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Preface

In recent years, the global healthcare landscape has faced escalating challenges due
to the rise of antibiotic resistance among pathogens. This crisis has sparked a press-
ing need for alternative strategies to combat microbial infections. Among the prom-
ising avenues of research, antimicrobial peptides (AMPs) derived from lactic acid
bacteria have emerged as a fascinating area of study. These naturally occurring pep-
tides possess potent antimicrobial properties, making them attractive candidates for
therapeutic development.

The aim of this book, Antimicrobial Peptides from Lactic Acid Bacteria, is to
provide a comprehensive overview of the latest research and advancements in this
field. From exploring the diverse sources of lactic acid bacteria to elucidating the
mechanisms of action of their AMPs, this volume delves into the intricate world of
microbial defense mechanisms. Readers will find detailed discussions on the bio-
synthesis, purification, and characterization of AMPs from lactic acid bacteria,
along with insights into their potential applications in various industries, including
healthcare, food preservation, and agriculture. Additionally, the book examines the
challenges and opportunities associated with harnessing these peptides for thera-
peutic purposes, paving the way for future breakthroughs in antimicrobial therapy.
This book attempts to provide knowledge on the past, present, and future perspec-
tives of lactic acid bacteria in diversified areas to cover a large group of readers and
researchers interested in this field.

We are grateful to the contributors who have shared their expertise and insights
to make this book possible. Their collective efforts have resulted in a valuable
resource that will benefit researchers, healthcare professionals, and students inter-
ested in AMPs and lactic acid bacteria. Finally, we would like to acknowledge the
support from the contributing authors and suggestions received from the editorial
office at Springer, Emmy Lee, Lauren Kim, and Kamesh Senthilkumar. As editors,
we hope that this book serves as a catalyst for further exploration and innovation in
the field of AMP research. By fostering collaboration and knowledge exchange, we
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aspire to contribute to the development of novel antimicrobial strategies that address
the urgent global health threat posed by antibiotic resistance.

Prasun Kumar
Greater Noida, Uttar Pradesh, India Subhasree Ray
Tezpur, Assam, India Manabendra Mandal
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Chapter 1 )
Lactic Acid Bacteria: Taxonomy, e
Characteristic Features, Physiology,

and Diversity

G. R. Rama, F. Bucker, M. M. Salazar, Subhasree Ray,
and Camille Eichelberger Granada

Abstract The versatility of lactic acid bacteria (LAB) makes their use significant
for the health and food industries. These bacteria belong to the phylum—Firmicutes,
class—Bacilli, and order—Lactobacillales, and are known to convert sugars into
lactic acid, thrive in low pH environments, and withstand challenging conditions.
These characteristics contribute not only to their probiotic features, but also to their
role in fermenting foods, where their metabolic capabilities, including acidification
and bacteriocin production, aid in preservation and flavor development while inhib-
iting potential pathogens. With over 200 identified species spanning multiple gen-
era, LAB exhibit diverse physiological traits and functional properties, making
them a subject of interest for researchers and industries. This chapter provides an
overview of LAB’s taxonomy, characteristics, physiology, diversity, environmental
adaptability, contributions to human health, and their crucial role in fermented foods
production.
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1.1 Introduction

Lactic acid bacteria (LAB) stand out as a group of versatile and fascinating micro-
organisms. Known for their remarkable contributions to producing fermented foods
and beverages, humans have used these bacteria for centuries. However, besides
their relevance for the food industry, LAB have a rich diversity and a myriad of
characteristics that extend their use to health-related products such as pharmaceuti-
cals, nutraceuticals, cosmetics, and others (Duefias and Lépez 2022).

Taxonomically, these bacteria belong to the phylum—Firmicutes, class—Bacilli,
and order—Lactobacillales. They are non-spore-forming diverse group of Gram-
positive bacteria that convert sugars into lactic acid. This unique metabolic feature
plays a central role in their physiology and contributes to numerous beneficial prop-
erties. A distinguishing feature of LAB is the ability to tolerate low pH environ-
ments. This characteristic makes them thrive in various habitats, including plants,
animals, and fermented foods (Wang et al. 2021). In addition to their acid tolerance,
LAB have other survival mechanisms that allow them to withstand challenging con-
ditions, such as bile salts and antimicrobial substances. Such adaptive strategies
contribute to their resilience and ability to colonize diverse ecological niches. This
is the main reason for their probiotic features (Li and Han 2018).

Physiologically, LAB are intricately linked to their metabolic capabilities.
Through the fermentation process, these bacteria convert sugars leading to acidifi-
cation of their environment. This acidification plays a pivotal role in the preserva-
tion and flavor development of fermented foods providing a competitive advantage
to LAB by inhibiting the growth of potential pathogens. Moreover, some LAB
strains produce antimicrobial substances, known as bacteriocins, which further
contribute to their ability to outcompete other microorganisms (Darbandi
et al. 2022).

Lastly, the diversity of LAB is vast; there are over 200 species identified to date.
The species encompass a wide array of genera, including Lactobacillus (recently
divided into 23 new genera), Lactococcus, Streptococcus, Enterococcus,
Bifidobacterium, Leuconostoc, and others (Holzapfel and Wood 2014). Each strain
in the LAB group shows unique physiological traits, metabolic pathways, and func-
tional properties, making them the subject of great interest of researchers and indus-
tries alike. In this chapter, we describe LAB’s taxonomy, characteristic features,
physiology, and diversity. In addition, we discuss their ability to survive in different
environments, their contributions to human health and well-being, and their role in
fermented food production.
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1.2 Taxonomy of the Lactic Acid Bacteria Group

The LAB group was first defined by “Orla-Jensen” based only on phenotypic traits,
such as optimal growth temperature, sugar use, and spectrum of metabolites pro-
duced (Orla-Jensen 1919). The author described bacteria that belong to Aerococcus
spp., Streptococcus spp., Pediococcus spp., Leuconostoc spp., and Lactobacillus
spp., which fit the general characteristics of the group. In 1957, Bergey’s Manual
included Bifidobacterium spp. in this group, even though this genus was genetically
similar to the actinomycete group. Then, a taxonomic revision divided the
Streptococcus genus into three separate genera: Lactococcus, Enterococcus, and
Streptococcus. A group that belonged to Lactobacillus spp. was named
Carnobacterium spp. (Collins et al. 1987). Some motile bacteria from Lactococcus
spp. were reclassified as Vagococcus spp. (Collins et al. 1989). Pediococcus haloph-
ilus formed a new genus, Tetragenococcus (Collins et al. 1990). Heterofermentative
bacterial strains belonging to Lactobacillus spp. and Leuconostoc spp. were, then,
separated in a new genus, Weissella (Collins et al. 1993).

New studies on molecular biology resulted in several changes in the taxonomy of
the LAB group. These changes made LAB classification very confusing because
16S rRNA sequences are insufficient to propose phylogenetic relationships among
LAB (Holzapfel and Wood 2014). Nevertheless, several authors did it, and LAB
taxonomy was considered a “storm” (Qiao et al. 2022). Holzapfel and Wood
(Holzapfel and Wood 2014) proposed 14 LAB genera: Oenococcus, Pediococcus,
Alloiococcus, Vagococcus, Aerococcus, Carnobacterium,  Streptococcus,
Lactobacillus spp., Lactococcus, Enterococcus, Leuconostoc, Tetragenococcus,
Weissella, and Bifidobacterium. However, based on genetic advances, over 300 spe-
cies of LAB were reorganized that belonged to seven genera and two families into
a single Lactobacillaceae family (Zheng et al. 2020). The authors also divided the
Lactobacillus genus into 25 different genera, 23 of which were new (Table 1.1). The
LAB group is composed by 25 new lactobacilli and the remaining 13 genera
(Holzapfel and Wood 2014). Lactobacilli, Leuconostoc, Pediococcus, Lactococcus,
and Streptococcus are recognized as the main genera in the LAB group. However,
all LAB present biotechnological potential for developing special foods and pro-
moting health. In the next section, we discuss the most important features of LAB
and their physiology.

1.3 Characteristic Features and Physiology

LAB belong to an extensive group of cocci or bacilli, Gram-positive, non-endospore-
forming, catalase and oxidase-negative bacteria with strong tolerance to low
pH. They are found in diverse habitats. The genera in this group also differ regard-
ing tolerance to salt, optimum growth temperature, habitats, and pathogenicity.
Most studied LAB strains are common in foods (dairy products, meat, vegetables,
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Table 1.1 Lactobacilli genera and species

New genera
Lactobacillus

Amylolactobacillus
Holzapfeliella
Bombilactobacillus

Companilactobacillus

Lapidilactobacillus

Agrilactobacillus
Schleiferilactobacillus
Lacticaseibacillus

Paralactobacillus
Latilactobacillus
Loigolactobacillus

Dellaglioa
Liquorilactobacillus

Ligilactobacillus

Lactiplantibacillus

Species composition

L. acetotolerans, L. acidophilus, L. amylolyticus, L. amylovorus, L.
apis, L. bombicola, L. colini, L. crispatus, L. delbrueckii, L.
equicursoris, L. fornicalis, L. gallinarum, L. gasseri, L. gigeriorum, L.
hamster, L. helsingborgensis, L. helveticus, L. hominis, L. iners, L.
intestinalis, L. jensenii, L. johnsonii, L. kalixensis, L. kefiranofaciens,
L. kimbladii, L. kitasatonis, L. kullabergensis, L. melliventris, L.
mulieris, L. panisapium, L. paragasseri, L. pasteurii, L. porci, L.
psittaci, L. rodentium, L. taiwanensis, L. ultunensis, L. xujianguonis
A. amylophilus, A. amylotrophicus

Holzapfeliella floricola

B. apium, B. bombi, B. folatiphilus, B. mellifer, B. mellis, B.
thymidiniphilus

C. allii, C. alimentarius, C. baiquanensis, C. bobalius, C. crustorum,
C. farciminis, C. formosensis, C. furfuricola, C. futsaii, C.
ginsenosidimutans, C. halodurans, C. heilongjiangensis, C.
huachuanensis, C. hulinensis, C. insicii, C. jidongensis, C. kedongensis,
C. keshanensis, C. kimchiensis, C. kimchi, C. metriopterae, C.
mindensis, C. mishanensis, C. musae, C. nantensis, C. nodensis, C.
nuruki, C. paralimentarius, C. salsicarnum, C. suantsaicola, C. tucceti,
C. versmoldensis, C. zhachilii, C. zhongbaensis

L. achengensis, L. bayanensis, L. concavus, L. dextrinicus, L.
gannanensis, L. luobeiensis, L. mulanensis, L. wuchangensis

A. composti, A. fermenti, A. yilanensis

S. harbinensis, S. perolens, S. Shenzhenensis

L. absianus, L. baogingensis, L. brantae, L. camelliae, L. casei, L.
chiayiensis, L. daqingensis, L. hegangensis, L. hulanensis, L.
Jixianensis, L. kribbianus, L. manihotivorans, L. mingshuiensis, L.
nasuensis, L. pantheris, L. paracasei, L. parakribbianus, L. porcinae,
L. rhamnosus, L. saniviri, L. sharpeae, L. songhuajiangensis, L.
suibinensis. L. suilingensis, L. thailandensis, L. yichunensis, L. zeae, L.
zhaodongensis

Paralactobacillus selangorensis

L. curvatus, L. fragifolii, L. fuchuensis, L. graminis, L. sakei

L. backii, L. bifermentans, L. binensis, L. coryniformis, L. iwatensis, L.
Jjiayinensis, L. rennini, L. zhaoyuanensis

Dellaglioa algida

L. aquaticus, L. cacaonum, L. capillatus, L. ghanensis, L. hordei, L.
mali, L. nagelii, L. oeni, L. satsumensis, L. sicerae, L. sucicola, L.
uvarum, L. vini

L. acidipiscis, L. agilis, L. animalis, L. apodeme, L. araffinosus, L.
aviaries, L. ceti, L. equi, L. faecis, L. hayakitensis, L. murinus, L.
pabuli, L. pobuzihii, L. ruminis, L. saerimneri, L. salitolerans, L.
salivarius, L. ubinensis

L. argentoratensis, L. daoliensis, L. daowaiensis, L. dongliensis, L.
fabifermentans, L. garii, L. herbarum, L. modestisalitolerans, L.
mudanjiangensis, L. nangangensis, L. paraplantarum, L. pentosus, L.
pingfangensis, L. plajomi, L. plantarum, L. songbeiensis, L.
xiangfangensis

(continued)
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Table 1.1 (continued)

New genera Species composition

Furfurilactobacillus F. curtus, F. milii, F. rossiae, F. iliginis

Paucilactobacillus P. hokkaidonensis, P. kaifaensis, P. nenjiangensis, P. oligofermentans,
P. suebicus, P. vaccinostercus, P. wasatchensis

Limosilactobacillus L. agrestis, L. albertensis, L. alvi, L. antri, L. balticus, L. caviae, L.
coleohominis, L. equigenerosi, L. fastidiosus, L. fermentum, L.
frumenti, L. gastricus, L. gorillae, L. ingluviei, L. mucosae, L. oris, L.
panis, L. pontis, L. portuensis, L. reuteri, L. rudii, L. secaliphilus, L.
urinaemulieris, L. vaginalis

Secundilactobacillus | S. angelensis, S. collinoides, S. folii, S. hailunensis, S. kimchicus, S.
malefermentans, S. mixtipabuli, S. odoratitofui, S. oryzae, S.
paracollinoides, S. pentosiphilus, S. silagei, S. silagincola, S. similis, S.

yichangensis

Fructilactobacillus F. carniphilus, F. cliffordii, F. florum, F. fructivorans, F. hinvesii, F.
ixorae, F. lindneri, F. myrtifloralis, F. sanfranciscensis, F. vespulae

Acetilactobacillus Acetilactobacillus jinshanensis

Apilactobacillus A. apinorum, A. apisilvae, A. bombintestini, A.kunkeei, A. micheneri, A.
nanyangensis, A. ozensis, A. quenuiae, A. timberlakei, A. xinyiensis, A.
zhangqiuensis

Lentilactobacillus L. buchneri, L. curieae, L. diolivorans, L. farraginis, L. fungorum, L.

hilgardii, L. kefiri, L. kisonensis, L. kosonis, L. kribbianus, L.
laojiaonis, L. otakiensis, L. parabuchneri, L. parafarraginis, L.
parakefiri, L. raoultii, L. rapi, L. senioris, L. sunkii

Levilactobacillus L. acidifarinae, L. andaensis, L. angrenensis, L. bambusae, L. brevis, L.
cerevisiae, L. enshiensis, L. fujinensis, L. fuyuanensis, L. hammesii, L.
huananensis, L. humaensis, L. koreensis, L. lanxiensis, L. lindianensis,
L. mulengensis, L. namurensis, L. parabrevis, L. paucivorans, L.
senmaizukei, L. spicheri, L. suantsaii, L. suantsaiihabitans, L.
tangyuanensis, L. tongjiangensis, L. wangkuiensis, L. yonginensis, L.
Zymae

Lactobacilli genera division developed by Zheng et al. (2020) and species composition adapted

from LPSN (available in https://www.bacterio.net/)

among others), plants, and the intestinal tracts of humans and animals. They are
fastidious microorganisms and require a broad range of complex nutrients for their
survival and growth (Pessione 2012; Holzapfel and Wood 2014).

In addition, LAB do not carry out the oxidative phosphorylation pathway due to
lack of cytochromes and porphyrins. These bacteria obtain energy (ATP genera-
tion) only through substrate-level phosphorylation. They are not sensitive to O,,
thus considered ‘“aerotolerant anaerobes.” They have an exclusively fermentative
metabolism, with lactic acid (D, and/or L, lactic acid) as major end product.
Nonetheless, LAB are also recognized for their metabolic capacity to produce a
several biomolecules with different industrial applications, such as flavoring and
antioxidant substances, vitamins, bacteriocins, and exopolysaccharides (EPS). The
main compounds degraded by LAB are sugars. However, some LAB have the
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ability to degrade proteins and mycotoxins, among a variety of other molecules
(Wang et al. 2021).

According to the final fermentation products of glucose, LAB (except
Bifidobacterium spp.) may be categorized into two groups: heterofermentative and
homofermentative. In the latter case, lactic acid is the only final product of fermen-
tation since hexoses are almost completely converted into lactic acid through gly-
colysis via the Embden—Meyerhof—Parnas (EMP) pathway. Two units of lactic acid
are formed for every glucose molecule. Fructose-1,6-diphosphatase is the main
enzyme of this pathway. Heterofermentative LAB can produce ethanol and CO,
(one unit of each for every molecule of glucose) besides lactic acid. In this case,
hexose sugars get fermented via the phosphoketolase (6-phosphogluconate) path-
way, in which phosphoketolase is the main catalyst.

The type of hexose fermentation pathway used is mainly defined in LAB fami-
lies. Among the 38 LAB genera previously discussed, only Bifidobacterium spp. do
not belong to Lactobacillales. This order comprises five families: Streptococcaceae,
Enterococcaceae, Lactobacillaceae, Aerococcaceae, and Carnobacteriaceae. The
first two and most Lactobacillaceae are homofermentative (Holzapfel and Wood
2014; Zheng et al. 2020).

Also, LAB classification according to carbohydrate metabolism considers
LAB ability to ferment pentoses, e.g., xylose, arabinose, ribose, and related
compounds such as glucuronate. Homofermentative LAB may be divided into
(i) obligate homofermentative, (ii) obligate heterofermentative, or (iii) faculta-
tive heterofermentative. In (i), only hexoses are fermented through the EMP
pathway while pentose and related compounds are not converted. There are no
phosphoketolase enzymes in this group, which includes strains of Pediococcus,
Lactococcus, Streptococcus spp., and Lactobacillus spp. (Amylolactobacillus,
Holzapfeliella, Paralactobacillus, among others). In (ii), LAB strains can fer-
ment pentoses, glucose, and other related compounds via phosphoketolase path-
way. This group lacks the fructose 1,6-diphosphate enzyme. Lastly, in (iii),
there are genera, such as Leuconostoc and a few Lactobacillus spp. (such as
Schleiferilactobacillus), that convert hexoses into lactic acid through glycoly-
sis. However, they can also convert pentoses and related compounds via phos-
phoketolase pathway since they present both fructose 1,6-diphosphate and
phosphoketolase enzymes (Pessione 2012; Holzapfel and Wood 2014; Zheng
et al. 2020).

In terms of hexoses, most of these carbohydrates are fermented by LAB, e.g.,
fructose, mannose, and galactose. The first two can be fermented via EMP or
phosphoketolase pathway. However, galactose can be fermented by different
pathways depending on the mechanism by which sugar is transported across the
cell membrane (Holzapfel and Wood 2014). Regarding pentoses, most hetero-
fermentative LAB can ferment these sugars, although some strains are classified
as pentose-negative. Pentoses are generally transported across the membrane by
specific permeases and converted into D-xylulose 5-phosphate to be fermented
by the phosphoketolase pathway (Kandler 1983). Lastly, some LAB strains can
ferment disaccharides such as sucrose, lactose, cellobiose, and maltose. These
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carbon sources are generally transported (across the membrane) by permeases
or mediated by phosphorylation. Then, they are hydrolyzed into monosaccha-
rides or one monosaccharide-phosphate and one monosaccharide, and fer-
mented via EMP or phosphoketolase pathway depending on the strain (Yu
et al. 2020).

1.4 Characteristics of the Most Studied LAB

There are several works describing characteristics and biotechnological potentials of
all genera of LAB. Here, we described the most known LAB: the Lactobacilli group,
Lactococcus app., Enterococcus spp., Streptococcus spp., and Bifidobacterium spp.

1.4.1 Lactobacilli

Due to a recent reclassification of the Lactobacillus genus, the term lactobacilli is
used here to refer to all emended genera Lactobacillus, Paralactobacillus, and the
23 new genera previously cited. Cells of this group are rod-shaped with facultative
anaerobic metabolism. Besides lactate, other end products of lactobacilli’s metabo-
lism are acetate, ethanol, CO,, formic acid, or succinate. In the order Lactobacillales,
the Lactobacillaceae family is the only one that includes homofermentative and
heterofermentative microorganisms, exemplifying the diversity of this group.
However, most strains cannot ferment pentoses, and none of these bacteria encode
genes for the pentose—phosphate pathway or pyruvate formic acid lyase. The ability
to ferment different sugars remains strain-specific.

1.4.2 Lactococcus

Lactococci are coccoid cells, non-motile that can occur individually, in pairs, or in
short chains. Lactococci are generally found on plants, animals’ skins, and dairy
products. They are facultatively anaerobic and mesophilic, growing at a temperature
of 10 °C but not at 45 °C. Lactococcus spp. produce only L-(+)-lactic acid via the
EMP pathway. However, given specific conditions, some strains can produce differ-
ent metabolites such as acetate, formic acid or CO,, and ethanol (Garrigues et al.
1997). In general, lactococci strains can ferment hexoses and pentoses (Naranjo
et al. 2022). Interestingly, their lactose metabolism differs from those of other LAB
species since these bacteria can ferment galactose and glucose simultaneously. The
latter is metabolized through tagatose pathway. Lastly, Lactococcus species can also
metabolize proteins, fats, and citric acid, resulting in the production of volatile
aroma and flavor compounds (Holzapfel and Wood 2014).
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1.4.3 Enterococcus

Enterococci are non-motile (except for two species), ovoid cocci that can occur in
single, pairs, and short chains. Enterococcus spp. can ferment a variety of carbohy-
drates, including hexoses, pentoses, and carbohydrate polymers, since they are fac-
ultatively heterofermentative with the addition of other molecules such as glycerol
and citrate. An interesting feature of enterococci is that they are highly tolerant to
desiccation, extreme pH values, osmotic and oxidative stresses, and metal concen-
trations. They also have resistance to several antimicrobial molecules. In general,
the optimal growth occurs at 37 °C, but many strains may propagate within a range
of 10-45 °C. This versatility enables enterococci to colonize in competitive envi-
ronments, as many species of this genus are found in soils and as commensal bacte-
ria in the gastrointestinal tracts (GIT) of insects, birds, reptiles, and mammals
(Holzapfel and Wood 2014).

1.4.4 Streptococcus

Streptococci are non-motile cocci (ovoid or spherical shape) that occur mostly in
chains or pairs. They grow under facultatively aerobic conditions. Some need CO,
for growth. They require an optimum temperature for growth, i.e., 37 °C, but there
is variation among strains. Streptococci are homofermentative and produce L, lac-
tic acid as the key final product of glucose-fermentation via the glycolysis (EMP)
pathway (Delorme 2008; Holzapfel and Wood 2014).

Most streptococci are facultative anaerobic, mostly opportunistic pathogenic,
and belonging to human and/or animals commensal microbiota. Among strepto-
cocci species found in food, only Streptococcus thermophilus is having biotechno-
logical potential in the dairy industry (Delorme 2008). S. thermophilus is a
thermophilic bacterium (grows in temperatures up to 45 °C) and metabolizes other
carbohydrates but prefers lactose. Lactose is transported through permease system
followed by f-galactosidase hydrolysis releasing galactose and glucose. Glucose,
on the one hand, is then fermented into lactic acid. Few secondary metabolites such
as acetaldehyde, ethanol, acetate, and diacetyl may also be formed. Conversely,
most S. thermophilus strains do not metabolize galactose, and the monosaccharide
is secreted to the environment (Delorme 2008; Yu et al. 2020).

1.4.5 Bifidobacterium

Bifidobacterium is the only genus among LAB that are not included in the Firmicute
phylum; they belong to Actinobacteria. They are Gram positive, non-spore-form-
ing, non-motile, anaerobic bacteria with a Y-shape or a “bifid” morphology.
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Bifidobacteria are mostly found in the GIT of animals and humans. They can also
be found in sewage, milk, oral cavity, human blood, and hindgut of social insects
and birds. An important feature of this genus is its monosaccharide metabolism.
Bifidobacteria use a singular route of fructose 6-phosphate pathway for monosac-
charide degradation or “bifidus pathway,” which produces 1 mol lactic acid /mol
glucose and 1.5 molecule of acetic acid. Fructose 6-phosphate phosphoketolase
(Xfp) is the main enzyme of this pathway, and its activity is a common phenotypic
test for differentiating bifidobacteria since this enzyme is absent in other Gram-
positive GIT microorganisms. Lastly, it is worth mentioning that Bifidobacterium
spp. have developed adaptive metabolic strategies to survive hostile conditions of
the upper parts of the intestine. They can metabolize an array of complex host- and
diet-derived glycans while producing an arsenal of proteins and enzymes to fight
environmental stresses (Holzapfel and Wood 2014; Alessandri et al. 2021).
Bifidobacteria are widely known for their probiotic features, which will be dis-
cussed in the next section.

1.5 Biotechnological Applications of LAB

Lactic acid bacteria have been used for various applications in the industry, both as
health promoters and food additives. Regarding the improvement of human health,
the most commonly reported feature of LAB is their probiotic function, providing
the host with health benefits when administered in suitable amounts (Hill et al.
2014). As food additives, LAB are more commonly used as either non-starter or
starter cultures, that is, as acid or aroma producers, respectively. This section dis-
cusses both biotechnological applications, and a summary of them is depicted in
Fig. 1.1.

1.5.1 Applications of Lactic Acid Bacteria in Health Industry

Well-designed studies, such as double-blind randomized controlled trials with pla-
cebo groups, evaluating the benefits of the administration of LAB in humans, are
scarce. However, a recent review has retrieved 95 articles written in English after a
search in the Scopus database for the words “clinical trial” OR “intervention” OR
“treatment” AND “probiotic” OR “lactic acid bacteria.” Of those 95 articles, 57
reported positive health outcomes, meaning they achieved an improvement or
resolved the issue approached in the study (De Filippis et al. 2020). Of those 57,
eight did not include a placebo group or did not explain the study design. These
studies were excluded from this analysis. Hence, Table 1.2 lists all 49 studies report-
ing the positive outcomes of the use of probiotics for human health.

In Table 1.2, the 49 studies were allocated into five groups according to the target
health treatment: the use of probiotic LAB for treating GIT-related issues counts the
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Fig. 1.1 Biotechnological applications of lactic acid bacteria in both health and food industries

highest number of clinical trials, allocating 21 articles; following that, 10 studies
mentioned probiotics for the treatment of obesity and diabetes-related issues; eight
articles addressed psychological features and/or cognitive-related treatments; and
seven studies reported probiotics as immune response enhancers and treatment for
inflammation. Additionally, three studies mentioned different target treatments and
were therefore allocated in the group called “Others”: treatment for thyroid disfunc-
tions, for hepatic encephalopathy in patients with cirrhosis, and for bone loss in
older women. Given that these topics are uncommon, they will not be further dis-
cussed in this section. The other groups are discussed below.

1.5.1.1 Probiotics as a Treatment for GIT-Associated Issues

Of all health targets listed in Table 1.2, probiotic LAB are commonly associated
with the treatment of GIT-related diseases, with 21 out of the 47 articles listed in
Table 1.2. One of the mostly mentioned topic is the treatment of symptoms of irri-
table bowel syndrome (IBS). IBS is a GIT disorder affecting up to 10% of otherwise
healthy subjects who may experience symptoms such as abdominal pain and irregu-
lar bowel habits (Ford et al. 2020). For example, Cremon et al. (2018) report evi-
dence that the microorganisms that colonize GIT are an important part of IBS
pathophysiology. The authors found a shift in the GIT microbiota, identifying that
the consumption of Lb. paracasei CNCM I-1572 can reduce the relative abundance
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