

Dependable Computing

IEEE Press
445 Hoes Lane

Piscataway, NJ 08854

IEEE Press Editorial Board
Sarah Spurgeon, Editor in Chief

Moeness Amin Ekram Hossain Desineni Subbaram Naidu
Jón Atli Benediktsson Brian Johnson Tony Q. S. Quek
Adam Drobot Hai Li Behzad Razavi
James Duncan James Lyke Thomas Robertazzi

Joydeep Mitra Diomidis Spinellis

About IEEE Computer Society
IEEE Computer Society is the world’s leading computing membership organization and
the trusted information and career-development source for a global workforce of
technology leaders including: professors, researchers, software engineers, IT professionals,
employers, and students. The unmatched source for technology information, inspiration,
and collaboration, the IEEE Computer Society is the source that computing professionals
trust to provide high-quality, stage-of-the-art information on an on-demand basis. The
Computer Society provides a wide range of forums for top minds to come together,
including technical conferences, publication, and a comprehensive digital library, unique
training webinars, professional training, and the Tech Leader Training Partner Program
to help organizations increase their staff’s technical knowledge and expertise, as well as
the personalized information tool my Computer. To find out more about the community
for technology leaders, visit http://www.computer.org.

IEEE/Wiley Partnership
The IEEE Computer Society and Wiley partnership allows the CS Press authored book
program to produce a number of exciting new titles in areas of computer science,
computing, and networking with a special focus on software engineering. IEEE
Computer Society members receive a 35% discount on Wiley titles by using their member
discount code. Please contact IEEE Press for details.
To submit questions about the program or send proposals, please contact Mary Hatcher,
Editor, Wiley-IEEE Press: Email: mhatcher@wiley.com, John Wiley & Sons, Inc.,
111 River Street, Hoboken, NJ 07030-5774.

http://www.computer.org
mailto:mhatcher@wiley.com

Dependable Computing

Design and Assessment

Ravishankar K. Iyer
Department of Electrical and Computer Engineering and
Coordinated Science Laboratory
University of Illinois at Urbana-Champaign
Urbana, Illinois, USA

Zbigniew T. Kalbarczyk
Department of Electrical and Computer Engineering and
Coordinated Science Laboratory
University of Illinois at Urbana-Champaign
Urbana, Illinois, USA

Nithin M. Nakka
Cisco Networking Engineering group
Cisco Systems, Inc.
San Jose, California, USA

Copyright © 2024 by the IEEE Computer Society. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any
form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise,
except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without
either the prior written permission of the Publisher, or authorization through payment of the
appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to
the Publisher for permission should be addressed to the Permissions Department, John Wiley &
Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at
http://www.wiley.com/go/permission.

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley &
Sons, Inc. and/or its affiliates in the United States and other countries and may not be used
without written permission. All other trademarks are the property of their respective owners.
John Wiley & Sons, Inc. is not associated with any product or vendor mentioned in this book.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best
efforts in preparing this book, they make no representations or warranties with respect to the
accuracy or completeness of the contents of this book and specifically disclaim any implied
warranties of merchantability or fitness for a particular purpose. No warranty may be created
or extended by sales representatives or written sales materials. The advice and strategies
contained herein may not be suitable for your situation. You should consult with a professional
where appropriate. Further, readers should be aware that websites listed in this work may have
changed or disappeared between when this work was written and when it is read. Neither the
publisher nor authors shall be liable for any loss of profit or any other commercial damages,
including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please
contact our Customer Care Department within the United States at (800) 762-2974, outside the
United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in
print may not be available in electronic formats. For more information about Wiley products,
visit our web site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data for:

Hardback ISBN: 9781118709443

Cover Design: Wiley
Cover Image: © Yuichiro Chino/Getty Images

Set in 9.5/12.5pt STIXTwoText by Straive, Pondicherry, India

http://www.copyright.com
http://www.wiley.com/go/permission
http://www.wiley.com

This book is dedicated to my wife Pamela for her unwavering support and
encouragement in my academic pursuits, from my PhD to the present day.

– For Ravishankar K. Iyer

This book is dedicated to my wife, whose unfailing support kept me moving
forward to the completion of this work.

 – For Zbigniew T. Kalbarczyk

This book is dedicated to my parents, whose sacrifices have shaped what I am.
 – For Nithin M. Nakka

Contents

About the Authors  xxiii
Preface  xxv
Acknowledgments  xxvii
About the Companion Website  xxix

1	 Dependability Concepts and Taxonomy  1
1.1	 Introduction  1
1.2	 Placing Classical Dependability Techniques in Perspective  2
1.3	 Taxonomy of Dependable Computing  4
1.3.1	 Faults, Errors, and Failures  5
1.4	 Fault Classes  6
1.5	 The Fault Cycle and Dependability Measures  6
1.6	 Fault and Error Classification  7
1.6.1	 Hardware Faults  8
1.6.2	 Software Faults and Errors  8
1.6.2.1	 The GUARDIAN90 Operating System  9
1.6.2.2	 IBM-MVS (zOS) and IBM Database Management Systems  9
1.7	 Mean Time Between Failures  11
1.8	 User-perceived System Dependability  13
1.9	 Technology Trends and Failure Behavior  14
1.10	 Issues at the Hardware Level  15
1.11	 Issues at the Platform Level  17
1.12	 What is Unique About this Book?  18
1.13	 Overview of the Book  19
	 References  20

2	 Classical Dependability Techniques and Modern Computing Systems:
Where and How Do They Meet?  25

2.1	 Illustrative Case Studies of Design for Dependability  25
2.1.1	 IBM System S/360  25

vii

Contentsviii

2.1.2	 The Tandem Integrity System  26
2.1.3	 Blue Waters  28
2.2	 Cloud Computing: A Rapidly Expanding Computing Paradigm  31
2.2.1	 Layered Architecture of Cloud Computing  32
2.2.2	 Reliability Issues in Cloud Computing  34
2.3	 New Application Domains  37
2.3.1	 Smart Power Grid Application  38
2.3.2	 Business Integrity Assurance Application  40
2.3.3	 Medical Devices and Systems  42
2.3.3.1	 Monitoring of Soldiers for Blast Impact in a Battlefield Scenario  44
2.3.3.2	 Teleoperated Surgical Robots  46
2.3.4	 Wireless Sensor Networks  46
2.3.5	 Mobile Phones  47
2.3.6	 Artificial Intelligence (AI) Systems  48
2.4	 Insights  52
	 References  52

3	 Hardware Error Detection and Recovery Through
Hardware-Implemented Techniques  57

3.1	 Introduction  57
3.2	 Redundancy Techniques  58
3.2.1	 Comparing the Reliability of Simplex and TMR Systems  60
3.2.2	 M-out-of-N Systems  61
3.2.3	 The Effect of a Voter  63
3.2.4	 Time Redundancy  66
3.3	 Watchdog Timers  67
3.3.1	 Example Applications of Watchdog Timers  67
3.3.2	 Limitations of Watchdog Timers  68
3.4	 Information Redundancy  69
3.4.1	 A Brief History of Coding Theory  69
3.4.2	 Outline of the Description of Coding Techniques  71
3.4.3	 Fault Detection Through Encoding  72
3.4.4	 Parity  72
3.4.5	 Cyclic Redundancy Checks  75
3.4.6	 Checksums  79
3.4.7	 Arithmetic Codes  80
3.4.7.1	 AN Codes  80
3.4.7.2	 Berger Codes  80
3.4.8	 Residue-Inverse Residue Codes  81
3.4.9	 Reed-Solomon Codes  82
3.4.10	 Communication Codes and Protocols  83
3.4.10.1	 Convolutional Codes  84

Contents ix

3.4.10.2	 Communication Protocols for Reliable Transmission  85
3.4.11	 Two-Level Integrated Interleaved Codes  86
3.4.12	 RAID: Redundant Array of Inexpensive Disks  88
3.4.12.1	 A Commercial RAID-Based Storage System  90
3.5	 Capability and Consistency Checking  93
3.5.1	 Capability Checking  93
3.5.2	 Consistency Checking  93
3.6	 Insights  93
	 References  96

4	 Processor Level Error Detection and Recovery  101
4.1	 Introduction  101
4.2	 Logic-level Techniques  104
4.2.1	 Radiation Hardening  104
4.2.2	 Selective Node-Level Engineering  105
4.2.3	 SEU Hardening for Memory Cells  108
4.2.4	 SEU-tolerant Latch  110
4.2.4.1	 Recovery from a Particle Strike  111
4.2.5	 Razor  112
4.2.5.1	 Pipeline Error Recovery  112
4.2.5.2	 Discussion  113
4.2.6	 Built-in Soft-Error Resilience Using Scan Flip-Flop Reuse  114
4.2.7	 Discussion  115
4.3	 Error Protection in the Processors  115
4.3.1	 Reliability Features of Intel P6 Processor Family  115
4.3.1.1	 Machine Check Architecture (MCA)  116
4.3.1.2	 Functional Redundancy Checking (FRC)  116
4.3.2	 Reliability Features in Itanium  116
4.3.2.1	 Protection of On-Chip Memory Arrays  116
4.3.2.2	 Error Containment  117
4.3.2.3	 Data Poisoning  118
4.3.2.4	 Error Promotion  118
4.3.2.5	 Watchdog Timer  118
4.3.2.6	 Error Detection and Correction Logging  119
4.3.3	 POWER7  119
4.3.4	 NonStop Himalaya Systems  120
4.4	 Academic Research on Hardware-level Error Protection  122
4.4.1	 SRTR: Transient Fault Recovery Using Simultaneous

Multithreading  126
4.4.1.1	 Discussion  128
4.4.2	 DIVA: A Reliable Substrate for Deep Submicron Microarchitecture

Design  128

Contentsx

4.4.2.1	 Discussion  129
4.4.3	 Microprocessor-based Introspection (MBI)  131
4.4.4	 Phoenix: Detection and Recovery from Permanent Process 	

Design Bugs  133
4.5	 Insights  134
	 References  137

5	 Hardware Error Detection Through Software-Implemented
Techniques  141

5.1	 Introduction  141
5.2	 Duplication-based Software Detection Techniques  142
5.2.1	 Examples of Software-based Duplication Techniques  144
5.2.1.1	 Duplication at the Level of Source Code  145
5.2.1.2	 ED4I  146
5.3	 Control-Flow Checking  146
5.3.1	 The State of the Art  147
5.3.1.1	 Hardware Schemes  147
5.3.1.2	 Software Schemes  152
5.3.2	 Enhanced Control-Flow Checking with Assertions (ECCA)  153
5.3.2.1	 Insertion of ECCA Assertions  153
5.3.2.2	 SET and TEST Assertions in ECCA  153
5.3.2.3	 ECCA Error Detection  155
5.3.2.4	 Experimental Evaluation of ECCA  156
5.3.3	 Preemptive Control Signature (PECOS)  158
5.3.3.1	 PECOS Error Detection  161
5.3.3.2	 Experimental Evaluation of PECOS  163
5.4	 Heartbeats  166
5.4.1	 Timeout Mechanism  167
5.4.2	 Limitations of Traditional Heartbeats  168
5.4.3	 Designing Adaptive, Smart Heartbeats  168
5.4.4	 Evaluation of Smart Heartbeats  171
5.4.4.1	 Experimental Methodology  171
5.4.4.2	 Experimental Results  172
5.5	 Assertions  173
5.6	 Insights  174
	 References  175

6	 Software Error Detection and Recovery Through Software
Analysis  179

6.1	 Introduction  179
6.2	 Diverse Programming  183
6.2.1	 N-Version Programming  183

Contents xi

6.2.1.1	 Applications of N-Version Programming  185
6.2.2	 Recovery Blocks  188
6.2.2.1	 Sequential Recovery Block Scheme  189
6.2.2.2	 Designing an Acceptance Test  189
6.2.2.3	 Distributed Applications: Recovery Block Conversations  191
6.2.2.4	 Advanced Recovery Block Models and Real-Time Systems  193
6.3	 Static Analysis Techniques  194
6.3.1	 ESP: Path-Sensitive Program Verification in Polynomial Time  196
6.3.2	 PR-Miner: Automatically Extracting Implicit Programming Rules

and Detecting Violations in Large Software Code  199
6.3.3	 Dynamic Derivation of Program Invariants  202
6.3.3.1	 DAIKON  203
6.3.4	 Statically Derived Application-Specific Detectors  206
6.3.4.1	 Terms and Definitions  207
6.3.4.2	 Steps in Detector Derivation  207
6.3.4.3	 Example of Derived Detectors  208
6.3.4.4	 Software Errors Covered  209
6.3.4.5	 Hardware Errors Covered  212
6.3.4.6	 Performance and Coverage Measurements  213
6.4	 Error Detection Based on Dynamic Program Analysis  217
6.4.1	 Fault Model  218
6.4.2	 Derivation: Analysis and Design  219
6.4.2.1	 Dynamic Derivation of Detectors  221
6.4.2.2	 Detector Tightness and Execution Cost  221
6.4.2.3	 Detector Derivation Algorithm  224
6.4.3	 Experimental Evaluation  225
6.4.3.1	 Application Programs  225
6.4.3.2	 Infrastructure  225
6.4.3.3	 Experimental Procedure  227
6.4.4	 Results  228
6.4.4.1	 Detection Coverage of Derived Detectors  228
6.4.4.2	 False Positives  231
6.5	 Processor-Level Selective Replication  233
6.5.1	 Application Analysis  234
6.5.2	 Overview of Selective Replication  235
6.5.3	 Mechanism of Replication  236
6.6	 Runtime Checking for Residual Software Bugs  239
6.6.1	 Race Condition Checking in Multithreaded Programs  239
6.6.2	 Array Bounds Checking  240
6.6.3	 Runtime Verification  241
6.7	 Data Audit  242
6.7.1	 Static and Dynamic Data Check  243

Contentsxii

6.7.2	 Structural Check  243
6.7.3	 Semantic Referential Integrity Check  244
6.7.4	 Optimization Using Runtime Statistics  244
6.8	 Application of Data Audit Techniques  246
6.8.1	 Target System Software and Database Architecture  246
6.8.2	 Audit Subsystem Architecture  247
6.8.2.1	 The Heartbeat Element  249
6.8.2.2	 The Progress Indicator Element  249
6.8.2.3	 Audit Elements  249
6.8.3	 Evaluating the Audit Subsystem  250
6.9	 Insights  252
	 References  253

7	 Measurement-based Analysis of System Software: Operating System
Failure Behavior  261

7.1	 Introduction  261
7.2	 MVS (Multiple Virtual Storage)  262
7.2.1	 MVS Error Detection and Recovery Processing  263
7.2.2	 MVS Error Detection  263
7.2.3	 Recovery Processing  264
7.2.3.1	 Hardware Error Recovery  265
7.2.3.2	 MVS Software Error Recovery  266
7.2.4	 Hardware-related Software Errors  266
7.2.4.1	 Processing of Error Data  267
7.2.4.2	 Analysis of Error Detection  269
7.2.4.3	 Error Classification and Detection  269
7.2.4.4	 Error Detection and Recovery  270
7.2.4.5	 Detection of HW/SW Software Errors  271
7.2.5	 Analysis of Hardware-related Software Errors  271
7.2.5.1	 Recovery from HW/SW Errors  271
7.2.6	 Summary of MVS Analysis  273
7.3	 Experimental Analysis of OS Dependability  273
7.3.1	 What to Measure and Why?  274
7.4	 Behavior of the Linux Operating System in the Presence of Errors  275
7.4.1	 Methodology  276
7.4.2	 Error Injection Environment  276
7.4.2.1	 Approach  276
7.4.2.2	 Error Activation  278
7.4.2.3	 Error Model  279
7.4.2.4	 Outcome Categories  280
7.4.3	 Overview of Experimental Results  282

Contents xiii

7.4.4	 Crash Cause Analysis  284
7.4.4.1	 Stack Injection  284
7.4.4.2	 System Register Injection  286
7.4.4.3	 Code Injection  288
7.4.4.4	 Data Injection  289
7.4.4.5	 Summary  289
7.4.5	 Crash Latency (Cycles-­to-­Crash) Analysis  290
7.4.6	 Crash Severity  292
7.4.6.1	 Lessons Learned  293
7.4.6.2	 Value in Employing Fault Injection  294
7.4.6.3	 Toolset and Benchmark Procedures  294
7.4.7	 Summary  294
7.5	 Evaluation of Process Pairs in Tandem GUARDIAN  295
7.5.1	 Data Integrity  296
7.5.2	 User Applications  296
7.5.3	 Software Fault Tolerance of Process Pairs  297
7.5.3.1	 Measure of Software Fault Tolerance  298
7.5.3.2	 Outages Due to Software  299
7.5.3.3	 Characterization of Software Fault Tolerance  300
7.5.4	 Discussion  303
7.5.5	 First Occurrences Versus Recurrences  304
7.5.6	 Impact of Software Failures on Performance  305
7.5.7	 Summary  308
7.6	 Benchmarking Multiple Operating Systems�: A Case Study Using Linux

on Pentium, Solaris on SPARC, and AIX on POWER  308
7.6.1	 Introduction of Case Study  309
7.6.2	 Experimental Setup  310
7.6.2.1	 Fault Model  310
7.6.2.2	 Target Systems  311
7.6.2.3	 Experimental Environment  311
7.6.3	 Evaluation Procedure  313
7.6.3.1	 Generation of Injection Targets  313
7.6.3.2	 Execution of Fault Injection Campaigns  313
7.6.3.3	 Collection and Analysis of Data  314
7.6.4	 Results  315
7.6.4.1	 Comparison of Target Platforms’ Error Behavior  321
7.6.4.2	 Feedback for Reliability Enhancements  322
7.6.5	 Detailed Discussion and Analysis  323
7.6.5.1	 Text Injection Analysis  323
7.6.5.2	 Stack Injection Analysis  324
7.6.5.3	 Register Injection Analysis  325

Contentsxiv

7.6.6	 Conclusions  326
7.7	 Dependability Overview of the Cisco Nexus Operating 	

System  326
7.8	 Evaluating Operating Systems: Related Studies  330
7.9	 Insights  331
	 References  332

8	 Reliable Networked and Distributed Systems  337
8.1	 Introduction  337
8.2	 System Model  339
8.3	 Failure Models  340
8.4	 Agreement Protocols  342
8.4.1	 Byzantine Agreement Problem: Solution  343
8.4.1.1	 Oral Message Algorithm, OM( f )  344
8.4.2	 Interactive Consistency Obtained by Running the Byzantine Agreement

Protocol  345
8.5	 Reliable Broadcast  346
8.5.1	 Reliable Broadcast  348
8.5.2	 FIFO (First-In-First-Out) Broadcast  348
8.5.3	 Causal Broadcast  349
8.5.4	 Total Order Broadcast  350
8.6	 Reliable Group Communication  351
8.6.1	 Specification of Group Communication Service  351
8.6.1.1	 Specification of Group Membership Service  352
8.6.1.2	 Specification of Reliable Multicast Service  354
8.6.2	 Example Implementations of Group Communication Systems  357
8.7	 Replication  358
8.7.1	 Replication in Hardware  360
8.7.2	 Replication in Software  363
8.7.2.1	 Replication at the Level of the Operating System  363
8.7.2.2	 Replication at the Level Between the Hardware and the Operating

System  364
8.7.2.3	 Replication at the Level Between the Operating System and the User

Application  364
8.7.2.4	 Replication at the User-Level  365
8.7.2.5	 CORBA  366
8.7.3	 The Problem of Nondeterminism  366
8.7.4	 Paxos and Read-Write Quorums: A Practical Approach to Achieving

Eventual Consistency  368
8.7.4.1	 Paxos  368
8.7.5	 Read-Write Quorums  369

Contents xv

8.8	 Replication of Multithreaded Applications  370
8.8.1	 System Model: Definitions and Assumptions  373
8.8.2	 Specification of the LSA Algorithm  374
8.8.3	 LSA Algorithm Overview  374
8.8.3.1	 Failure Behavior with Error-Free Leader-to-Followers

Communication  376
8.8.3.2	 Failure Behavior with Byzantine Errors in Leader-to-Followers 	

Communication  381
8.8.4	 Specification of the PDS Algorithm  382
8.8.4.1	 PDS-1 Algorithm Overview  382
8.8.4.2	 PDS-2 Algorithm  384
8.8.5	 Application-Transparent Replication Framework  385
8.8.5.1	 Using the LSA and PDS Algorithms with Majority Voting  386
8.8.5.2	 LSA and PDS Implementations  386
8.8.5.3	 Virtual Socket Layer  386
8.8.5.4	 Voter/Fanout Process  387
8.8.6	 Performance-Dependability Trade-Offs  387
8.8.6.1	 Performance Evaluation  388
8.8.6.2	 Dependability Evaluation  390
8.8.6.3	 Injections into a Replica Process  391
8.8.6.4	 Lessons Learned  395
8.8.7	 Conclusions  395
8.9	 Atomic Commit  396
8.9.1	 The Two-Phase Commit Protocol  397
8.9.1.1	 Assumptions  397
8.9.1.2	 Basic Algorithm  398
8.9.1.3	 Disadvantages  398
8.9.1.4	 The Detailed Two-Phase Commit Protocol  398
8.10	 Opportunities and Challenges in Resource-Disaggregated Cloud Data

Centers  400
8.10.1	 Data Movement  402
8.10.2	 Data Consistency  403
8.10.3	 Fault Tolerance  403
8.10.4	 ML-based Orchestration and Validation  405
	 References  405

9	 Checkpointing and Rollback Error Recovery  413
9.1	 Introduction  413
9.2	 Hardware-Implemented Cache-Based Schemes Checkpointing  415
9.2.1	 Cache-Aided Rollback Error Recovery (CARER) for

Uniprocessors  415

Contentsxvi

9.2.2	 Multiprocessor Cache-Based Schemes  418
9.2.3	 ReVive: Cost-Effective Architectural Support for Rollback Recovery

in Shared-Memory Multiprocessors  419
9.3	 Memory-Based Schemes  421
9.3.1	 Physical Memory-Based Schemes  421
9.3.2	 Virtual Memory-Based Schemes  421
9.4	 Operating-System-Level Checkpointing  424
9.4.1	 libckpt: Transparent Checkpointing Under Unix  425
9.4.1.1	 Incremental Checkpointing  425
9.4.1.2	 Forked Checkpointing  425
9.4.2	 Fine-Grained Rollback and Deterministic Replay for Software

Debugging  426
9.4.2.1	 Rollback of Multithreaded Processes  427
9.4.3	 Transparent Application Checkpoint (TAC) Module  428
9.4.3.1	 RMK Framework  428
9.4.3.2	 RMK Pins: System-Level RMK Interface  429
9.4.3.3	 Application-Level RMK Interface  430
9.4.3.4	 RMK Core  430
9.4.3.5	 An Example RMK Module: Transparent Application Checkpoint

(TAC)  430
9.5	 Compiler-Assisted Checkpointing  432
9.5.1	 CATCH – Compiler-Assisted Techniques for Checkpointing  432
9.5.1.1	 Potential Checkpoints  433
9.5.1.2	 Sparse Potential Checkpoints  434
9.5.1.3	 Adaptive Checkpointing  434
9.5.2	 Compiler-Assisted Checkpointing Using libckpt  437
9.5.2.1	 Compiler Directives  438
9.6	 Error Detection and Recovery in Distributed Systems  438
9.6.1	 Synchronous Checkpointing  440
9.6.2	 Asynchronous Checkpointing: Message Logging  441
9.6.3	 Sender-Based Message Logging  442
9.6.3.1	 Design and Motivation  442
9.6.3.2	 A Practical Implementation  445
9.7	 Checkpointing Latency Modeling  451
9.8	 Checkpointing in Main Memory Database Systems (MMDB)  455
9.8.1	 Checkpointing of MMDB Control Structures  458
9.8.1.1	 Checkpointing Framework  459
9.8.1.2	 Incremental Checkpointing  461
9.8.1.3	 Delta Checkpointing  462
9.9	 Checkpointing in Distributed Database Systems  463
9.9.1	 Definitions  464

Contents xvii

9.9.2	 The Algorithm  465
9.9.2.1	 Failure Recovery  468
9.10	 Multithreaded Checkpointing  468
9.10.1	 Dealing with Nondeterminism  469
	 References  470

10	 Checkpointing Large-Scale Systems  475
10.1	 Introduction  475
10.2	 Checkpointing Techniques  476
10.2.1	 Checkpoint Coordination Techniques  476
10.2.2	 Shared Memory Systems  478
10.2.3	 I/O Techniques  479
10.2.4	 Recovery Techniques  481
10.2.4.1	 Use of Spares  482
10.3	 Checkpointing in Selected Existing Systems  484
10.3.1	 Blue Gene  485
10.3.2	 Brazos  487
10.3.3	 Winckp  487
10.3.4	 Condor  488
10.3.5	 Libckpt  488
10.3.6	 Classification of Checkpointing Approaches in Existing Systems  489
10.3.7	 Example of Evaluation of Checkpointing Schemes for a Large-Scale

System  490
10.3.8	 Determining Optimal Checkpointing Interval  491
10.4	 Modeling-Coordinated Checkpointing for Large-Scale

Supercomputers  492
10.4.1	 Failure and Recovery  493
10.4.2	 SAN-Based Modeling  494
10.4.2.1	 Modeling Compute and Checkpointing  496
10.4.2.2	 Modeling Correlated Failures  499
10.4.2.3	 Results  500
10.5	 Checkpointing in Large-Scale Systems: A Simulation Study  502
10.6	 Cooperative Checkpointing  506
10.6.1	 Other Terms and Definitions  507
10.6.2	 Cooperative Checkpointing vs. Periodic Checkpointing  507
	 References  508

11	 Internals of Fault Injection Techniques  511
11.1	 Introduction  511
11.2	 Historical View of Software Fault Injection  513
11.3	 Fault Model Attributes  517

Contentsxviii

11.4	 Compile-Time Fault Injection  517
11.4.1	 Source Code Mutation  520
11.4.2	 Bytecode Mutation  521
11.5	 Runtime Fault Injection  521
11.5.1	 Time Trigger Faults  521
11.5.2	 Runtime Mutation  521
11.5.2.1	 Mutation of APIs and System Call Parameters  522
11.5.2.2	 Software Probe  522
11.5.2.3	 Network Messaging Faults  522
11.5.3	 Library-Based Faults  523
11.5.4	 Performance/Timing Faults  523
11.5.5	 User-Space Ptrace-Based Faults  524
11.5.5.1	 Fault Injection Using Trap Instruction  524
11.5.5.2	 Fault Injection Using Debug Register  524
11.5.6	 Fault Injection Using GDB  524
11.5.7	 Kernel Space  525
11.5.7.1	 Kernel Fault Injection  526
11.5.7.2	 Driver  526
11.5.7.3	 User Virtual Address  526
11.5.8	 Configurable FPGAs  527
11.5.9	 Security Threats  527
11.6	 Simulation-Based Fault Injection  529
11.7	 Dependability Benchmark Attributes  530
11.8	 Architecture of a Fault Injection Environment�: NFTAPE Fault/Error

Injection Framework Configured to Evaluate Linux OS  531
11.8.1	 Fault Injection Environment  531
11.8.2	 Approach Overview  532
11.8.3	 Kernel Profiling  533
11.8.3.1	 Workload  533
11.8.3.2	 Profiling  534
11.8.4	 Hardware Monitoring  535
11.8.5	 Control Host Overview  535
11.8.5.1	 Target Generator  538
11.8.5.2	 Injector Manager  539
11.8.6	 Kernel-Level Support  540
11.8.6.1	 Injection Controller  540
11.8.7	 Breakpoint Handler  543
11.8.8	 Crash Handler  544
11.8.9	 Crash Dumper  545
11.8.10	 Component Interactions  545
11.9	 ML-Based Fault Injection: Evaluating Modern Autonomous

Vehicles  547

Contents xix

11.9.1	 DriveFI: Bayesian Fault Injection Framework  548
11.9.1.1	 Autonomous Driving System Overview  550
11.9.1.2	 Defining Safety  551
11.9.1.3	 Fault Injection  552
11.9.1.4	 Case Studies  554
11.9.2	 Bayesian Fault Injection  554
11.9.2.1	 Kinematics-Based Model of Safety  555
11.9.2.2	 Machine Learning Model Describing the System’s Response Under

Faults  556
11.9.3	 The ADS Architecture and Simulation  560
11.9.3.1	 Overview of ADS  560
11.9.3.2	 Simulation Platform  561
11.9.4	 DriveFI Architecture  561
11.9.4.1	 Injecting into Computational Elements: GPU Fault Models  563
11.9.4.2	 Injecting Faults into ADS Module Output Variables  563
11.9.5	 Results  564
11.9.5.1	 GPU-Level Fault Injection  566
11.9.5.2	 Source-Level Fault Injections  567
11.9.5.3	 Results of Bayesian FI-Based Injections  570
11.9.6	 AV-Fuzzer: Fault Injection Framework Based on AI-Driven

Fuzzing  572
11.9.7	 Related Work  573
11.10	 Insights and Concluding Remarks  574
	 References	   574

12	 Measurement-Based Analysis of Large-Scale Clusters:
Methodology  585

12.1	 Introduction  585
12.2	 Related Research  587
12.2.1	 Failure Data Analysis in Specific Application Domains  590
12.2.2	 Analysis of Data on Security Incidents  593
12.3	 Steps in Field Failure Data Analysis  594
12.4	 Failure Event Monitoring and Logging  597
12.4.1	 Automated Error Logging  597
12.4.1.1	 Syslog  598
12.4.1.2	 Blue Waters Logs  598
12.4.1.3	 IBM Z/OS Logs  601
12.4.1.4	 IBM Blue Gene RAS Events  602
12.4.1.5	 Windows Event Logging  604
12.4.2	 Human-Generated Failure Reports  607
12.4.2.1	 Bug Databases and Public User Forums  607
12.5	 Data Processing  608

Contentsxx

12.5.1	 Data Filtering  611
12.5.1.1	 Example: Processing of Public Computer-Related Recalls Databases

for Safety-Critical Medical Devices  612
12.5.2	 Data Coalescence  614
12.5.2.1	 Time-Based Coalescence  616
12.5.2.2	 Problems with Time-Based Coalescence  618
12.5.2.3	 Example of Time-Based Spatial Coalescence of Failure Data from Blue

Gene/L  620
12.5.2.4	 Content-Based Event Coalescence  620
12.6	 Data Analysis  622
12.6.1	 Basic Statistics  622
12.6.2	 Repair Rates  624
12.6.2.1	 Example: Root Cause Analysis from 20 HPC Systems at LANL  624
12.6.2.2	 Example: Analysis of Smartphone Users’ Failure Reports  627
12.6.2.3	 Example: Analysis of Failures from LANs of Windows NT

Machines  628
12.7	 Estimation of Empirical Distributions  634
12.7.1	 Hazard Rate Estimation  635
12.7.1.1	 Hazard Rate Estimation from VAXclusters  638
12.7.1.2	 Hazard Rate Estimation from a Software-as-a-Service Platform  639
12.8	 Dependency Analysis  641
12.8.1	 Workload/Failure Dependency  642
12.8.2	 Failure Dependency Among Components  646
12.8.2.1	 Steps in Correlation Analysis  647
12.8.3	 Error Interaction Analysis  650
12.8.3.1	 Hardware-Related Software Errors  650
	 References  651

13	 Measurement-Based Analysis of Large Systems: Case Studies  667
13.1	 Introduction  667
13.2	 Case Study I: Failure Characterization of a Production

Software-as-a-Service Cloud Platform  667
13.2.1	 Data Source  668
13.2.2	 Failure Analysis Workflow  669
13.2.3	 Failure Characterization  670
13.2.3.1	 Output of the Coalescence Process  671
13.2.3.2	 Key Factors Impacting Platform Failures  674
13.2.3.3	 Impact of Timeout Errors  676
13.2.4	 Failure Rate Analysis  678
13.2.4.1	 Trend Analysis of the Platform Failure Rate  678
13.2.4.2	 Impact of Platform Software Upgrades  681

Contents xxi

13.2.4.3	 Impact of the Workload Volume on the Platform Failure Rate  683
13.2.4.4	 Impact of the Workload Intensity on the Platform Failure Rate  683
13.2.5	 Conclusions  684
13.3	 Case Study II: Analysis of Blue Waters System Failures  686
13.3.1	 Data and Methodology  690
13.3.1.1	 Characterization Methodology  692
13.3.2	 Blue Waters Failure Causes  693
13.3.2.1	 Breakdown of Failures  693
13.3.2.2	 Effectiveness of Failover  698
13.3.3	 Hardware Error Resiliency  700
13.3.3.1	 Rate of Uncorrectable Errors Across Different Node Types  701
13.3.3.2	 Hardware Failure Rates  703
13.3.3.3	 Hardware Failure Trends  704
13.3.4	 Characterization of Systemwide Outages  706
13.3.5	 Conclusions  708
13.4	 Case Study III: Autonomous Vehicles: Analysis of Human-Generated

Data  710
13.4.1	 Examples of AV-Related Accidents  711
13.4.2	 AV System Description and Data Collection  714
13.4.2.1	 AV Hierarchical Control Structure  715
13.4.2.2	 Data Sources  717
13.4.3	 Data-Analysis Workflow: Parsing, Filtering, Normalization,

and NLP  718
13.4.4	 Statistical Analysis of Failures in AVs  721
13.4.4.1	 Analysis of AV Disengagement Reports  722
13.4.4.2	 Analysis of AV Accident Reports  730
13.4.5	 Discussion  733
13.4.6	 Limitations of this Study  734
13.4.7	 Related Work  735
13.4.8	 Insights and Conclusions  736
	 References  737

14	 The Future: Dependable and Trustworthy AI Systems  745
14.1	 Introduction  745
14.2	 Building Trustworthy AI Systems  748
14.2.1	 An AI System and Its Key Components  748
14.2.2	 A System Perspective on Trust in AI Systems  751
14.3	 Offline Identification of Deficiencies  753
14.3.1	 Assessment and Validation of a System and Its Design  753
14.3.1.1	 Formal Verification  753
14.3.1.2	 Traditional End-to-End Random Fault Injection  758

Contentsxxii

14.3.1.3	 Model-driven Fuzzing, Falsification, and Fault Injection  758
14.3.2	 Post-Mortem Analysis to Track the Causes of Incidents

Systematically  760
14.3.2.1	 Adversarial Learning: A Red Team Approach  761
14.3.2.2	 Adversarial Learning: A Systematic Approach to Mislead

AI Systems  761
14.3.2.3	 Generative Adversarial Networks  763
14.3.3	 Smart Malware with Self-Learning Capabilities  768
14.4	 Online Detection and Mitigation  769
14.4.1	 Formalization  769
14.4.2	 Monitoring  769
14.4.3	 Mitigation  770
14.5	 Trust Model Formulation  772
14.5.1	 An Illustrative Trust Model  772
14.6	 Modeling the Trustworthiness of Critical Applications  775
14.6.1	 Autonomous Vehicles and Transportation  775
14.6.1.1	 Addressing Uncertainty  777
14.6.2	 Large-Scale Computing Infrastructure  778
14.6.2.1	 Model Formulation  779
14.6.2.2	 Addressing Uncertainty  780
14.6.3	 Healthcare AI/ML  781
14.6.3.1	 Model Formulation  782
14.6.3.2	 Addressing Uncertainty  785
14.7	 Conclusion: How Can We Make AI Systems Trustworthy?  786
	 References  788

Index  797

xxiii

Professor Ravishankar K. Iyer is George and Ann Fisher Distinguished
Professor of Engineering at the University of Illinois Urbana-Champaign. He
holds joint appointments in the Departments of Electrical and Computer
Engineering (ECE) and Computer Science, the Coordinated Science Laboratory
(CSL), the National Center for Supercomputing Applications (NCSA), the Carle
Illinois College of Medicine, and the Carl R. Woese Institute for Genomic Biology.
He is also a faculty Research Affiliate at the Mayo Clinic. Professor Iyer was the
founding Chief Scientist of the Information Trust Institute at UIUC – a campus-
wide research center addressing security, reliability, and safety issues in critical
infrastructures. He leads the DEPEND Group at CSL/ECE at Illinois, with a mul-
tidisciplinary focus on systems and software that combine deep measurement-
driven analytics and machine learning with applications in two important
domains: (i) management and control of large infrastructures including autono-
mous systems that span resilience, safety, and security and performance and
(ii) health and personalized medicine that spans computational genomics and
health analytics focused on neurological disorders, pharmacogenomics, and pre-
dicting cancer metastases. His group has developed a rich AI analytics framework
that has been deployed on real-world applications in collaboration with industry,
health providers, and government agencies including the National Science
Foundation, the National Institutes of Health, the Department of Energy, the
Defense Advanced Research Projects Agency, and the Department of Defense.

Professor Iyer is a Fellow of the American Association for the Advancement of
Science (AAAS), the Institute of Electrical and Electronics Engineers (IEEE), and
the Association for Computing Machinery (ACM). He has received several awards,
including the Jean-Claude Laprie Award, IEEE Emanuel R. Piore Award, and the
2011 Outstanding Contributions Award by the Association of Computing
Machinery. Professor Iyer is also the recipient of the degree of Doctor Honoris
Causa from Toulouse Sabatier University in France.

Dr. Zbigniew T. Kalbarczyk is Research Professor at the Department of
Electrical and Computer Engineering and the Coordinated Science Laboratory
of the UIUC. Dr. Kalbarczyk’s research interests are in the design and validation

About the Authors

About the Authorsxxiv

of reliable and secure computing systems. His current work explores: (i) emerging
computing technologies, such as resource virtualization to provide redundancy
and assure system resiliency to accidental errors and malicious attacks;
(ii) machine learning-based methods for early detection of security attacks,
including defense against smart malware; (ii) analysis of data on failures and
security attacks in large computing systems to characterize system resiliency and
guide development of methods for rapid diagnosis and runtime detection of prob-
lems; and (iv) development of techniques for automated validation and bench-
marking of dependable and secure computing systems using formal (e.g., model
checking) and experimental methods (e.g., fault/attack injection). Dr. Kalbarczyk
led the design and commercialization of (i) ARMOR high-availability software
middleware to support resilient distributed applications and (ii) NFTAPE soft-
ware framework to support fault injection-based resiliency assessment. He served
as a program chair of Dependable Computing and Communication Symposium
(DCCS), a track of the International Conference on Dependable Systems and
Networks (DSN) 2007, and Program Co-Chair of Computer Performance and
Dependability Symposium, a track of the DSN 2002. He was Associate Editor of
IEEE Transactions on Dependable and Secure Computing. He has published over
230 technical papers and is regularly invited to give tutorials and lectures on issues
related to the design and assessment of complex computing systems. He is a mem-
ber of the IEEE, the IEEE Computer Society, and IFIP Working Group 10.4 on
Dependable Computing and Fault Tolerance.

Dr. Nithin M. Nakka received his BTech (hons.) degree from the Indian Institute
of Technology, Kharagpur and his MS and PhD degrees at the University of Illinois
at UIUC. Currently, he is Technical Leader at Cisco Systems. While at Cisco, he has
worked on most layers of the networking software stack, from network data-plane
hardware, control plane at Layer-2 and Layer-3, network controllers, up to and
including network fabric monitoring. This along with doing what he enjoys –
sharing his expertise through mentoring many incoming employees. He has been
leading the development of solutions for network day-2 operations to monitor fab-
rics and analyze, understand, troubleshoot network issues, and possibly predict
impending network failures. His innovative approximation heuristics in Algorithms
for Memory Array Redundancy Analysis during his work at Nextest Systems
Corporation brought the company to world-class excellence in this niche computa-
tional problem domain, generally known to be NP-complete. He also worked for
Motorola’s mobile devices group, on pioneering efforts in Bluetooth stereo audio
transmission (A2DP) and Bluetooth security. His areas of research interest include
systems reliability, network telemetry, and hardware implemented fault tolerance.
Dr. Nakka has previously held positions as a research faculty in UIUC, and
Northwestern University in Evanston, Illinois, and contributed to the area of
dependability in high-performance computing systems.

xxv

Dependability of systems has transitioned over the years from a feature to a neces-
sity for end users, and from an add-on to a core design principle for those who are
designing and implementing computing or computer-based systems. The need for
dependability has grown not just in its breadth in terms of the areas where it is
applicable but also in depth. Given any one of the many systems where dependa-
bility techniques are applied, their relevance is seen in every layer of the system
stack. The aim of this book is to help readers navigate through the evolution of
dependability, from taxonomy, mathematical concepts, and fundamental theory
to design, implementation, validation, deployment, measurement, and monitor-
ing. Finally, the book brings its audience right up to the modernity of the field by
looking at critical societal applications such as autonomous vehicles, large-scale
clouds, and engineering solutions for healthcare, illustrating the emerging chal-
lenges faced in making artificial intelligence (AI) and its applications dependable
and trustworthy.

Sections of the book are intensely pedantic and technical. However, with the
support of practical case studies and use cases from both academia and real-world
deployments, we have attempted to guide our audience through their journey in
fathoming the developments in this ever-growing field. For a beginner, a system-
atic study from the beginning will help in building strong foundations, but we
encourage all readers to whet their appetite with any of the case studies that spark
their interest. For seasoned designers and academicians in the area, we attempt to
provide a near-current reference for dependability research and development.

The prerequisites for the content of this book are a basic understanding of sta-
tistical concepts, computer systems and organization, and, preferably, a course on
distributed systems. Above all, a keen interest in delving into this exciting field to
unravel and possibly discover new techniques will maintain a reader’s enthusi-
asm, as it has done ours over the past years. Certainly, well-written texts are
already available in this area. However, the authors felt that we lacked a single
compendium spanning the myriad areas in which dependability has been applied,

Preface

Prefacexxvi

providing theoretical concepts and applied knowledge with content that would
excite a beginner yet rigor that would satisfy an expert. That feeling led us to
embark on the long journey of bringing forth this book.

Chapters 1 and 2 describe dependability taxonomy and briefly compare and
contrast classical techniques with their modern counterparts or extensions.
Chapters 3–7 help the readers walk up the system stack, from the hardware logic
via operating systems up to software applications, with respect to how those layers
are hardened for dependability. Chapters 8–12 expand into the domain of distrib-
uted systems to explore the techniques and applications therein. Those chapters
also delve a great deal into a measurement-based understanding of the systems
being studied, an aspect that the authors feel honored to have had the opportunity
to significantly contribute. Chapter 13 focuses on the most recent and upcoming
trends that are shaping developments in dependability. Finally, looking into the
future, Chapter 14 delves deeper into the novel challenges that are being faced in
making AI systems dependable and trustworthy.

In summary, with the support of practical case studies and use cases from both
academia and real-world deployments, we guide our audience through a journey
of developments, including the impact of AI and machine learning on this ever-
growing field.

xxvii

In writing this book, we were inspired by Professor Dan Siewiorek’s groundbreak-
ing research and the unmatched book The Theory and Practice of Reliable System
Design by Siewiorek and Swarz, now in its third edition, as well as the founda-
tional work of Professors Ed McCluskey and Al Avižienis, which continues to
impact the field today.

We are indebted to many of our current and former students, postdoctoral asso-
ciates, and academic and industry colleagues whose research contributed in
important ways to material in this book, including Karthik Pattabiraman, Lelio
DiMartino, Bob Horst, Saurabh Bagchi, Homa Alemzadeh, Long Wang, Tim Tsai,
Saurabh Jha, Phuong Cao, Keywhan Chung, Shengkun Cui, and Archit Patke.
Some of our colleagues have also adopted a draft version of this book in teaching
dependability courses to graduate and senior students in their respective institu-
tions, which has bolstered our confidence in the usefulness of this content. The
administrative and technical proofreading staff members, including, Carol Bosley,
Heidi Leerkamp, Jenny Applequist, and Kathleen Atchley, have contributed
immensely to this effort by their critical linguistic polish of this technical content
and also by their logistical work in keeping the authors and publishers in syn-
chrony to accomplish this massive task. We are grateful to all of them as well as
many others who shared their insights.

Special thanks to our colleagues at the University of Illinois Urbana-Champaign
who provided a rich, supportive environment that allowed us to pursue this
project.

The research presented in this book was supported by numerous funding agen-
cies and industry partners, including NSF, NIH, NASA, DoD, DARPA, DOE, IBM,
Sandia National Lab, Nvidia, the Mayo Clinic, Infosys, and Xilinx.

Apart from the immense technical support we have received, we are very grate-
ful to our families, who have been ever so patient in supporting us. They have
transformed their “Are we there yet?” to “Looks like we are getting close” to keep
our enthusiasm alive on an emotional front while we gave all we could to tame

Acknowledgments

Acknowledgmentsxxviii

this mammoth. In spite of all the support that we have received both profession-
ally and personally, added to our over 100 years of combined experience in this
area, we feel that our attempts to gather all that we could in this ever-expanding
and interesting field may have fallen short in some application domains, not given
enough justice to some, or even at times made unintentional errors in compre-
hending and explaining the content. A significant portion of our time was spent
in making sure that we kept the content current and relevant for our audience.
However, as the field is growing at the rate that it is, we had to reconcile ourselves
to the hope that we may offer more in a future edition! We invite readers to send
us their feedback on the content or any errors that may have escaped our scruti-
nous efforts to maintain relevance and correctness.

