. He spent more than 3 years (2003. ∼2005) 
studying the underlying optimization methods, statistical principles, and numerical 
solutions for POD. Then in 2006, he and his coworkers published their first two 
papers based on the POD method (see [19, 20]). They dealt with oceanic models 
and data assimilation. 

Afterwards, the author of this book and his coauthors have established some 
POD-based reduced-dimension FD schemes (see [4, 33, 36, 130, 131, 137, 140, 
178]) and reduced-dimension FE methods (see [32, 35, 68, 132–136, 138, 139, 
141, 144, 146, 147, 149, 150, 188]) successively. They deduced the error estimates 
for POD-based reduced-dimension solutions for PDEs of various types since 2007 
in a series of papers. They also proposed some POD-based reduced-dimension 
FVE methods and relevant error estimates of reduced-dimension FVE solutions 
(see [70, 142, 145, 149, 151]) for PDEs in another series of papers beginning in 
2011. These reduced-dimension methods based on POD technique were specific
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to the classical FD schemes, FE methods, and FVE methods for the construction 
of the reduced-dimension models, from where they extracted one from every ten 
classical numerical solutions as snapshots, which are significantly different from 
Kunisch-Volkweind’s methods, which had extracted numerical solutions from the 
classical Galerkin method at all time nodes on the total time span .[0, te]. Hence, 
these reduced-dimension methods constitute improvements, generalizations, and 
extensions for/from/on Kunisch-Volkweind’s methods in [62, 63]. However, the 
reduced-dimension methods in the above cited work need yet to repeat part of the 
calculations on the same time span .[0, te]. 

Since 2012, the author of this book and his coworkers further improve the 
foregoing reduced-dimension methods based on POD and have established the 
following five main reduced-dimension extrapolating . (recursive. ) methods: 

(1) The reduced-dimension extrapolating FD schemes (see [5, 6, 30, 97, 108, 117, 
121, 148, 152–157, 159, 179, 190, 218]) 

(2) The reduced-dimension extrapolating FE (RDEFE) methods about the FE 
spaces (see [69, 72, 99, 100, 111, 118, 181, 182, 185, 189, 202]) 

(3) The reduced-dimension extrapolating FVE methods about the FE spaces (see 
[98, 101, 102, 119, 143, 158, 183, 184]) 

(4) The RDEFE methods about the unknown FE solution coefficient vectors (see 
[103, 104, 109, 110, 122, 160, 186, 207, 212]) 

(5) The reduced-dimension extrapolating NBE methods about the FE spaces (see 
[187, 191, 192]) 

In addition, the author of this book and his coworkers also established some 
reduced-dimension extrapolating models of TSFE, CS, and FSE methods about 
the FE subspaces and unknown FE solution coefficient vectors for the unsteady 
PDEs. These reduced-dimension extrapolating methods need only to employ the 
standard numerical solutions on some initial rather short time span .[0, t0] (.t0 ⪡ te) 
of, respectively, the classical FD, FE, FVE, TSFE, CS, FSE, and NBE schemes as 
snapshots in order to construct the POD bases. Thereupon, they have significantly 
improved the previous and existing versions of the reduced-order methods. They 
do not have to repeat large-scale computations. The physical significance is that 
one can use the existing data to forecast the future evolution of nature. Moreover, 
the reduced-dimension extrapolating methods can be treated by in a similar way 
as the classical FD, FE, FVE, TSFE, CS, FSE, and NBE methods, resulting in 
the error estimates with concrete orders of convergence. These reduced-dimension 
extrapolating numerical methods are far superior to the POD reduced-dimension 
methods mentioned earlier including reduced-order Galerkin methods.
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The Main Content and Arrangement of the Book 

The purpose of this book is to provide with some approaches for lessening the 
unknowns of the FE and MFE methods of the unsteady PDEs. It attempts to provide 
a detailed self-contained presentation for readers as follows. 

• A detailed presentation of the basic theory of FE method 
• A detailed presentation of the basic theory of MFE method 
• A detailed presentation of the MFE methods for the unsteady PDEs 
• A detailed presentation of reduced-dimension methods of FE subspaces for the 

unsteady PDEs 
• A detailed presentation of reduced-dimension methods of unknown FE or MFE 

solution coefficient vectors for the unsteady PDEs 

This book can also be used as both the introduction of FE method and the 
gateway to the FE frontier. The reason is that Chaps. 1 and 2 provide a very detailed 
theoretical foundation of FE and MFE methods and Chap. 3 provides the MFE 
methods for solving the unsteady PDEs. The reader can learn the FE and MFE 
methods for solving various steady and unsteady PDEs in Chaps. 1, 2, and 3. In  
Chaps. 4 and 5, the principle and applications of POD-based reduced-dimension 
for the FE subspaces and unknown FE or MFE solution coefficient vectors for 
the unsteady PDEs are introduced in detail, respectively. The readers who only 
care about engineering applications need only to learn the construction of reduced-
dimension models, and then to apply in practical engineering calculations. This will 
greatly improve the calculation efficiency and save CPU runtime so as to do wonders 
for your engineering calculations. 

In a word, this book can guide you from the entry (entrance) of FEmethod, and 
gradually leads you to the forefront of development for the reduced-dimension 
FE methods. Especially, the reduced-dimension numerical methods based on the 
POD method are just beginning to develop, just like children and teenagers, and 
still have a lot of room to grow. The author of this book sincerely hopes that this 
book can help you achieve something unexpected. 
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Chapter 1 
Basic Theory of Standard Finite Element 
Method 

To discuss the existence of generalized solutions and finite element (FE) and mixed 
FE (MFE) solutions for partial differential equations (PDEs), we need to use the 
basic principles of functional analysis including generalized derivatives and Sobolev 
spaces, which are bases for the numerical analysis of PDEs. Therefore, the relevant 
theory and principles for the functional analysis are first provided in the following 
section, the more details see [1, 25, 67, 96, 216]. 

1.1 The Basic Principles of Functional Analysis 

1.1.1 Linear Operator and Linear Functional 

Definition 1.1.1 Let S be a subspace in normed or Hilbert space H and S' be made 
up of limit points of S. The union set of S and S' is known as the closure of the 
subspace S and is denoted by S̄, in other words, S̄ = S ∪ S'. If  S̄ = H, then S is 
known as dense in H. If  S is dense in H and S is denumerable, then H is known as 
separable. 

Let Rn (n = 1, 2, 3) be the n-dimensional Euclidean space and Ω be an open 
domain in Rn. The boundary of Ω is denoted by ∂Ω. The space formed by all 
functions defined on Ω, whose absolute value pth powers are Lebesgue integrable, 
is denoted by Lp (Ω) (1  ⩽ p <  ∞), and the space consisting of all essentially 
bounded (i.e., bounded except on a zero measure set) measurable functions defined 
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2 1 Basic Theory of Standard Finite Element Method

on Ω is denoted by L∞(Ω). Lp (Ω) becomes a Banach space equipped with the 
norm 

. ‖u‖0,p,Ω =

⎧
⎪⎨

⎪⎩

⎛⎰

Ω

|u(x)|pdx
⎞1/p

, 1  ⩽ p < ∞,

ess sup
x∈Ω

|u(x)|, p = ∞,

where ess sup 
x∈Ω 

|u(x)| ≡  inf 
mes(K)=0 

sup 
x∈Ω\K 

|u(x)| and mes(K) represents the Lebesgue 

measure of set K. When p = 2, L2(Ω) is a Hilbert space. 
The space formed by functions with continuous mth-order derivatives defined 

on Ω is denoted by Cm (Ω) and the space formed by functions with continuous 
any order derivatives defined on Ω is denoted by C∞(Ω). The space C0(Ω) is 
simply denoted as C(Ω). It is obvious that C∞(Ω) is dense in L2(Ω) and C∞(Ω) ⊂ 
Cm (Ω) (m = 0, 1, 2, · · · ). While the space consisting of polynomials with rational 
coefficients is dense in C∞(Ω) under the norm of L2(Ω) and is denumerable. 
Therefore, L2(Ω) is a separable Hilbert space and its subspace is also separable 
Hilbert space. Thus, in order to study the properties of some Hilbert spaces, we need 
only to discuss the properties of its dense subspace such as the space consisting of 
polynomials, and then, by taking the limit we can deduce that the properties hold in 
total Hilbert space. 

Definition 1.1.2 Two norms ‖ · ‖1 and ‖ · ‖2 in linear normed space H are said to 
be equivalent, if there exist two positive constants α and β such that 

. α‖u‖1  ⩽ ‖u‖2  ⩽ β‖u‖1, ∀u ∈ H.

Remark 1.1.1 There may be two different norms ‖ · ‖1 and ‖ · ‖2 in the same 
normed or Hilbert space H, but  (H, ‖ · ‖1) and (H, ‖ · ‖2) is considered as to be two 
different spaces. If the norms ‖ · ‖1 and ‖ · ‖2 are equivalent, the convergence of 
the sequence {un}∞n=1 in H is equivalent, in other words, if the sequence {un}∞n=1 is 
convergent under the norm ‖ · ‖1, then it is also convergent under the norm ‖ · ‖2, 
and the reverse is also true. 

The following conclusion has been proven in [216, Theorem 1.4.18]. 

Theorem 1.1.1 Any two norms in finite-dimensional linear normed space are 
equivalent. 

In order to study the solvability for PDEs, it is necessary to introduce the linear 
operator, which is generalized for traditional function. 

Definition 1.1.3 Let X and Y be two linear spaces defined in the real number field 
R and D ⊂ X be a linear subspace of X. The  map  T : D → Y is said to be the 
linear operator, if there holds the following equality 

. T (αu + βv) = αT u + βT v, ∀α, β ∈ R; ∀u, v ∈ D,
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where D is known as the definition domain of T and is written as D = D(T ), the  
set R(T ) := {y : y = T v,  v  ∈ D(T )} is known as the value domain of T . If the  
linear space Y ⊂ R, the linear operator T is known as the linear functional. 

Definition 1.1.4 Let X and Y be two linear normed spaces equipped with the norms 
‖ · ‖X and ‖ · ‖Y, respectively. The linear operator T : X → Y is known as 
continuous, if for any v0 ∈ X and any {vm}∞m=1 ⊂ X, when ‖vm −v0‖X → 0 (m → 
∞), there holds ‖T vm − T v0‖Y → 0 (m → ∞). 

Definition 1.1.5 Let X and Y be two linear normed spaces equipped with the norms 
‖·‖X and ‖·‖Y, respectively. The linear operator T : X → Y is said to be bounded, 
if there is a positive constant M >  0 such that 

. ‖T v‖Y  ⩽ M‖v‖X, ∀v ∈ X.

For the continuity and boundedness for the linear operator, we have the following 
important property (see [216, Proposition 2.1.11]). 

Proposition 1.1.2 Let X and Y be two linear normed spaces equipped with the 
norms ‖ · ‖X and ‖ · ‖Y, respectively. The linear operator T : X → Y is continuous, 
if and only if T : X → Y is bounded. 

Definition 1.1.6 The linear space consisting of all bounded linear functionals 
defined in the linear normed space (H, ‖ · ‖H) is denoted by H' equipped with the 
following norm 

. ‖f ‖H' = sup
θ /=v∈H

|f (v)|
‖v‖H = sup

‖v‖H=1
|f (v)|, ∀f ∈ H'.

The linear space consisting of all bounded linear operators from (X, ‖ · ‖X) to 
(Y, ‖ · ‖Y) is denoted by L(X, Y) equipped with the following norm 

. ‖T ‖ = sup
θ /=v∈X

‖T v‖Y
‖v‖X = sup

‖v‖X=1
‖T v‖Y, ∀T ∈ L(X,Y).

The bounded linear operator has the following result (see [216, Section 2.2]). 

Theorem 1.1.3 (The Inverse Operator Existence Theorem) The bounded linear 
operator T ∈ L(X, Y) has a unique inverse operator T −1 if and only if T is lower 
bounded, namely there is a positive constant β >  0 such that 

. β‖v‖X  ⩽ ‖T v‖Y, ∀v ∈ X.

Further, there holds the following inequality 

. ‖T −1‖  ⩽ 1

β
.
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1.1.2 Orthogonal Projection and Riesz Representation 
Theorem 

The optimal approximation for the analytical solutions of PDEs is one of methods 
for finding approximated solution, which is defined as follows. 

Definition 1.1.7 (The Optimal Approximation) Supposed that . X is a linear 
normed space, equipped with .‖ · ‖, and .M ⊂ X is a subset in . X. If for a given 
element .u ∈ X, there exists an element .u0 ∈ M such that 

. ‖u − u0‖  ⩽ ‖u − v‖, ∀v ∈ M,

then . u0 is said to be an optimal approximation of u in . M. 

Definition 1.1.8 Two elements u and v in the inner product space . H equipped with 
inner product .(·, ·) is said to be orthogonal . (vertical. ), if  .(u, v) = 0. If  . M is a 
subset in the inner product space . H and the set .M⊥ is made up of elements that are 
orthogonal to every member of . M, in other word, . M⊥ = {u ∈ H : (u, v) = 0,∀v ∈
M}, then .M⊥ is said to be orthocomplement of the subset . M in . X. 

Remark 1.1.2 It is easily proven (see, e.g., [216, Proposition 1.6.18]) that the 
orthocomplement .M⊥ of the set . M is a closed subspace in the inner product space . H. 

The orthocomplement .M⊥ of the subset . M in the inner product . H has the 
following useful conclusion (see [216, Corollary 1.6.35]). 

Theorem 1.1.4 (The Orthogonal Decomposition Theorem) If . M is a closed 
subspace in the Hilbert space . H, then for any .u ∈ H, there exists a unique . v ∈ M

and a unique .w ∈ M⊥ such that 

. u = v + w.

With the orthogonal decomposition theorem, namely Theorem 1.1.4, we can 
easily deduce the following Riesz representation theorem (see [216, Theorem 2.2.1]) 

Theorem 1.1.5 (The Riesz Representation Theorem) For any bounded . (i.e., 
continuous. ) linear functional f in the Hilbert space . H, namely for any .f ∈ H', 
there exists a unique .uf ∈ H such that 

. f (v) = (uf , v), ∀v ∈ H and ‖f ‖H ' = ‖uf ‖H.

The following Hahn-Banach theorem (see [216, Theorem 2.4.4]) is often used in 
the subsequent discussions. 

Theorem 1.1.6 (The Hahn-Banach Theorem) If . X is the normed space and . X0
is a linear subspace in . X, then for any bounded linear functional . f0 defined on . X0,
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namely for any .f0 ∈ X'
0, there exists a bounded linear functional f defined on . X, 

namely there exists a functional .f ∈ X' such that 

. f (v) = f0(v), ∀v ∈ X0 and ‖f ‖X' = ‖f0‖X'
0
,

where f is known as the extension on . X of . f0. 

1.1.3 Smooth Approximation and Fundamental Lemma 
of Calculus of Variation 

The closure of set .{x ∈ Ω : u(x) /= 0} is known as the support of the function u 
and denoted by .supp(u). The spaces .Cm

0 (Ω) and .C∞
0 (Ω) are, respectively, subsets 

of .Cm(Ω) and .C∞(Ω), consisting of functions with compact support in . Ω. 
There exists a function .j (x) satisfying the following conditions: 

(i) .j (x) ∈ C∞
0 (Ω); 

(ii) .j (x) ⩾ 0 (.∀x ∈ Rn) and .j (x) = 0 (if .|x| > 1); 

(iii) .
⎰

Rn

j (x)dx = 1. 

For example, define 

. j (x) =
⎧
⎨

⎩

1

γ
exp

⎛

− 1

1 − |x|2
⎞

, |x| < 1;
0, |x| ⩾ 1,

where .γ =
⎰

|x|<1
exp

⎛

− 1

1 − |x|2
⎞

dx, then .j (x) ∈ C∞
0 (Rn) and .

⎰

Rn

j (x)dx = 1. 

Definition 1.1.9 An integral operator . Jε: 

. Jεu(x) =
⎰

Rn

jε(x, y)u(y)dy

with a kernel 

. jε(x, y) = 1

εn
j

⎛
x − y

ε

⎞

, ε > 0

is known as a smoothing operator and .Jεu is known as an averaging function 
of u.



6 1 Basic Theory of Standard Finite Element Method

The averaging function has the following useful properties (see [67, 216]). 

Theorem 1.1.7 (The Average Approximation Theorem) For any function . u ∈
Lp(Ω) (1  ⩽ p < ∞), there hold the following results 

(i) .Jεu ∈ C∞(Rn)∩Lp(Ω), and .Jεu ∈ C∞
0 (Rn)∩Lp(Ω) if .supp(u) is bounded; 

(ii) .‖Jεu‖0,p,Ω  ⩽ ‖u‖0,p,Ω; 
(iii) . lim

ε→0
‖u − Jεu‖0,p,Ω = 0. 

Remark 1.1.3 Theorem 1.1.7 shows that any function in .Lp(Ω) (1  ⩽ p < ∞) can 
be approximated by a smooth function. In other words, the space .C∞(Ω) is dense 
in .Lp(Ω) (1  ⩽ p < ∞). 

Moreover, there holds the following conclusion (see also [67, 216]). 

Theorem 1.1.8 If .1  ⩽ p < ∞, then .C∞
0 (Ω) is dense in .Lp(Ω). 

The following theorem can be easily proved by the average approximation 
theorem (see [67, 96, 216]). 

Theorem 1.1.9 (The Fundamental Lemma of Calculus of Variations) If . u ∈
Lp(Ω) (1  ⩽ p < ∞) satisfies 

. 

⎰

Ω

u(x) · ϕ(x)dx = 0, ∀ϕ ∈ C∞
0 (Ω),

then .u(x) = 0 holds almost everywhere on . Ω. 

1.1.4 Generalized Derivatives and Sobolev Spaces 

For .x = (x1, x2, · · · , xn)
T ∈ Rn, the partial derivative of function .u(x) is denoted 

by 

. Dαu = D
α1
1 D

α2
2 · · · Dαn

n u = ∂α1+α2+···+αnu

∂x
α1
1 ∂x

α2
2 · · · ∂x

αn
n

,

where .αi (1  ⩽ i  ⩽ n) are non-negative integers, .α = (α1, α2, · · · , αn) is known as 
an n-index, .|α| = α1 + α2 + · · · + αn, and .xα = x

α1
1 · xα2

2 · · · · · xαn
n . The integration 

of function .u(x) on an n-dimensional set . Ω is denoted by 

. 

⎰

Ω

u(x)dx ≡
⎰

· · ·
⎰

Ω

u(x1, x2, · · · , xn)dx1 · · · dxn.

Definition 1.1.10 A function is known as locally integrable in . Ω, if it is Lebesgue 
integrable on any bounded close subset in . Ω. The set consisting of all locally 
integrable functions defined in . Ω is denoted by .L1

loc(Ω).
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Definition 1.1.11 Let .L1
loc(Ω) be the space consisting of the locally integrable 

functions in . Ω and .u ∈ L1
loc(Ω). If there exists a function .v ∈ L1

loc(Ω) such that 

. 

⎰

Ω

v(x)ϕ(x)dx = (−1)|α|
⎰

Ω

u(x)Dαϕ(x)dx, ∀ϕ ∈ C∞
0 (Ω),

then the function v is said to be the . |α|th-order generalized derivative of u and is 
denoted by .v = Dαu. 

By the fundamental lemma of calculus of variations (Theorem 1.1.9) we can 
prove that a generalized derivative must be unique so long as it exists. Moreover, 
we can easily prove that if the traditional derivative of u exists and belongs 
to .L2(Ω), then its generalized derivative also exists and both are same. But a 
generalized derivative may not be a traditional derivative, see the relevant examples 
in [216, Formulas 3.3.4 and 3.3.5]. Therefore, the generalized derivative is indeed a 
generalization of concept for the traditional derivative. 

The generalized derivatives have the same operational properties as those of the 
traditional derivatives as follows: 

(i) For any constants a and b, .Dα(au + bv) = aDαu + bDαv; 
(ii) .Dα+βu = Dα(Dβu); 
(iii) .D(uv) = vDu + uDv (.D = ∂/∂xk, k = 1, 2, · · · , n); 
(iv) .Dαu = 0 for all . α with .|α| = m, if only if u is an .(m−1)th-degree polynomial 

almost everywhere. 

Definition 1.1.12 Let m be a non-negative integer and .1  ⩽ p  ⩽ ∞. Set 

. Wm,p(Ω) ≡ {
u ∈ Lp(Ω) : Dαu ∈ Lp(Ω),∀α, 0  ⩽ |α|  ⩽ m

}
,

endowed with the following norm: 

. ‖u‖m,p,Ω =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎛

⎝
⎲

0⩽|α|⩽m

‖Dαu‖p

0,p,Ω

⎞

⎠

1/p

, for 1  ⩽ p < ∞,

max
0⩽|α|⩽m

‖Dαu‖0,∞,Ω, for p = ∞.

Define .W
m,p

0 (Ω) as the closure of .Cm
0 (Ω) with respect to the norm .‖ · ‖m,p,Ω. Both  

the normed linear spaces .Wm,p(Ω) and .Wm,p

0 (Ω) are known as Sobolev spaces 
on . Ω. 

Remark 1.1.4 If .p = 2, .Wm,p(Ω) and .Wm,p

0 (Ω) are denoted as .Hm(Ω) and 
.Hm

0 (Ω), respectively. Thus, .W 0,p(Ω) = Lp(Ω) and .H 0(Ω) = L2(Ω). Obviously, 
.Wm,p(Ω) and .Wm,p

0 (Ω) are Banach spaces. But both .Hm(Ω) and .Hm
0 (Ω) are


