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Preface 

The series of ACMSM conferences was first held in Sydney in 1967. It is one 
of the longest running and reputable conferences in the field, taking place every 
2–3 years either in Australia or New Zealand. The ACMSM26 has been postponed 
three times due to the COVID-19 pandemic. But finally, after more than 35 years, 
the conference returns to Auckland. Over these decades, the topics of the confer-
ence have expanded to include much broader research areas, beyond structural and 
material mechanics, as this year’s conference demonstrates. The conference is no 
longer a premier forum largely for participants from Australia and New Zealand, but 
also an essential gathering of emerging and established researchers, as well as prac-
ticing engineers, from many countries. The conference presents an ideal platform 
for participants to extensively exchange knowledge and experiences as well as the 
development of new friendships and collaborations. Despite the reverberation of the 
pandemic, the ACMSM26 has attracted over 120 participants from four continents. 

These ACMSM26 e-proceedings contain a selected set of 83 papers that cover a 
range of topics in the mechanics of structures and materials. We hope that the papers 
will ignite new ideas and trigger new collaborations in your research. 

We would like to express our sincere gratitude to all authors, reviewers of the 
papers, and sponsors, i.e., the University of Auckland, Faculty of Engineering Trans-
portation Research Centre, Asian Concrete Federation, Shenyang University of Tech-
nology, HIWAY Group, South China University of Technology, Downer, and Road 
Science for making this conference possible. 

Auckland, New Zealand Nawawi Chouw 
Chunwei Zhang
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Spatial Correlation of Flexural Tensile 
Bond Strength in Unreinforced Masonry 
Walls 

L. J. Gooch, M. J. Masia, M. G. Stewart, and C. Collard 

Abstract The flexural tensile bond strength of the unit-mortar interface is an impor-
tant material property in defining the load-carrying capacity of unreinforced masonry 
(URM) walls. This property often governs the response of URM walls subject to in-
plane and out-of-plane flexure. Masonry is an inherently variability building material, 
with properties such as the flexural tensile bond strength having been observed to vary 
considerably when comparing adjacent mortar joints. This spatial variability influ-
ences the performance of URM structures and is an important consideration when 
performing stochastic assessments of masonry behaviour. This study describes an 
experimental investigation in which an URM wall was sequentially deconstructed 
utilising a bond wrench, and the bending stress to failure of each individual mortar 
joint was recorded. The bending capacity of each of these joints allows for an assess-
ment of the spatial correlation of joint strengths within a masonry wall. Furthermore, 
15 additional mortar joints, constructed in piers under identical conditions, and using 
the same unit type and the same mortar batch, as the examined wall, have been tested 
using a bond wrench. These supplemental tests are a standard form of estimating the 
strength of mortar joints within an URM structure. Examination of these specimens, 
therefore, provides insight into how accurately such tests estimate the true strength 
of joints within a wall. 
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1 Introduction 

Recent studies into the variability and structural reliability of unreinforced masonry 
(URM) walls have utilised computational methods of estimating load–displacement 
behaviour [5, 9]. A key component of these methods is the accurate representation of 
material properties within a modelled masonry structure. These values are commonly 
sourced from experimental testing, standardised or recommended values such as 
those in AS 3700 [12] and NZSEE [10], or from extensive published databases [6, 
8]. However, in order to produce a more accurate computational representation of 
an URM wall, consideration of how these properties varying throughout a structure 
should be made. 

Previous studies by Heffler et al. [4] and Corrêa et al. [1] address the spatial 
variability of masonry flexural bond strength through the quantification of a corre-
lation coefficient, ρk . This descriptor quantifies the degree of dependence that the 
flexural bond strength of any given mortar joint has from other joints within a course 
of a masonry wall. For example, a correlation coefficient equal to 1.0 for the bond 
strength of adjacent mortar joints implies that a full correlation between these distinct 
interfaces is present, and the determination of the strength of any one joint informs 
the strengths of all adjacent joints. In contrast, a coefficient equal to 0 implies that 
no correlation is present, and that no information is gained about adjacent elements 
within a wall. Finally, a value of -1.0 indicates that a full negative correlation exists. 
This results in alternating joint strengths of above then below average (or vice versa), 
with the changes in strength maintaining a constant value. This concept is presented 
in Fig. 1. 

Fig. 1 Indicative flexural bond strengths for various correlation coefficients
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The current study begins to expand upon the results of these previous investi-
gations. A wall specimen constructed after those by Gooch et al. [3] was sequen-
tially deconstructed using the standardised bond wrench test presented in AS 3700 
[12]. Furthermore, as in the investigation by Corrêa et al. [1], several supplemental 
masonry piers were tested in the same manner. These additional tests, constructed 
using the same masonry units, mortar batch and bricklayer, facilitate research into 
the reliability of material characterisation tests. 

2 Description of Experimental Testing 

This initial study focuses on the results associated with a single URM wall specimen. 
This wall was constructed in a running bond pattern, with eight standard Australian 
masonry units (230 mm × 110 mm × 76 mm) per course and a total of fourteen 
courses. Mortar joint widths of approximately 10 mm were adopted, and a single 
wythe of units was used. The overall geometry of this wall specimen, as well as the 
supplemental prisms discussed in Sect. 3.2, are presented in Fig. 2. 

Both the wall specimen and supplemental masonry prisms were constructed by 
the same individual bricklayer on the same day. A standard 1:1:6 (cement: lime: sand 
by volume) mortar mix was adopted, as specified in AS 3700 [12], and the same batch 
was utilised in the construction of all specimens. Finally, all specimens were aged for 
an extensive period of 222 days. This protracted age time is significantly longer than 
the 7 days required by AS 3700 [12], or the 28 days common to masonry research. 
However, the longer curing period effectively eliminates the potential for variability 
induced from inconsistent curing, both throughout the wall specimen, and between 
the wall and prisms.

Fig. 2 Wall specimen and prism geometries (all dimensions are presented in mm) 
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2.1 Bond Wrench Test Method 

The estimation of the flexural tensile bond strength of each mortar joint was achieved 
through the application of the bond wrench test. This test involves attaching a clamp 
to an individual masonry unit and applying a bending moment to its bed joint through 
the steady application of force. While the testing of masonry prisms can be readily 
undertaken as per the arrangement shown in Fig. 3, in order to test bed joints within 
the wall specimen, the vertical perpend joints were first removed. This was achieved 
using a sharp handsaw. A manual saw was utilised rather to minimise the vibrations 
of and potential damage to adjacent joints that could arise through the use of power 
tools. 

The omission of perpend joints from this study was a result of two considerations. 
Firstly, flexural tensile testing of perpend joints is difficult, and their strengths are 
typically less critical to the overall strength of a given URM wall (see [7, 10, 12]). 
Secondly, it may be expected that some correlation exists between adjacent bed joints 
within an URM wall. These joints are typically laid in a sequence, with a bricklayer 
first placing a run of mortar capable of seating several masonry units. Perpend joints, 
however, are placed sequentially. Mortar is applied individually to one header face 
of a masonry unit before it is placed onto the mortar bed and tapped into position. 
As such, it is expected that a much weaker relationship between adjacent perpend 
joints exists. Hence no consideration of perpend joint strengths have been made in 
this study, nor that of Heffler et al. [4] and Corrêa et al. [1]. 

The flexural tensile bond strength f sp of a given joint can be estimated from Eq. (1). 
In this study a bond wrench with a mass m1 of 8.2 kg, an arm length d2 of 1300 mm, 
and a distance to the centre-of-mass d1 of 389 mm. The mass of each unit m3 was 
found to be approximately 2.9 kg, or 1.5 kg in the case of the half bricks at each end 
of every alternate course. 

fsp =
(
Msp 

Zd

)
−

(
Fsp 

Ad

)
(1)

Fig. 3 Schematic and test set-up of the bond wrench test [12] 
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where Msp is the applied bending moment about the centroid of the bedded area of 
the examined joint, estimated as per Eq. (2), and Zd is the section modulus of the 
bedded area about the axis about which the bending moment is applied. Similarly, 
Fsp is the applied compressive force, calculated via Eq. (3), and Ad is the total bedded 
area. 

Msp = 9.81m2 ·
(
d2 − 

tu 
2

)
+ 9.81m1 ·

(
d1 − 

tu 
2

)
(2) 

Fsp = 9.81 · (m1 + m2 + m3) (3) 

Load applied to the specimen m2 is applied by the individual performing the test 
either through their own body mass or through the application of weights. This force 
must be applied at an even rate to avoid dynamic load effects until failure of the joint 
is achieved. A constant unit thickness tu of 110 mm was present in all specimens 
tested in this study. 

3 Experimental Results 

The estimated flexural tensile bond strengths of each bed joint within the wall spec-
imen are presented in Fig. 4. An average strength of 0.48 MPa with a coefficient 
of variation (COV) of 0.30 was estimated. These values are consistent with the 
expected bond strengths of URM walls, such as those presented in McNeilly et al. 
[8]. In addition, the average strengths of each course within the wall are presented 
in Fig. 5. These values, ranging from 0.33 MPa to 0.63 MPa, are important to the 
determination of the spatial correlation coefficient (see Eq. 4). The observed spread 
of 0.30 MPa between these mean values may be significant (approximately 63% of 
the overall mean) but is not unexpected in the highly variable masonry unit-mortar 
interface.

In Fig. 4 it may be observed that two values have been omitted (the final tested 
units in courses 4 and 5). In this case, during the testing of the final unit of course 
5, both of these bed joints, as well as the final perpend joint of course 4, failed. 
The subsequently recorded force at failure was disregarded, as this test result was 
deemed invalid. In addition, it may be observed that no flexural bond strength values 
are presented for the bottom course of units in Fig. 4. As these units were bonded 
to a reinforced concrete beam, rather than to another course of units, the resultant 
values of bond strength are expected to be inconsistent with the others presented in 
this study. As such, these values were also disregarded.
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Fig. 4 Flexural tensile bond strengths estimated from wall specimen bed joints (all values are in 
MPa) 
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Fig. 5 Average flexural tensile bond strength of each course within wall specimen

3.1 Spatial Correlation of Adjacent Joint Strengths 

The spatial correlation of flexural bond strengths was quantified using the autocor-
relation function, ρk . This function is calculated for a “lag” k representing the space
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between data points (in this case the bed joints within a course). There are a number 
of estimates for the autocorrelation function, however, the bias estimate adopted in 
this study, is the most popular variance estimator and produces a smaller error than 
an unbiased case ([4] after, [2, 11]). 

For a sample size N, the  kth autocorrelation function may be estimated from 
Eq. (4). Where zi refers to the flexural tensile bond strength of the ith joint within a 
course, and μz is the mean bond strength of that course. 

ρk = 

N −k∑
i=1 

(zi − μz)(zi+k − μz) 
/

N−k∑
i=1 

(zi − μz)2 
N −k∑
i=1 

(zi+k − μz)2 

(4) 

In addition to Eq. (4), Priestley [11] and Fenton [2] suggest that values of ρk that 
fall within the bounds of ±2 

√
1/N are not significantly distinct from statistically 

independent variables (i.e.: ρk = 0). In the case of the current study, this limit is 
equal to between 0.67 and 0.76 depending on the number of data points in the course 
under consideration. This range is quite large due to the relatively small number of 
units in each course, however, conclusions regarding the strength of the observed 
correlations may still be drawn despite this limitation. 

The resultant autocorrelation function values, presented in Fig. 6, indicate that 
a weak correlation exists between adjacent bed joints (k = 1). The autocorrelation 
function value at this point is highly variable, with values of ρk=1 ranging from 0.70 
to -0.61. While this result is not inconsistent with the findings of Heffler et al. [4] 
who observed values of ρk=1 between approximately 0.9 and -0.6, it reinforces the 
conclusion of a weak and variable degree of correlation between adjacent bed joint 
strengths presented in this previous investigation. 

Fig. 6 Autocorrelation function values for each course in the wall specimen
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As may be expected, the strength of this correlation diminishes at higher lag values. 
Despite this general trend, seen in the results of this study and that of Heffler et al. [4], 
there are significant fluctuations in the estimated values of ρk . Several large spikes or 
dips in ρk may be observed in Fig. 6, indicative of a very strong or positive or negative 
correlation. There are two likely causes of this variability. Firstly, despite the standard 
construction practice of placing units sequentially within a course, the first are last 
units of a course are often placed first. This is done to ensure that the wall remains 
flush at each end. As a result, it may be expected that a higher degree of correlation 
exists between joints strengths at the highest values of k. In addition, it was observed 
upon the completion of construction that the overall quality of workmanship of this 
wall specimen was low. This may be seen in part from the partially filled joints shown 
in Fig. 3. This characteristic does not explicitly relate to the spatial correlation of joint 
strength but would act to exacerbate the inherent variability of these relationships. 

3.2 Relationship Between Wall and Prism Joint Strengths 

In addition to the assessment of the spatial correlation of adjacent joint strengths, 
the suitability of the supplemental prism joint tests to represent the average strength 
of joints within the wall specimen was examined. This was achieved through the 
application of a t-Test, as described by Corrêa et al. [1]. This test found that, at a 5% 
significance level, the null hypothesis was rejected, i.e.: the tested prism joints do 
not accurately represent the statistical properties of the wall joint bond strengths. 

This result, presented in Table 1, is consistent with the findings of Corrêa et al. 
[1] who found that the majority of URM prisms tested were not suitably accurate 
representations of their corresponding wall specimens. 

In addition to the t-Test results, a comparison of the estimated mean strengths 
provides insight into the suitability of the prism joint strengths to reflect the properties 
of the wall specimen. In the case of this study, the prism joints underestimate the 
wall strength by approximately 14%. These values are conformant to the strength 
compliance requirements of AS 3700 [12] and are on the conservative side of those 
results presented by Corrêa et al. [1], who observed differences between wall and 
prisms mean strengths ranging from 3 to 270%.

Table 1 Summary of sample means, COVs and t-Test results 

Wall Prism t-Test result 
(same population)n Mean (MPa) COV n Mean (MPa) COV 

108 0.48 0.30 15 0.41 0.25 No 
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4 Conclusions 

The experimental results presented in this study indicate that a weak, but highly 
variable, correlation exists between the flexural tensile bond strengths of adjacent 
bed joints within an URM wall. The observed mean strength of 0.48 MPa with a 
COV of 0.30 are consistent with values observed in literature, and the determined 
values of an autocorrelation function are similar to those presented in previous, 
similar investigations. Further testing of larger, repeat wall specimens are planned in 
a future study, in order to refine the conclusions presented in this paper. The inclusion 
of a larger number of tested joints per course is expected to produce a more reliable 
estimate of the correlation coefficient presented in this study. 

In addition to these findings, it was concluded through the application of a t-Test 
that the accompanying supplemental prism specimens constructed in concert with 
the tested URM wall did not accurately reflect the statistical properties of the wall. 
While a suitable estimation of the mean strength and COV was determined, as defined 
by the current Australian standard for masonry design, this observation suggests that 
care should be taken in the interpretation of similar characterisation tests. 
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Seismic Assessment and Upgrade 
of Concrete Wharf Structure 

F. Yu, X. Qin, and C. Wicaksana 

Abstract The KiwiRail’s Inter-island Resilient Connection (iReX) program aims 
to increase the capacity and efficiency of ferry between the north island and the south 
island of New Zealand. It introduces two new ferries and terminals at Kaiwharawhara 
in Wellington and Waitohi Picton. The terminal upgrade for the Picton port involving 
the construction of a new wharf and the upgrade of the existing wharfs. This paper 
presents the upgrade work for the largest wharf at the current Picton terminal. The 
upgrade involves partial demolition and replacement of the wharf deck. New pile 
supports will also be constructed for the new decks. A mechanical hinge bridge and 
automatic mooring unit will be installed on these new decks, enabling the operation 
of new ferries with various sizes. A seismic analysis was conducted to evaluate 
the seismic performance of the wharf before and after the upgrade work. It was 
acknowledged that the existing pile might fail in tension or compression due to the 
additional seismic force. Therefore, the design of the new members allowed the 
potential uplift movement of the existing piles such that all tension demand will 
be resisted by the new piles. A finite element model was constructed. Tensionless 
springs were used during the modelling of the existing piles. The seismic behaviour 
of the wharf and the evaluation of the wharf performance will be presented. 
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1 Introduction 

1.1 Background 

Picton Interislander ferry terminal consist of 2 berths, Berth no 1 and Berth no 2. 
Currently Berth No 2 can only be used by Aratere, while the other three Interis-
lander ferries, Kaitaki, Kaiarahi and Valentine are using Berth no 1. To facilitate the 
construction of the new berthing and terminal facilities, current berth No 1 needs 
to be demolished. To maintain ferry operations during the construction of the new 
berth, existing Berth No 2 required to be modified to enable all four ferries to use 
Berth no 2. Picton Enabling Work focused on the design of temporary structure and 
modifications of the existing structures to enable the existing Berth No 2 to be used 
for berthing for all four Interislander ferries. 

There are several new structures proposed to be constructed as part of the Berth 2 
upgrade, which includes a new Hinge Bridge, new foundation structures to support 
the new Automated Mooring Units (AMU), and a new foundation structure to support 
the existing short-arm end fender. Figure 1 shows a plan view of those proposed 
structures and their relative position to the long wharf. To allow these new structures 
to be constructed, some part of the existing structures required to be demolished. 

The Hinge Bridge is a bascule bridge structure that enables vehicle loading and 
unloading of the K-class vessels (Kaiarahi and Kaitaki) and the Valentine onto the 
existing rail linkspan at Berth No 2. The bridge will be lifted in a stowed position 
when the Aratere is berthing and allow the vessel to access the existing rail linkspan 
within the nest, as in the original berthing configuration. The foundation of the hinge 
bridge is a portal frame structure with a concrete deck supported on 12 bore piles. 
The deck spans over two bays of the long arm wharf. The existing deck within the 
bays will be removed while the existing piles, kerbs and capping beams remain 
unchanged.

Fig. 1 Plan view of the new structures proposed (hinge bridge, AMUs and short arm fender) 
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Based on mooring analysis, two new AMUs are required to be installed at the end 
of the wharf. A new foundation structure at each location to seat the AMUs required. 
To facilitate the construction of the mooring unit foundations, the existing precast 
prestressed deck panel are to be removed and replaced with a new structure joining 
into the existing structure on either side. 

A number of finite element analysis software, including SAP 2000, have been used 
to carry out static analysis of the structure based on the loadings applied and the non-
linear geotechnical springs defined. However, the modelling process requires a certain 
degree of knowledge in the integration of structural and geotechnical engineering 
field, as well as careful calibration of multiple parameters to obtain a more realistic 
results. This paper discussed how a more accurate estimate of the actual wharf struc-
ture behaviour and demands were obtained. Details methodology employed in the 
analysis were shared including the findings which may be referenced for any similar 
future projects. 

1.2 Geotechnical Analysis 

Prior to the structural analysis and design being undertaken, site-specific geotechnical 
investigations were carried out by external parties including borehole/CPT tests, 
lab analysis and geophysical investigation using Multi-channel Analysis of Surface 
Waves (MASW). 

The majority of boreholes were drilled at the neighbouring wharves’ locations. 
The ground conditions were inferred from those boreholes. The marine sediments 
were mostly comprised of soft silts and loose sands. Below the sediments were 
medium dense gravels and sandy gravels of alluvial outwash embedded in a clay/ 
silt matrix. These materials generally become denser with the depth. The bedrock is 
anticipated at approximately −30.0 m RL at the coastline and indicatively dips down 
towards the northeast. 

2 Methodology 

2.1 Modelling 

During the optioneering stage, an Oasys GSA model was established to allow an 
exploration of the structural geometry and adaption to the client demand. Later in 
the review stage, SAP2000 was used for nonlinear seismic analysis. 

The structural members (such as beams, pile caps and piles) are modelled using 
beam elements. A grillage model was constructed for the concrete deck of the wharf. 
Reinforced concrete members are modelled with linear elastic material properties


