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Dependability of systems has transitioned over the years from a feature to a neces-
sity for end users, and from an add-on to a core design principle for those who are 
designing and implementing computing or computer-based systems. The need for 
dependability has grown not just in its breadth in terms of the areas where it is 
applicable but also in depth. Given any one of the many systems where dependa-
bility techniques are applied, their relevance is seen in every layer of the system 
stack. The aim of this book is to help readers navigate through the evolution of 
dependability, from taxonomy, mathematical concepts, and fundamental theory 
to design, implementation, validation, deployment, measurement, and monitor-
ing. Finally, the book brings its audience right up to the modernity of the field by 
looking at critical societal applications such as autonomous vehicles, large-scale 
clouds, and engineering solutions for healthcare, illustrating the emerging chal-
lenges faced in making artificial intelligence (AI) and its applications dependable 
and trustworthy.

Sections of the book are intensely pedantic and technical. However, with the 
support of practical case studies and use cases from both academia and real-world 
deployments, we have attempted to guide our audience through their journey in 
fathoming the developments in this ever-growing field. For a beginner, a system-
atic study from the beginning will help in building strong foundations, but we 
encourage all readers to whet their appetite with any of the case studies that spark 
their interest. For seasoned designers and academicians in the area, we attempt to 
provide a near-current reference for dependability research and development.

The prerequisites for the content of this book are a basic understanding of sta-
tistical concepts, computer systems and organization, and, preferably, a course on 
distributed systems. Above all, a keen interest in delving into this exciting field to 
unravel and possibly discover new techniques will maintain a reader’s enthusi-
asm, as it has done ours over the past years. Certainly, well-written texts are 
already available in this area. However, the authors felt that we lacked a single 
compendium spanning the myriad areas in which dependability has been applied, 
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providing theoretical concepts and applied knowledge with content that would 
excite a beginner yet rigor that would satisfy an expert. That feeling led us to 
embark on the long journey of bringing forth this book.

Chapters  1 and  2 describe dependability taxonomy and briefly compare and 
contrast classical techniques with their modern counterparts or extensions. 
Chapters 3–7 help the readers walk up the system stack, from the hardware logic 
via operating systems up to software applications, with respect to how those layers 
are hardened for dependability. Chapters 8–12 expand into the domain of distrib-
uted systems to explore the techniques and applications therein. Those chapters 
also delve a great deal into a measurement-based understanding of the systems 
being studied, an aspect that the authors feel honored to have had the opportunity 
to significantly contribute. Chapter 13 focuses on the most recent and upcoming 
trends that are shaping developments in dependability. Finally, looking into the 
future, Chapter 14 delves deeper into the novel challenges that are being faced in 
making AI systems dependable and trustworthy.

In summary, with the support of practical case studies and use cases from both 
academia and real-world deployments, we guide our audience through a journey 
of developments, including the impact of AI and machine learning on this ever-
growing field.
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